1
|
Wang X, Sun M, Xiong Y, Liu X, Li C, Wang Y, Tang X. Restriction site-associated DNA sequencing (RAD-seq) of tea plant (Camellia sinensis) in Sichuan province, China, provides insights into free amino acid and polyphenol contents of tea. PLoS One 2024; 19:e0314144. [PMID: 39636847 PMCID: PMC11620369 DOI: 10.1371/journal.pone.0314144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Accepted: 11/06/2024] [Indexed: 12/07/2024] Open
Abstract
Worldwide, tea is a popular beverage; within the realm of Chinese tea, Sichuan tea holds particular significance for its role in the origin and composition of Chinese tea cultivars. Sichuan tea is noted for its rich content of free amino acids (FAAs) and tea polyphenols (TPs), which has made it an important subject for studying genetic diversity and the genes regulating these compounds. In this study, 139 varieties of tea were collected from areas in Sichuan Province, China, with similar geographical and climatic conditions. The FAA content was approximately 3% and the TP content was approximately 17%. Using RAD sequencing, 5,656,224 variant loci were identified, primarily comprising SNPs (94.17%) and indels (5.83%). Evolutionary analysis revealed that genetic divergence was not closely linked to the collection location. Population structure analysis confirmed a division into two main populations having a similar composition to the phylogenetic clusters. Screening for FAA-related SNPs identified significant loci associated with 33 genes that potentially regulate FAA content. Similarly, TP-related analysis pinpointed 8 SNPs significantly linked to 20 candidate genes. Notably, genetic associations hinted at the genes involved in the stress response and the accumulation of phenolic compounds, enhancing the understanding of determinants of tea quality. This research underscores the potential for molecular breeding based on genetic insights, suggesting pathways to improve the FAA and TP contents in tea. These findings not only provide a solid foundation for exploring gene-chemical interactions but also offer practical strategies for improving the nutritional and sensory attributes of tea cultivars through informed breeding practices.
Collapse
Affiliation(s)
- Xiaoping Wang
- Tea Research Institute, Tea Refining and Innovation Key Laboratory of Sichuan Province, Sichuan Academy of Agricultural Sciences, Chengdu, PR China
| | - Minshan Sun
- Tea Research Institute, Tea Refining and Innovation Key Laboratory of Sichuan Province, Sichuan Academy of Agricultural Sciences, Chengdu, PR China
| | - Yuanyuan Xiong
- Tea Research Institute, Tea Refining and Innovation Key Laboratory of Sichuan Province, Sichuan Academy of Agricultural Sciences, Chengdu, PR China
| | - Xiao Liu
- Tea Research Institute, Tea Refining and Innovation Key Laboratory of Sichuan Province, Sichuan Academy of Agricultural Sciences, Chengdu, PR China
| | - Chunhua Li
- Tea Research Institute, Tea Refining and Innovation Key Laboratory of Sichuan Province, Sichuan Academy of Agricultural Sciences, Chengdu, PR China
| | - Yun Wang
- Tea Research Institute, Tea Refining and Innovation Key Laboratory of Sichuan Province, Sichuan Academy of Agricultural Sciences, Chengdu, PR China
| | - Xiaobo Tang
- Tea Research Institute, Tea Refining and Innovation Key Laboratory of Sichuan Province, Sichuan Academy of Agricultural Sciences, Chengdu, PR China
| |
Collapse
|
2
|
Song Z, Zhao L, Ma W, Peng Z, Shi J, Pan F, Gao Y, Sui X, Rengel Z, Chen Q, Wang B. Ethylene inhibits ABA-induced stomatal closure via regulating NtMYB184-mediated flavonol biosynthesis in tobacco. JOURNAL OF EXPERIMENTAL BOTANY 2023; 74:6735-6748. [PMID: 37531314 DOI: 10.1093/jxb/erad308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Accepted: 08/01/2023] [Indexed: 08/04/2023]
Abstract
Stomatal movement can be regulated by ABA signaling through synthesis of reactive oxygen species (ROS) in guard cells. By contrast, ethylene triggers the biosynthesis of antioxidant flavonols to suppress ROS accumulation and prevent ABA-induced stomatal closure; however, the underlying mechanism remains largely unknown. In this study, we isolated and characterized the tobacco (Nicotiana tabacum) R2R3-MYB transcription factor NtMYB184, which belongs to the flavonol-specific SG7 subgroup. RNAi suppression and CRISPR/Cas9 mutation (myb184) of NtMYB184 in tobacco caused down-regulation of flavonol biosynthetic genes and decreased the concentration of flavonols in the leaves. Yeast one-hybrid assays, transactivation assays, EMSAs, and ChIP-qPCR demonstrated that NtMYB184 specifically binds to the promoters of flavonol biosynthetic genes via MYBPLANT motifs. NtMYB184 regulated flavonol biosynthesis in guard cells to modulate ROS homeostasis and stomatal aperture. ABA-induced ROS production was accompanied by the suppression of NtMYB184 and flavonol biosynthesis, which may accelerate ABA-induced stomatal closure. Furthermore, ethylene stimulated NtMYB184 expression and flavonol biosynthesis to suppress ROS accumulation and curb ABA-induced stomatal closure. In myb184, however, neither the flavonol and ROS concentrations nor the stomatal aperture varied between the ABA and ABA+ethylene treatments, indicating that NtMYB184 was indispensable for the antagonism between ethylene and ABA via regulating flavonol and ROS concentrations in the guard cells.
