1
|
Wang Y, Yang L, Liang Z, Liu M. Mechanistic study of PD-L1 regulation of metastatic proliferation in non-small cell lung cancer through modulation of IRE1α/XBP-1 signaling pathway in tumor-associated macrophages. Aging (Albany NY) 2024; 16:12063-12072. [PMID: 39189933 PMCID: PMC11386930 DOI: 10.18632/aging.206082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2024] [Accepted: 08/02/2024] [Indexed: 08/28/2024]
Abstract
OBJECTIVE To explore the related research of PD-L1 in IRE1α/XBP-1 signaling pathway on non-small cell lung cancer. METHODS The tumor model of mice was established and divided into four groups; after successful modeling, the tumor tissue of mice was removed for subsequent experiments; the bought THP-1 cells were grouped into four different groups, a control group, nivolumab intervention group, IRE1α inhibition group, and nivolumab intervention + IRE1α inhibition group; after co-culture of the four groups of THP-1 cells with A549, THP-1 cell protein levels in the four groups were analyzed using Western blot; A549 cell migration, invasion and proliferation were assessed using the scratch assay, Transwell method, monoclonal experiment and CCK-8 method. RESULTS In vivo studies indicated that the stimulation of nivolumab could strongly check the progress of NSCLC (non-small cell lung); two groups treated with 4 μ8c showed obvious effects on check point of NSCLC; In vitro experiments including Western-blot experiment, Scratch experiment, Transwell method, Monoclonal experiment and CCK-8 experiment suggest that nivolumab could inhibit migration, invasion and proliferation of NSCLC tumor cells and it. CONCLUSION PD-L1 is capable of controlling metastatic and proliferative potential of NSCLC by the way of the modification of IRE1α/XBP-1 signaling in tumor-associated macrophages.
Collapse
Affiliation(s)
- Yi Wang
- Department of Radiation Oncology, Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| | - Lei Yang
- Department of Radiation Oncology, Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| | - Zezheng Liang
- Department of Radiation Oncology, Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| | - Ming Liu
- Department of Radiation Oncology, Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| |
Collapse
|
2
|
Wang SH, Cao Z, Farazuddin M, Chen J, Janczak KW, Tang S, Cannon J, Baker JR. A novel intranasal peptide vaccine inhibits non-small cell lung cancer with KRAS mutation. Cancer Gene Ther 2024; 31:464-471. [PMID: 38177307 DOI: 10.1038/s41417-023-00717-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 11/30/2023] [Accepted: 12/07/2023] [Indexed: 01/06/2024]
Abstract
KRAS mutations occur commonly in the lung and can lead to the development of non-small cell lung cancer (NSCLC). While the mutated KRAS protein is a neoantigen, it usually does not generate an effective anti-tumor immune response on mucosal/epithelial surfaces. Despite this, mutated KRAS remains a potential target for immunotherapy since immune targeting of this protein in animal models has been effective at eliminating tumor cells. We attempted to develop a KRAS vaccine using mutated and wild-type KRAS peptides in combination with a nanoemulsion (NE) adjuvant. The efficacy of this approach was tested in an inducible mutant KRAS-mouse lung tumor model. Animals were immunized intranasally using NE with KRAS peptides. These animals had decreased CD4+FoxP3+ T cells in both lymph nodes and spleen. Immunized animals also showed higher IFN-γ and IL-17a levels to mutated KRAS that were produced by CD8+ T cells and enhancement in KRAS-specific Th1 and Th17 responses that persisted for 3 months after the last vaccination. Importantly, the immunized animals had significantly decreased tumor incidence compared to control animals. In conclusion, a mucosal approach to KRAS vaccination demonstrated the ability to induce local KRAS-specific immune responses in the lung and resulted in reduced tumor incidence.
Collapse
Affiliation(s)
- Su He Wang
- Michigan Nanotechnology Institute for Medicine and Biological Sciences, Medical School, University of Michigan, Ann Arbor, MI, 48109, USA.
- Division of Allergy, Department of Internal Medicine, University of Michigan, Ann Arbor, MI, 48109, USA.
| | - Zhengyi Cao
- Michigan Nanotechnology Institute for Medicine and Biological Sciences, Medical School, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Mohammad Farazuddin
- Michigan Nanotechnology Institute for Medicine and Biological Sciences, Medical School, University of Michigan, Ann Arbor, MI, 48109, USA
- Division of Allergy, Department of Internal Medicine, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Jesse Chen
- Michigan Nanotechnology Institute for Medicine and Biological Sciences, Medical School, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Katarzyna W Janczak
- Michigan Nanotechnology Institute for Medicine and Biological Sciences, Medical School, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Shengzhuang Tang
- Michigan Nanotechnology Institute for Medicine and Biological Sciences, Medical School, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Jayme Cannon
- Michigan Nanotechnology Institute for Medicine and Biological Sciences, Medical School, University of Michigan, Ann Arbor, MI, 48109, USA
| | - James R Baker
- Michigan Nanotechnology Institute for Medicine and Biological Sciences, Medical School, University of Michigan, Ann Arbor, MI, 48109, USA
- Division of Allergy, Department of Internal Medicine, University of Michigan, Ann Arbor, MI, 48109, USA
| |
Collapse
|
3
|
Jing H, Meng M, Ye M, Liu S, Cao X, Li K, Liu Y, Zhang J, Wu Y. Integrin α2 promotes immune escape in non-small-cell lung cancer by enhancing PD-L1 expression in exosomes to inhibit CD8 + T-cell activity. J Investig Med 2024; 72:57-66. [PMID: 37804164 DOI: 10.1177/10815589231207801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/09/2023]
Abstract
This study intended to delineate the mechanism and functional role of integrin α2 (ITGA2) in non-small-cell lung cancer (NSCLC) cell immune escape. Bioinformatics analysis was utilized to analyze ITGA2 expression in NSCLC tissues, and correlations between ITGA2 expression and patient survival time, ITGA2 expression and programmed cell death ligand 1 (PD-L1; CD274) expression, and ITGA2 expression and CD8+ T-cell infiltration. Quantitative real-time polymerase chain reaction detected ITGA2 expression. Transmission electron microscopy was applied to examine the morphology of exosomes, and western blot measured CD9, CD63, and PD-L1 levels. CCK-8 measured cell viability. Cell toxicity experiment measured the killing effect of CD8+ T cells on cancer cells. Enzyme-linked immunosorbent assay assessed secretion levels of interleukin-2, interferon-gamma, tumor necrosis factor-alpha, and PD-L1 expression in exosomes. Immunohistochemistry detected ITGA2, CD8, and PD-L1 expression in patient tissue samples. ITGA2 was highly expressed in NSCLC, and Pearson correlation analysis showed a negative correlation of ITGA2 with CD8+ T-cell infiltration and a positive correlation of ITGA2 with PD-L1 expression. Cell experiments showed that silencing ITGA2 hindered NSCLC cell progression and increased levels of CD8+ T-cell secretory factors. Further mechanism studies found that ITGA2 reduced CD8+ T-cell-mediated antitumor immunity via the increase in PD-L1 expression. Clinical sample testing unveiled that ITGA2 was upregulated in NSCLC tissues. PD-L1 upregulation was seen in exosomes separated from patient blood, and correlation analysis showed a positive correlation of exosomal PD-L1 expression in blood with ITGA2 expression in tissues. This study displays a novel mechanism and role of ITGA2 in NSCLC immune escape, providing directions for the clinical therapy of NSCLC patients.