Collapse
Affiliation(s)
- Zhongbang Song
- Yunnan Academy of Tobacco Agricultural Sciences, Kunming 650021, China
| | - Lu Zhao
- Yunnan Academy of Tobacco Agricultural Sciences, Kunming 650021, China
| | - Wenna Ma
- Faculty of Life Science and Technology, Kunming University of Science and Technology, 650500, Kunming, Yunnan, China
| | - Zhongping Peng
- Faculty of Life Science and Technology, Kunming University of Science and Technology, 650500, Kunming, Yunnan, China
| | - Junli Shi
- Yunnan Academy of Tobacco Agricultural Sciences, Kunming 650021, China
| | - Feng Pan
- Faculty of Life Science and Technology, Kunming University of Science and Technology, 650500, Kunming, Yunnan, China
| | - Yulong Gao
- Yunnan Academy of Tobacco Agricultural Sciences, Kunming 650021, China
| | - Xueyi Sui
- Yunnan Academy of Tobacco Agricultural Sciences, Kunming 650021, China
| | - Zed Rengel
- UWA School of Agriculture and Environment, The University of Western Australia, 35 Stirling Highway, Perth, WA, 6009, Australia
- Institute for Adriatic Crops and Karst Reclamation, 21000 Split, Croatia
| | - Qi Chen
- Faculty of Life Science and Technology, Kunming University of Science and Technology, 650500, Kunming, Yunnan, China
| | - Bingwu Wang
- Yunnan Academy of Tobacco Agricultural Sciences, Kunming 650021, China
| |
Collapse
|
3
|
Wang A, Ma H, Zhang X, Zhang B, Li F. Transcriptomic analysis reveals the mechanism underlying the anthocyanin changes in Fragaria nilgerrensis Schlecht. and its interspecific hybrids. BMC PLANT BIOLOGY 2023; 23:356. [PMID: 37434140 DOI: 10.1186/s12870-023-04361-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Accepted: 06/22/2023] [Indexed: 07/13/2023]
Abstract
BACKGROUND Fragaria nilgerrensis (FN) provides a rich source of genetic variations for strawberry germplasm innovation. The color of strawberry fruits is a key factor affecting consumer preferences. However, the genetic basis of the fruit color formation in F. nilgerrensis and its interspecific hybrids has rarely been researched. RESULTS In this study, the fruit transcriptomes and flavonoid contents of FN (white skin; control) and its interspecific hybrids BF1 and BF2 (pale red skin) were compared. A total of 31 flavonoids were identified. Notably, two pelargonidin derivatives (pelargonidin-3-O-glucoside and pelargonidin-3-O-rutinoside) were revealed as potential key pigments for the coloration of BF1 and BF2 fruits. Additionally, dihydroflavonol 4-reductase (DFR) (LOC101293459 and LOC101293749) and anthocyanidin 3-O-glucosyltransferase (BZ1) (LOC101300000), which are crucial structural genes in the anthocyanidin biosynthetic pathway, had significantly up-regulated expression levels in the two FN interspecific hybrids. Moreover, most of the genes encoding transcription factors (e.g., MYB, WRKY, TCP, bHLH, AP2, and WD40) related to anthocyanin accumulation were differentially expressed. We also identified two DFR genes (LOC101293749 and LOC101293459) that were significantly correlated with members in bHLH, MYB, WD40, AP2, and bZIP families. Two chalcone synthase (CHS) (LOC101298162 and LOC101298456) and a BZ1 gene (LOC101300000) were highly correlated with members in bHLH, WD40 and AP2 families. CONCLUSIONS Pelargonidin-3-O-glucoside and pelargonidin-3-O-rutinoside may be the key pigments contributing to the formation of pale red fruit skin. DFR and BZ1 structural genes and some bHLH, MYB, WD40, AP2, and bZIP TF family members enhance the accumulation of two pelargonidin derivatives. This study provides important insights into the regulation of anthocyanidin biosynthesis in FN and its interspecific hybrids. The presented data may be relevant for improving strawberry fruit coloration via genetic engineering.