Collapse
Affiliation(s)
- Hui Jing
- Department of Respiratory and Critical Care Medicine, Xuzhou Hospital Affiliated to Xuzhou Medical University, Xuzhou Central Hospital, Xuzhou, China
- Department of Respiratory and Critical Care Medicine, The Xuzhou School of Clinical Medicine of Nanjing Medical University, Xuzhou, China
| | - Meng Meng
- Department of Respiratory and Critical Care Medicine, Xuzhou Hospital Affiliated to Xuzhou Medical University, Xuzhou Central Hospital, Xuzhou, China
| | - Mengjie Ye
- Department of Respiratory and Critical Care Medicine, Xuzhou Hospital Affiliated to Xuzhou Medical University, Xuzhou Central Hospital, Xuzhou, China
- Graduate School of Bengbu Medical College, Bengbu, China
| | - Shuan Liu
- Department of Respiratory and Critical Care Medicine, Xuzhou Hospital Affiliated to Xuzhou Medical University, Xuzhou Central Hospital, Xuzhou, China
- Graduate School of Bengbu Medical College, Bengbu, China
| | - Xubo Cao
- Department of Respiratory and Critical Care Medicine, Xuzhou Hospital Affiliated to Xuzhou Medical University, Xuzhou Central Hospital, Xuzhou, China
| | - Ke Li
- Department of Respiratory and Critical Care Medicine, Xuzhou Hospital Affiliated to Xuzhou Medical University, Xuzhou Central Hospital, Xuzhou, China
| | - Yuanyuan Liu
- Department of Respiratory and Critical Care Medicine, Xuzhou Hospital Affiliated to Xuzhou Medical University, Xuzhou Central Hospital, Xuzhou, China
| | - Jinghao Zhang
- Department of Respiratory and Critical Care Medicine, Xuzhou Hospital Affiliated to Xuzhou Medical University, Xuzhou Central Hospital, Xuzhou, China
| | - Yanmin Wu
- Department of Respiratory and Critical Care Medicine, Xuzhou Hospital Affiliated to Xuzhou Medical University, Xuzhou Central Hospital, Xuzhou, China
| |
Collapse
|
4
|
Men X, Zhu W. Silencing of Perilipin 3 Inhibits Lung Adenocarcinoma Cell Immune Resistance by Regulating the Transcription of PD-L1 Through c-Myc. Immunol Invest 2023; 52:815-831. [PMID: 37578465 DOI: 10.1080/08820139.2023.2244976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/15/2023]
Abstract
BACKGROUND Perilipin 3 (PLIN3), a lipid droplet-associated protein, is found to be highly expressed in human cancers. This study aimed to investigate the biological functions and underlying mechanism of PLIN3 in lung adenocarcinoma (LUAD). METHODS To analyse PLIN3 expression in normal and cancerous tissues, relevance between PLIN3 expression and survival prognosis, and to predict the pathways related to PLIN3, bioinformatic analysis was performed. In A549 and H1299 cells, qRT-PCR or western blotting was used to determine mRNA/protein expression of PLIN3, PD-L1, and c-Myc. In A549 and H1299 cells, CCK-8 assay, EdU, and flow cytometry were used to assess cell viability, proliferation, and apoptosis. Chip and luciferase reporter assays were performed to verify the binding of PD-L1 with c-Myc. The functions of PLIN3 were examined in vivo in a xenograft tumor model. RESULTS In LUAD tissues and cells, PLIN3 expression was downregulated. A shorter survival time was observed in patients with high PLIN3 expression than in patients with low PLIN3 expression. Silencing of PLIN3 inhibited cell proliferation, PD-L1 expression, and Myc pathway, as well as induced apoptosis in LUAD cells. c-Myc acts as a transcription factor of PD-L1. Moreover, the inhibitory actions of PLIN3 silencing on c-Myc and PD-L1 expression as well as cell proliferation and stimulatory action of PLIN3 silencing on cell apoptosis were reversed by c-Myc overexpression. In vivo, PLIN3 silencing inhibited the growth of xenograft tumour and reduced PLIN3, PD-L1, and c-Myc protein expression. CONCLUSION Silencing of PLIN3 inhibited tumour growth by regulating the Myc/PD-L1 pathway.