Collapse
Affiliation(s)
- Aihua Wang
- School of Biological and Food Engineering, Engineering Research Center for Development and High Value Utilization of Genuine Medicinal Materials in North Anhui Province, Suzhou University, Suzhou, 234000, Anhui, China
- Horticulture Institute (Guizhou Horticultural Engineering Technology Research Caenter), Guizhou Academy of Agricultural Sciences, Guiyang, 550006, China
| | - Hongye Ma
- Horticulture Institute (Guizhou Horticultural Engineering Technology Research Caenter), Guizhou Academy of Agricultural Sciences, Guiyang, 550006, China
| | - Xingtao Zhang
- School of Biological and Food Engineering, Engineering Research Center for Development and High Value Utilization of Genuine Medicinal Materials in North Anhui Province, Suzhou University, Suzhou, 234000, Anhui, China
| | - Baohui Zhang
- Horticulture Institute (Guizhou Horticultural Engineering Technology Research Caenter), Guizhou Academy of Agricultural Sciences, Guiyang, 550006, China
| | - Fei Li
- Horticulture Institute (Guizhou Horticultural Engineering Technology Research Caenter), Guizhou Academy of Agricultural Sciences, Guiyang, 550006, China.
| |
Collapse
|
4
|
Peng XQ, Ai YJ, Pu YT, Wang XJ, Li YH, Wang Z, Zhuang WB, Yu BJ, Zhu ZQ. Transcriptome and metabolome analyses reveal molecular mechanisms of anthocyanin-related leaf color variation in poplar ( Populus deltoides) cultivars. FRONTIERS IN PLANT SCIENCE 2023; 14:1103468. [PMID: 36909390 PMCID: PMC9998943 DOI: 10.3389/fpls.2023.1103468] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Accepted: 02/07/2023] [Indexed: 06/18/2023]
Abstract
INTRODUCTION Colored-leaf plants are increasingly popular for their aesthetic, ecological, and social value, which are important materials for research on the regulation of plant pigments. However, anthocyanin components and the molecular mechanisms of anthocyanin biosynthesis in colored-leaf poplar remain unclear. Consequently, an integrative analysis of transcriptome and metabolome is performed to identify the key metabolic pathways and key genes, which could contribute to the molecular mechanism of anthocyanin biosynthesis in the colored-leaf cultivars poplar. METHODS In this study, integrated metabolite and transcriptome analysis was performed to explore the anthocyanin composition and the specific regulatory network of anthocyanin biosynthesis in the purple leaves of the cultivars 'Quanhong' (QHP) and 'Zhongshanyuan' (ZSY). Correlation analysis between RNA-seq data and metabolite profiles were also performed to explore the candidate genes associated with anthocyanin biosynthesis. R2R3-MYB and bHLH TFs with differential expression levels were used to perform a correlation analysis with differentially accumulated anthocyanins. RESULTS AND DISCUSSION A total of 39 anthocyanin compounds were detected by LC-MS/MS analysis. Twelve cyanidins, seven pelargonidins, five delphinidins, and five procyanidins were identified as the major anthocyanin compounds, which were differentially accumulated in purple leaves of QHP and ZSY. The major genes associated with anthocyanin biosynthesis, including structural genes and transcription factors, were differentially expressed in purple leaves of QHP and ZSY through RNA-sequencing (RNA-seq) data analysis, which was consistent with quantitative real-time PCR analysis results. Correlation analysis between RNA-seq data and metabolite profiles showed that the expression patterns of certain differentially expressed genes in the anthocyanin biosynthesis pathway were strongly correlated with the differential accumulation of anthocyanins. One R2R3-MYB subfamily member in the SG5 subgroup, Podel.04G021100, showed a similar expression pattern to some structural genes. This gene was strongly correlated with 16 anthocyanin compounds, indicating that Podel.04G021100 might be involved in the regulation of anthocyanin biosynthesis. These results contribute to a systematic and comprehensive understanding of anthocyanin accumulation and to the molecular mechanisms of anthocyanin biosynthesis in QHP and ZSY.
Collapse
Affiliation(s)
- Xu Qian Peng
- College of Tea Science, Guizhou University, Guiyang, China
| | - Yu Jie Ai
- College of Tea Science, Guizhou University, Guiyang, China
| | - Yu Ting Pu
- College of Tea Science, Guizhou University, Guiyang, China
| | - Xiao Jing Wang
- College of Tea Science, Guizhou University, Guiyang, China
| | - Yu Hang Li
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences (Nanjing Botanical Garden Mem. Sun Yat-Sen), Nanjing, China
| | - Zhong Wang
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences (Nanjing Botanical Garden Mem. Sun Yat-Sen), Nanjing, China
| | - Wei Bing Zhuang
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences (Nanjing Botanical Garden Mem. Sun Yat-Sen), Nanjing, China
- Laboratory of Plant Stress Biology, College of Life Sciences, Nanjing Agricultural University, Nanjing, China
- Laizhou, Ornamental Research Center, Hongshun Plum Planting Technology Co., Ltd, Yantai, China
| | - Bing Jun Yu
- Laboratory of Plant Stress Biology, College of Life Sciences, Nanjing Agricultural University, Nanjing, China
| | - Zhi Qi Zhu
- Laizhou, Ornamental Research Center, Hongshun Plum Planting Technology Co., Ltd, Yantai, China
| |
Collapse
|
5
|
Yan H, Zhang X, Li X, Wang X, Li H, Zhao Q, Yin P, Guo R, Pei X, Hu X, Han R, Zhao X. Integrated Transcriptome and Metabolome Analyses Reveal the Anthocyanin Biosynthesis Pathway in AmRosea1 Overexpression 84K Poplar. Front Bioeng Biotechnol 2022; 10:911701. [PMID: 35733524 PMCID: PMC9207281 DOI: 10.3389/fbioe.2022.911701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2022] [Accepted: 05/05/2022] [Indexed: 11/13/2022] Open
Abstract
Populus alba × Populus glandulosa (84K poplar) is model material with excellent genetic engineering resource and ornamental value. In our study, AmRosea1 (Antirrhinum majus) was overexpressed in 84K poplar, and the transgenic 84K (AM) poplar with high content of anthocyanin exhibited red pigmentation leaves. The transcriptome analysis between wild type (WT) and AM showed that 170 differentially expressed genes (DEGs) (86 up-regulated and 84 down-regulated) were found, and some DEGs were involved in flavone and flavonol biosynthesis, flavonoid biosynthesis and anthocyanin biosynthesis. The metabolome analysis showed that 13 anthocyanins-related differentially accumulated metabolites (DAMs) were detected in AM. The correlation analysis between DEGs and DAMs were performed, and the results revealed that 18 DEGs, including 11 MYB genes, two BZ1 genes, one FG2 gene, one ANS gene, and three IF7MAT genes, were negatively or positively correlated with 13 DAMs. The phylogenetic analysis demonstrated that there was high homology between AmRosea1 and PagMYB113, and MYB113 co-expressed with BZ1, ANS and DFR directly. Our results elucidated the molecular mechanism of plant color change mediated by anthocyanin biosynthesis pathway, which laid the foundation for the development and utilization of colorful woody plant.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | - Rui Han
- *Correspondence: Rui Han, ; Xiyang Zhao,
| | | |
Collapse
|
6
|
Chemical Constituents and Molecular Mechanism of the Yellow Phenotype of Yellow Mushroom (Floccularia luteovirens). J Fungi (Basel) 2022; 8:jof8030314. [PMID: 35330317 PMCID: PMC8949800 DOI: 10.3390/jof8030314] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 03/15/2022] [Accepted: 03/17/2022] [Indexed: 02/06/2023] Open
Abstract
(1) Background: Yellow mushroom (Floccularia luteovirens) is a natural resource that is highly nutritional, has a high economic value, and is found in Northwest China. Despite its value, the chemical and molecular mechanisms of yellow phenotype formation are still unclear. (2) Methods: This study uses the combined analysis of transcriptome and metabolome to explain the molecular mechanism of the formation of yellow mushroom. Subcellular localization and transgene overexpression techniques were used to verify the function of the candidate gene. (3) Results: 112 compounds had a higher expression in yellow mushroom; riboflavin was the ninth most-expressed compound. HPLC showed that a key target peak at 23.128 min under visible light at 444 nm was Vb2. All proteins exhibited the closest relationship with Agaricus bisporus var. bisporus H97. One riboflavin transporter, CL911.Contig3_All (FlMCH5), was highly expressed in yellow mushrooms with a different value (log2 fold change) of −12.98, whereas it was not detected in white mushrooms. FlMCH5 was homologous to the riboflavin transporter MCH5 or MFS transporter in other strains, and the FlMCH5-GFP fusion protein was mainly located in the cell membrane. Overexpression of FlMCH5 in tobacco increased the content of riboflavin in three transgenic plants to 26 μg/g, 26.52 μg/g, and 36.94 μg/g, respectively. (4) Conclusions: In this study, it is clear that riboflavin is the main coloring compound of yellow mushrooms, and FlMCH5 is the key transport regulatory gene that produces the yellow phenotype.