Collapse
Affiliation(s)
- Xuelin Men
- Department of Respiratory and Critical Care II, The Fourth People's Hospital of Jinan, Jinan, Shandong, P.R. China
| | - Wei Zhu
- Department of Respiratory and Critical Care II, The Fourth People's Hospital of Jinan, Jinan, Shandong, P.R. China
| |
Collapse
|
5
|
Chang T, Yang L, Wang X, Lu Y, Yang L, Yang C, Cai X, Li J, Zeng J. A
CD8
+ T cell‐related genes prognostic model for hepatocellular carcinoma patients. Scand J Immunol 2022. [DOI: 10.1111/sji.13216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
- Tanjie Chang
- Departments of Medical Oncology The First Affiliated Hospital of Hainan Medical University Haikou China
| | - Liangxia Yang
- Departments of Medical Oncology The First Affiliated Hospital of Hainan Medical University Haikou China
| | - Xiaojing Wang
- Anesthesia Resuscitation Room The First Affiliated Hospital of Hainan Medical University Haikou China
| | - Yanda Lu
- Departments of Medical Oncology The First Affiliated Hospital of Hainan Medical University Haikou China
| | - Lu Yang
- Departments of Medical Oncology The First Affiliated Hospital of Hainan Medical University Haikou China
| | - Changcheng Yang
- Departments of Medical Oncology The First Affiliated Hospital of Hainan Medical University Haikou China
| | - Xingrui Cai
- Departments of Medical Oncology The First Affiliated Hospital of Hainan Medical University Haikou China
| | - Jingquan Li
- Departments of Medical Oncology The First Affiliated Hospital of Hainan Medical University Haikou China
| | - Jiangzheng Zeng
- Departments of Medical Oncology The First Affiliated Hospital of Hainan Medical University Haikou China
| |
Collapse
|
6
|
Alteration in the Immune Microenvironment Based on APC Status in MSS/pMMR Colon Cancer. DISEASE MARKERS 2022; 2022:3592990. [PMID: 35937946 PMCID: PMC9348928 DOI: 10.1155/2022/3592990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Accepted: 07/04/2022] [Indexed: 11/18/2022]
Abstract
Introduction. Immunotherapy is currently the most promising antitumor treatment approach. However, the colon cancer immunotherapy indication dMMR/MSI-H do not cover all colon cancer patients suitable for immunotherapy. We performed transcriptome-wide expression profile analyses of pMMR/MSS colon adenocarcinoma (COAD) specimens from TCGA database to identify a genetype signature associated with tumor immune microenvironment types (TIMTs). Methods. TCGA database was used to identify tumor genotypes suitable for antitumor immunotherapy. We analyzed RNA-sequencing profiles of 338 COAD targeted to the pMMR/MSS group from TCGA public dataset. The ESTIMATE and the CIBERSORT were used to analyze the pMMR/MSS COAD immune microenvironment between APC wild and APC mutation. Furthermore, we further verified the relationship between APC genotype and TIMTs and the efficacy of immunotherapy in 42 colon cancer specimens. Results. We identified that in APC-wt/MSS colon cancer, the expressions of PD-1, PD-L1, CTLA4, and CYT (GZMA and PRF1) were increased. The TMB, Immunoscore, and the proportion of CT8+ T cell infiltration also were identified increasing in these patients. And pathway enrichment analysis for differentially expressed genes (DEGs) between APC-wt and APC-mt MSS COAD was done to further explore their biological function. Similarly, the significant pathways for DEGs were mainly enriched in the immune response, extracellular matrix, and cell adhesion which involved in immune response. Specimens from 42 colon cancer patients, including 22 APC-mt/MSS and 20 APC-wt/MSS, were immunohistochemically evaluated for expression of CD8 and PD-L1. And APC-wt/MSS tumors showed significantly higher expression of CD8 and PD-L1 than APC-mt/MSS tumor. Moreover, APC-wt was compared with APC-mt MSS/pMMR colon cancer (DOR, 45% and 26.7%, respectively;
). Conclusion. Based on the results, we found that more colon cancers of APC-wt/MSS are classified by TMIT I. And APC-wt/MSS colon cancer patients are more likely to benefit from antitumor immunotherapy.