Collapse
|
7
|
Xiao Y, Zhang J, Li Y, Hsiang T, Zhang X, Zhu Y, Du X, Yin J, Li J. An efficient overexpression method for studying genes in Ricinus that transport vectorized agrochemicals. PLANT METHODS 2022; 18:11. [PMID: 35081982 PMCID: PMC8793271 DOI: 10.1186/s13007-022-00842-w] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Accepted: 01/10/2022] [Indexed: 05/10/2023]
Abstract
BACKGROUND Plant plasma membrane transporters play essential roles during the translocation of vectorized agrochemicals. Therefore, transporters associated with phloem loading of vectorized agrochemicals have drawn increasing attention. As a model system, castor bean (Ricinus communis L.) has been widely used to detect the phloem mobility of agrochemicals. However, there is still a lack of an efficient protocol for the Ricinus seedling model system that can be directly used to investigate the recognition and phloem loading functions of plasmalemma transporters toward vectorized agrochemicals. RESULTS Here, using vacuum infiltration strategy, we overexpressed the coding gene for enhanced green fluorescent protein (eGFP) in R. communis seedlings by Agrobacterium tumefaciens-mediated transformation system. Strong fluorescence signals were observed in leaves, demonstrating that exogenous genes can be successfully overexpressed in seedlings. Subsequently, gene expression time and vacuum infiltration parameters were optimized. Observation of fluorescence and qRT-PCR analysis showed that eGFP strength and expression level reached a peak at 72 h after overexpression in seedlings. Parameter optimization showed Agrobacterium concentration at OD600 = 1.2, and infiltration for 20 min (0.09 MPa), return to atmospheric pressure, and then infiltration for another 20 min, were the suitable transformation conditions. To test the application of vacuum agroinfiltration in directly examining the loading functions of plasma membrane transporters to vectorized agrochemicals in seedlings, two LHT (lysine/histidine transporter) genes, RcLHT1 and RcLHT7, were overexpressed. Subcellular localization showed the strong fluorescent signals of the fusion proteins RcLHT1-eGFP and RcLHT7-eGFP were observed on the cell membrane of mesophyll cells, and their relative expression levels determined by qRT-PCR were up-regulated 47- and 52-fold, respectively. Furthermore, the concentrations of L-Val-PCA (L-valine-phenazine-1-carboxylic acid conjugate) in phloem sap collected from seedling sieve tubes were significantly increased 1.9- and 2.3-fold after overexpression of RcLHT1 and RcLHT7, respectively, implying their roles in recognition and phloem loading of L-Val-PCA. CONCLUSIONS We successfully constructed a transient expression system in Ricinus seedlings and laid the foundation for researchers to directly investigate the loading functions of plasma membrane transporters to vectorized agrochemicals in the Ricinus system.