Collapse
|
7
|
Yang J, Tian Z, Gao H, Xiong F, Cao C, Yu J, Shi W, Zhan Q, Yang C. Clinical significance and correlation of PD-L1, B7-H3, B7-H4, and TILs in pancreatic cancer. BMC Cancer 2022; 22:584. [PMID: 35624419 PMCID: PMC9137118 DOI: 10.1186/s12885-022-09639-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Accepted: 04/28/2022] [Indexed: 11/22/2022] Open
Abstract
BACKGROUND B7 molecules play significant roles in regulating tumor immunity, but their expression patterns and immuno-biological correlations in pancreatic cancer (PaCa) have not been fully discussed. METHODS RNA-sequencing data of B7 molecules of PaCa samples in the Cancer Genome Atlas (TCGA) dataset was downloaded from the UCSC Xena to assess the expression, correlation, and mutation of the B7 family in PaCa. Next, two PaCa tissue microarrays (TMAs, Cat. HPanA150CS02 and HPanA120Su02) were obtained from Outdo BioTech (Shanghai, China). To detect the expression levels of PD-L1, B7-H3 and B7-H4, immunohistochemistry (IHC) staining was performed on these TMAs. RESULTS Most B7 molecules, including B7-1, B7-2, PD-L1, B7-DC, B7-H2, and B7-H5 exhibited similar expression patterns, but B7-H3, B7-H4, B7-H6, and B7-H7 showed outlier expression patterns compared with other B7 molecules. Besides, B7 molecules were genetically stable and exhibited low alteration frequency. IHC staining indicated PD-L1, B7-H3, and B7-H4 were up-regulated in PaCa tissues and showed uncorrelated expression patterns. Furthermore, high expression of PD-L1 and B7-H3 indicated poor-differentiated grades in PaCa. PD-L1 was positively, but B7-H4 was negatively correlated with CD8+ TILs infiltration in PaCa. Moreover, combined PD-L1 and B7-H4 expression was a novel subtyping strategy in PaCa, namely patients with both high PD-L1 and B7-H4 expression exhibited decreased CD8+ TILs infiltration in tumor tissues. CONCLUSION Overall, we systemically analyzed the expression patterns of B7 molecules and proposed a novel subtyping strategy in PaCa. Patients with both high PD-L1 and B7-H4 expression exhibited the immuno-cold phenotype, which may be not suitable for immunotherapy.
Collapse
Affiliation(s)
- Jiayue Yang
- Department of Endocrinology, The Affiliated Wuxi People’s Hospital of Nanjing Medical University, Wuxi, Jiangsu Province, 214023 China
| | - Zhen Tian
- Department of Clinical Laboratory, The Affiliated Wuxi People’s Hospital of Nanjing Medical University, Wuxi, Jiangsu Province, 214023 China
| | - Han Gao
- Wuxi School of Medicine, Jiangnan University, Wuxi, 214122 China
| | - Fan Xiong
- Department of Endocrinology, The Affiliated Wuxi People’s Hospital of Nanjing Medical University, Wuxi, Jiangsu Province, 214023 China
| | - Cuiping Cao
- Department of Endocrinology, The Affiliated Wuxi People’s Hospital of Nanjing Medical University, Wuxi, Jiangsu Province, 214023 China
| | - Jiaojiao Yu
- Department of Endocrinology, The Affiliated Wuxi People’s Hospital of Nanjing Medical University, Wuxi, Jiangsu Province, 214023 China
| | - Wei Shi
- Department of Endocrinology, The Affiliated Wuxi People’s Hospital of Nanjing Medical University, Wuxi, Jiangsu Province, 214023 China
| | - Qiang Zhan
- Department of Gastroenterology, The Affiliated Wuxi People’s Hospital of Nanjing Medical University, No. 299 Qing Yang Road, Wuxi, Jiangsu Province, 214023 China
| | - Cheng Yang
- Department of Gastroenterology, The Affiliated Wuxi People’s Hospital of Nanjing Medical University, No. 299 Qing Yang Road, Wuxi, Jiangsu Province, 214023 China
| |
Collapse
|
8
|
Si S, Wang L, Cao H, Xu Y, Zhan Q. Co-deficiency of B7-H3 and B7-H4 identifies high CD8 + T cell infiltration and better prognosis in pancreatic cancer. BMC Cancer 2022; 22:211. [PMID: 35219310 PMCID: PMC8881843 DOI: 10.1186/s12885-022-09294-w] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Accepted: 02/08/2022] [Indexed: 12/18/2022] Open
Abstract
Background Immunotherapy is a novel hotspot for the treatment of pancreatic adenocarcinoma (PAAD). However, potential biomarkers which could identify the inflamed tumor microenvironment (TME) are urgently required. Methods In the present study, we measured the levels of B7-H3, B7-H4, and major tumor-infiltrating immune cells (TIICs) using bioinformatics analyses and immunohistochemistry (IHC) staining on PAAD samples represented in the tissue microarray (TMA) format. Statistical analysis and figures exhibition were performed using R 4.1.0, SPSS 26.0, and GraphPad Prism 6.0. Results B7-H3 and B7-H4 were up-regulated in PAAD compared with para-tumor tissues, and their expression exhibited no tight correlation in PAAD tissues. B7-H3 and B7-H4 were lowly expressed in well-differentiated PAAD tissues and correlated with poorly differentiated grades. Besides, single B7-H3 or B7-H4 expression exhibited limited prognostic value, but co-deficiency of B7-H3 and B7-H4 predicted a better prognosis in PAAD. Moreover, co-deficiency of B7-H3 and B7-H4 indicated immuno-hot tumors with high CD8 + T cell infiltration. Conclusions Overall, combined B7-H3 and B7-H4 expression is a promising stratification strategy to assess prognosis and immunogenicity in PAAD, which could be used as a novel classifier in clinical practice. Supplementary Information The online version contains supplementary material available at 10.1186/s12885-022-09294-w.
Collapse
|
9
|
Liu R, Liang W, Hua Q, Wu L, Wang X, Li Q, Zhong F, Li B, Qiu Z. Fatty Acid Metabolic Signaling Pathway Alternation Predict Prognosis of Immune Checkpoint Inhibitors in Glioblastoma. Front Immunol 2022; 13:819515. [PMID: 35251000 PMCID: PMC8894256 DOI: 10.3389/fimmu.2022.819515] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2021] [Accepted: 01/10/2022] [Indexed: 11/13/2022] Open
Abstract
IntroductionGlioblastoma(GBM) is a highly malignant primary brain tumor. Even after undergoing surgery and chemotherapy, patients with this affliction still have little to no chance of survival. Current research on immunotherapy treatment for GBM shows that immune-checkpoint inhibitors (ICIs) may be a promising new treatment method. However, at present, the relationship between the fatty acid metabolic process and the prognosis of GBM patients who are receiving immunotherapy is not clear.MethodsFirst, we downloaded a GBM cohort that had been treated with immunotherapy, which included the mutation and prognosis data, and the TCGA-GBM and Jonsson-GBM queues. CIBERSORT and single sample gene set enrichment analysis(ssGSEA) were used to evaluate immune cell scores. Gene set enrichment analysis (GSEA) was used to evaluate the patient’s accessment score. The pRRophetic algorithm was used to evaluate the drug sensitivity of each patient. Univariable and multivariate cox regression analyses, as well as the Kaplan-Meier (KM) method, were used to evaluate the relationship between the fatty acid metabolic process and the prognosis of GBM patients.ResultsThe univariate and multivariate cox regression models showed that the fatty acid metabolic process mutant-type (MT) can be used as an independent predictor of the efficacy of immunotherapy for GBM patients. In addition, fatty acid metabolic process MT is related with significantly longer overall survival (OS) time than the wild-type(WT) variant. However, the mutation status of the fatty acid metabolic process has nothing to do with the prognosis of GBM patients who are receiving conventional treatment. Our analysis showed that fatty acid metabolic process MT correlated with significantly increased natural killer T (NKT) cells and significantly decreased CD8+T cells. At the same time, GSEA analysis revealed that fatty acid metabolic process MT was associated with significantly increased immune activation pathways and an enriched fraction of cytokine secretion compared with WT.ConclusionsWe found that fatty acid metabolic process MT may be used as an independent predictor of the efficacy of ICI treatment in GBM patients. Use of the fatty acid metabolic process MT will result in higher immunogenicity rates, a significant increase in the proportion of activated immune cells, and improvement of the immune microenvironment.