Collapse
Affiliation(s)
- Yongxin Xiao
- Hubei Key Laboratory of Waterlogging Disaster and Agricultural Use of Wetland/Institute of Pesticides/College of Agriculture/College of Life Science/College of Horticulture and Gardening, Yangtze University, Jingzhou, 434025, Hubei, China
| | - Jinying Zhang
- Hubei Key Laboratory of Waterlogging Disaster and Agricultural Use of Wetland/Institute of Pesticides/College of Agriculture/College of Life Science/College of Horticulture and Gardening, Yangtze University, Jingzhou, 434025, Hubei, China
| | - Yiting Li
- Hubei Key Laboratory of Waterlogging Disaster and Agricultural Use of Wetland/Institute of Pesticides/College of Agriculture/College of Life Science/College of Horticulture and Gardening, Yangtze University, Jingzhou, 434025, Hubei, China
| | - Tom Hsiang
- School of Environmental Sciences, University of Guelph, Guelph, ON, N1G 2W1, Canada
| | - Xingping Zhang
- Hubei Key Laboratory of Waterlogging Disaster and Agricultural Use of Wetland/Institute of Pesticides/College of Agriculture/College of Life Science/College of Horticulture and Gardening, Yangtze University, Jingzhou, 434025, Hubei, China
| | - Yongxing Zhu
- Hubei Key Laboratory of Waterlogging Disaster and Agricultural Use of Wetland/Institute of Pesticides/College of Agriculture/College of Life Science/College of Horticulture and Gardening, Yangtze University, Jingzhou, 434025, Hubei, China
| | - Xiaoying Du
- Hubei Key Laboratory of Waterlogging Disaster and Agricultural Use of Wetland/Institute of Pesticides/College of Agriculture/College of Life Science/College of Horticulture and Gardening, Yangtze University, Jingzhou, 434025, Hubei, China
| | - Junliang Yin
- Hubei Key Laboratory of Waterlogging Disaster and Agricultural Use of Wetland/Institute of Pesticides/College of Agriculture/College of Life Science/College of Horticulture and Gardening, Yangtze University, Jingzhou, 434025, Hubei, China.
| | - Junkai Li
- Hubei Key Laboratory of Waterlogging Disaster and Agricultural Use of Wetland/Institute of Pesticides/College of Agriculture/College of Life Science/College of Horticulture and Gardening, Yangtze University, Jingzhou, 434025, Hubei, China.
| |
Collapse
|
8
|
Starkevič P, Ražanskienė A, Starkevič U, Kazanavičiūtė V, Denkovskienė E, Bendokas V, Šikšnianas T, Rugienius R, Stanys V, Ražanskas R. Isolation and Analysis of Anthocyanin Pathway Genes from Ribes Genus Reveals MYB Gene with Potent Anthocyanin-Inducing Capabilities. PLANTS 2020; 9:plants9091078. [PMID: 32842576 PMCID: PMC7570362 DOI: 10.3390/plants9091078] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 08/19/2020] [Accepted: 08/19/2020] [Indexed: 01/29/2023]
Abstract
Horticultural crops of the Ribes genus are valued for their anthocyanin-rich fruits, but until now, there were no data about the genes and regulation of their flavonoid pathway. In this study, the coding sequences of flavonoid pathway enzymes and their putative regulators MYB10, bHLH3 and WD40 were isolated, and their expression analyzed in fruits with varying anthocyanin levels from different cultivars of four species belonging to the Ribes genus. Transcription levels of anthocyanin synthesis enzymes and the regulatory gene RrMYB10 correlated with fruit coloration and anthocyanin quantities of different Ribes cultivars. Regulatory genes were tested for the ability to modulate anthocyanin biosynthesis during transient expression in the leaves of two Nicotiana species and to activate Prunus avium promoters of late anthocyanin biosynthesis genes in N. tabacum. Functional tests showed a strong capability of RrMyb10 to induce anthocyanin synthesis in a heterologous system, even without the concurrent expression of any heterologous bHLH, whereas RrbHLH3 enhanced MYB-induced anthocyanin synthesis. Data obtained in this work facilitate further analysis of the anthocyanin synthesis pathway in key Ribes species, and potent anthocyanin inducer RrMyb10 can be used to manipulate anthocyanin expression in heterologous systems.
Collapse
Affiliation(s)
- Pavel Starkevič
- Department of Eukaryotic Gene Engineering, Institute of Biotechnology, Vilnius University, 10257 Vilnius, Lithuania; (P.S.); (A.R.); (U.S.); (V.K.); (E.D.)
- Nature Research Centre, Akademijos str. 2, 08412 Vilnius, Lithuania
| | - Aušra Ražanskienė
- Department of Eukaryotic Gene Engineering, Institute of Biotechnology, Vilnius University, 10257 Vilnius, Lithuania; (P.S.); (A.R.); (U.S.); (V.K.); (E.D.)
| | - Urtė Starkevič
- Department of Eukaryotic Gene Engineering, Institute of Biotechnology, Vilnius University, 10257 Vilnius, Lithuania; (P.S.); (A.R.); (U.S.); (V.K.); (E.D.)
| | - Vaiva Kazanavičiūtė
- Department of Eukaryotic Gene Engineering, Institute of Biotechnology, Vilnius University, 10257 Vilnius, Lithuania; (P.S.); (A.R.); (U.S.); (V.K.); (E.D.)