Collapse
Affiliation(s)
- Rongrong Liu
- Department of Oncology, The First Affiliated Hospital of Gannan Medical University, Ganzhou, China
- Department of Neurology, Ganzhou People’s Hospital, Ganzhou, China
- Department of Neurology, The Second Affiliated Hospital of Nanchang University, Nanchang, China
- Department of Neurology, The First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| | - Weidong Liang
- Department of Oncology, The First Affiliated Hospital of Gannan Medical University, Ganzhou, China
- Department of Anesthesiology, The First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| | - Qian Hua
- Department of Oncology, The First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| | - Longqiu Wu
- Department of Oncology, The First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| | - Xiangcai Wang
- Department of Oncology, The First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| | - Qiang Li
- Department of Oncology, The First Affiliated Hospital of Gannan Medical University, Ganzhou, China
- Department of Emergency, The First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| | - Fangjun Zhong
- Department of Oncology, The First Affiliated Hospital of Gannan Medical University, Ganzhou, China
- Department of Neurology, The First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| | - Bin Li
- Department of Neurology, Ganzhou People’s Hospital, Ganzhou, China
- *Correspondence: Bin Li, ; Zhengang Qiu,
| | - Zhengang Qiu
- Department of Oncology, The First Affiliated Hospital of Gannan Medical University, Ganzhou, China
- *Correspondence: Bin Li, ; Zhengang Qiu,
| |
Collapse
|
10
|
Chen L, Dong J, Li Z, Chen Y, Zhang Y. The B7H4-PDL1 classifier stratifies immuno-phenotype in cervical cancer. Cancer Cell Int 2022; 22:3. [PMID: 34983532 PMCID: PMC8728907 DOI: 10.1186/s12935-021-02423-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Accepted: 12/22/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND It has been revealed that B7H4 is negatively correlated with PDL1 and identifies immuno-cold tumors in glioma. However, the application of the B7H4-PDL1 classifier in cancers has not been well testified. METHODS A pan-cancer analysis was conducted to evaluate the immunological role of B7H4 using the RNA-sequencing data downloaded from the Cancer Genome Atlas (TCGA). Immunohistochemistry (IHC) and multiplexed quantitative immunofluorescence (QIF) were performed to validate the primary results revealed by bioinformatics analysis. RESULTS The pan-cancer analysis revealed that B7H4 was negatively correlated with PDL1 expression and immune cell infiltration in CeCa. In addition, patients with high B7H4 exhibited the shortest overall survival (OS) and relapse-free survival (RFS) while those with high PDL1 exhibited a better prognosis. Multiplexed QIF showed that B7H4 was mutually exclusive with PDL1 expression and the B7H4-high group exhibited the lowest CD8 + T cell infiltration. Besides, B7H4-high predicted highly proliferative subtypes, which expressed the highest Ki67 antigen. Moreover, B7H4-high also indicated a lower response to multiple therapies. CONCLUSIONS Totally, the B7H4-PDL1 classifier identifies the immunogenicity and predicts proliferative subtypes and limited therapeutic options in CeCa, which may be a convenient and feasible biomarker in clinical practice.
Collapse
Affiliation(s)
- Lingyan Chen
- Department of Oncology, Wuxi Maternal and Child Health Hospital Affiliated to Nanjing Medical University, No. 48 Huaishu Road, Wuxi, 214000, China
| | - Jianfeng Dong
- Department of Pathology, Wuxi Maternal and Child Health Hospital Affiliated to Nanjing Medical University, Wuxi, 214000, China
| | - Zeying Li
- Wuxi Clinical Medical College, Nanjing Medical University, Wuxi, 214000, China
| | - Yu Chen
- Department of Oncology, Wuxi Maternal and Child Health Hospital Affiliated to Nanjing Medical University, No. 48 Huaishu Road, Wuxi, 214000, China.