| | - Erna Denkovskienė
- Department of Eukaryotic Gene Engineering, Institute of Biotechnology, Vilnius University, 10257 Vilnius, Lithuania; (P.S.); (A.R.); (U.S.); (V.K.); (E.D.)
| | - Vidmantas Bendokas
- Department of Orchard Plant Genetics and Biotechnology, Institute of Horticulture, Lithuanian Research Centre for Agriculture and Forestry, 54333 Babtai, Lithuania; (V.B.); (T.Š.); (R.R.); (V.S.)
| | - Tadeušas Šikšnianas
- Department of Orchard Plant Genetics and Biotechnology, Institute of Horticulture, Lithuanian Research Centre for Agriculture and Forestry, 54333 Babtai, Lithuania; (V.B.); (T.Š.); (R.R.); (V.S.)
| | - Rytis Rugienius
- Department of Orchard Plant Genetics and Biotechnology, Institute of Horticulture, Lithuanian Research Centre for Agriculture and Forestry, 54333 Babtai, Lithuania; (V.B.); (T.Š.); (R.R.); (V.S.)
| | - Vidmantas Stanys
- Department of Orchard Plant Genetics and Biotechnology, Institute of Horticulture, Lithuanian Research Centre for Agriculture and Forestry, 54333 Babtai, Lithuania; (V.B.); (T.Š.); (R.R.); (V.S.)
| | - Raimundas Ražanskas
- Department of Eukaryotic Gene Engineering, Institute of Biotechnology, Vilnius University, 10257 Vilnius, Lithuania; (P.S.); (A.R.); (U.S.); (V.K.); (E.D.)
- Correspondence:
| |
Collapse
|
9
|
Liu Z, Tang X, Liu C, Dong B, Shao Y, Liu B, Yue H. Ultrasonic extraction of anthocyanins from Lycium ruthenicum Murr. and its antioxidant activity. Food Sci Nutr 2020; 8:2642-2651. [PMID: 32566181 PMCID: PMC7300067 DOI: 10.1002/fsn3.1542] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Accepted: 03/09/2020] [Indexed: 12/15/2022] Open
Abstract
The ultrasonic extraction (UE) technology, possessed the advantages of effective, energy-saving, and environmental-friendly, was applied to extract the anthocyanin from Lycium ruthenicum (LR). The extraction parameters of UE were optimized by response surface methodology (RSM) with Box-Behnken design (BBD). Anthocyanin composition in LR fruits grown in China was systematically identified and quantified by HPLC-ESI-MS. The result showed that PRG was the major anthocyanin, and delphinidin, petunidin, and malvidin were the major anthocyanidins in LR fruits. There was the same anthocyanin composition of LR and great variation in anthocyanins content of LR from different areas in China. However, there was no significant difference between wild and cultivated LR in the same region. A clear separation of LR according to geographical origins was revealed by hierarchical cluster analysis (HCA) and principal component analysis (PCA), and the discrimination model for the anthocyanin concentrations were developed using these two analysis methods. Furthermore, on-line HPLC-DPPH assay and scavenging activity of three kinds of radicals (DPPH·, ·OH, and O 2 - · ) in vitro were well applied to evaluate the antioxidant activity of the LR anthocyanin extract (LRAE). And its results indicated the LRAE could be a credible antioxidant agent for applications in cosmetics, food, and medicine.
Collapse
Affiliation(s)
- Zenggen Liu
- Key Laboratory of Tibetan Medicine ResearchNorthwest Institute of Plateau BiologyChinese Academy of SciencesXiningChina
- Qinghai Provincial Key Laboratory of Tibetan Medicine ResearchXiningChina
| | - Xiaohong Tang
- Qinghai Ruihu Biological Resources Development Co., LtdXiningChina
| | - Chuang Liu
- Key Laboratory of Tibetan Medicine ResearchNorthwest Institute of Plateau BiologyChinese Academy of SciencesXiningChina
- Qinghai Provincial Key Laboratory of Tibetan Medicine ResearchXiningChina
| | - Banmacailang Dong
- Key Laboratory of Tibetan Medicine ResearchNorthwest Institute of Plateau BiologyChinese Academy of SciencesXiningChina
- Qinghai Provincial Key Laboratory of Tibetan Medicine ResearchXiningChina
| | - Yun Shao
- Key Laboratory of Tibetan Medicine ResearchNorthwest Institute of Plateau BiologyChinese Academy of SciencesXiningChina
- Qinghai Provincial Key Laboratory of Tibetan Medicine ResearchXiningChina
| | - Baolong Liu
- Key Laboratory of Adaptation and Evolution of Plateau BiotaNorthwest Institute of Plateau BiologyChinese Academy of SciencesXiningChina
| | - Huilan Yue
- Key Laboratory of Tibetan Medicine ResearchNorthwest Institute of Plateau BiologyChinese Academy of SciencesXiningChina
- Qinghai Provincial Key Laboratory of Tibetan Medicine ResearchXiningChina
| |
Collapse
|
10
|
Gao J, Sun X, Zong Y, Yang S, Wang L, Liu B. Functional MYB transcription factor gene HtMYB2 is associated with anthocyanin biosynthesis in Helianthus tuberosus L. BMC PLANT BIOLOGY 2020; 20:247. [PMID: 32487142 PMCID: PMC7268318 DOI: 10.1186/s12870-020-02463-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Accepted: 05/24/2020] [Indexed: 06/11/2023]
Abstract
BACKGROUND Tuber color is an important trait for Helianthus tuberosus L. (Jerusalem artichoke). Usually, purple tubers with high anthocyanin content are more nutritious than white tuber. But, the molecular mechanism underlying it is unknown. RESULTS In the current study, high-throughput RNA-sequencing was used to compare the transcriptomes between plants with tubers with red or white epidermis. Compared with the white-skinned tubers of cultivar QY3, anthocyanin biosynthesis structural genes had greater expression in the red-skinned tubers of cultivar QY1, indicating that the anthocyanin biosynthesis pathway was activated in 'QY1'; quantitative PCR confirmed this difference in expression. HtMYB2 (Unigene44371_All) was the only MYB transcription factor, homologous to the MYB transcription factor regulating anthocyanin biosynthesis, expressed in the red tuber epidermis of 'QY1'. The anthocyanin concentration in the root, stem, leaf, flower, and tuber epidermis of 'QY1' was higher than in 'QY3', especially tuber epidermis. Correspondingly, HtMYB2 had greater expression in these tissues of 'QY1' than in 'QY3'. The expression of HtMYB2 was associated with anthocyanin accumulation in the different tissues. Overexpression of HtMYB2 activated the anthocyanin biosynthesis pathway, accumulating the pigment in leaves of transgenic tobacco, supporting the model that HtMYB2 regulated anthocyanin biosynthesis. Further experiments found that HtMYB2 had the same coding sequence and genomic sequence in 'QY1' and 'QY3', but that there were several single nucleotide polymorphisms and one insertion-deletion (indel) mutation of 21 nucleotides in the promoter region between the two alleles. The deletion of three nucleotides "AAA" made the promoter of 'QY1' predicted to contain one more possible promoter region. A specific primer, based on the indel, could differentiate between cultivars with red or white tuber epidermis. The genetic variation in HtMYB2 was associated with the tuber skin color in a natural population. CONCLUSIONS RNA-seq can successfully isolate the candidate gene (HTMYB2) controlling anthocyanin biosynthesis in purple epidermis of Jerusalem artichoke tuber. HTMYB2 can regulate anthocyanin biosynthesis in plants and is closely related to the formation of purple phenotype in tubers. This study should be useful in understanding the genetic mechanism underlying different tuber skin colors and in breeding new H. tuberosus cultivars with different tuber skin colors.
Collapse
Affiliation(s)
- Jieming Gao
- Academy of Agriculture and Forestry Sciences, Qinghai University, Xining, 810016, China
- Qinghai Province Key Laboratory of Vegetable Genetics and Physiology, Xining, 810016, China
| | - Xuemei Sun
- Academy of Agriculture and Forestry Sciences, Qinghai University, Xining, 810016, China
- Qinghai Province Key Laboratory of Vegetable Genetics and Physiology, Xining, 810016, China
| | - Yuan Zong
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, 810001, China
| | - Shipeng Yang
- Academy of Agriculture and Forestry Sciences, Qinghai University, Xining, 810016, China
- Qinghai Province Key Laboratory of Vegetable Genetics and Physiology, Xining, 810016, China
| | - Lihui Wang
- Academy of Agriculture and Forestry Sciences, Qinghai University, Xining, 810016, China
- Qinghai Province Key Laboratory of Vegetable Genetics and Physiology, Xining, 810016, China
| | - Baolong Liu
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, 810001, China.
| |
Collapse
|