| | - Yan Zhang
- Department of Oncology, Wuxi Maternal and Child Health Hospital Affiliated to Nanjing Medical University, No. 48 Huaishu Road, Wuxi, 214000, China.
| |
Collapse
|
11
|
Use of cucurbitacins for lung cancer research and therapy. Cancer Chemother Pharmacol 2021; 88:1-14. [PMID: 33825035 DOI: 10.1007/s00280-021-04265-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Accepted: 03/17/2021] [Indexed: 02/05/2023]
Abstract
As the main substance in some traditional Chinese medicines, cucurbitacins have been used to treat hepatitis for decades in China. Currently, the use of cucurbitacins against cancer and other diseases has achieved towering popularity among researchers worldwide, as detailed in this review with summarized tables. Numerous studies have reported the potential tumor-killing activities of cucurbitacins in multiple aspects of human malignancies. Continuous research on its anticancer activity mechanisms also brings a glimmer of light to the treatment of patients with lung cancer. In line with the promising roles of cucurbitacins against cancer, through various molecular signaling pathways, it is justifiable to propose the use of cucurbitacins as a potential mainline chemotherapy before the onset and after the diagnosis of lung cancers. Here, this article mainly summarized the findings about the biological functions and underlying mechanisms of cucurbitacins on lung cancer pathogenesis and treatment. In addition, we also discussed the safety and efficacy of their application for further research and even clinical practice.
Collapse
|
12
|
Feng B, Zhou H, Wang T, Lin X, Lai Y, Chu X, Wang R. Insights Into circRNAs: Functional Roles in Lung Cancer Management and the Potential Mechanisms. Front Cell Dev Biol 2021; 9:636913. [PMID: 33634138 PMCID: PMC7900409 DOI: 10.3389/fcell.2021.636913] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Accepted: 01/20/2021] [Indexed: 01/17/2023] Open
Abstract
Lung cancer is the most prevalent cancer globally. It is also the leading cause of cancer-related death because of the late diagnosis and the frequent resistance to therapeutics. Therefore, it is impending to identify novel biomarkers and effective therapeutic targets to improve the clinical outcomes. Identified as a new class of RNAs, circular RNAs (circRNAs) derive from pre-mRNA back splicing with considerable stability and conservation. Accumulating research reveal that circRNAs can function as microRNA (miRNA) sponges, regulators of gene transcription and alternative splicing, as well as interact with RNA-binding proteins (RBPs), or even be translated into proteins directly. Currently, a large body of circRNAs have been demonstrated differentially expressed in physiological and pathological processes including cancer. In lung cancer, circRNAs play multiple roles in carcinogenesis, development, and response to different therapies, indicating their potential as diagnostic and prognostic biomarkers as well as novel therapeutics. In this review, we summarize the multi-faceted functions of circRNAs in lung cancer and the underlying mechanisms, together with the possible future of these discoveries in clinical application.
Collapse
Affiliation(s)
- Bing Feng
- Department of Medical Oncology, Jinling Hospital, School of Medicine, Nanjing University, Nanjing, China
| | - Hao Zhou
- Department of Medical Oncology, Jinling Hospital, Nanjing Medical University, Nanjing, China
| | - Ting Wang
- Department of Medical Oncology, Jinling Hospital, School of Medicine, Nanjing University, Nanjing, China
| | - Xinrong Lin
- Department of Medical Oncology, Jinling Hospital, School of Medicine, Nanjing University, Nanjing, China
| | - Yongting Lai
- Department of Medical Oncology, Nanjing School of Clinical Medicine, Jinling Hospital, Southern Medical University, Nanjing, China
| | - Xiaoyuan Chu
- Department of Medical Oncology, Jinling Hospital, School of Medicine, Nanjing University, Nanjing, China.,Department of Medical Oncology, Jinling Hospital, Nanjing Medical University, Nanjing, China.,Department of Medical Oncology, Nanjing School of Clinical Medicine, Jinling Hospital, Southern Medical University, Nanjing, China
| | - Rui Wang
- Department of Medical Oncology, Jinling Hospital, School of Medicine, Nanjing University, Nanjing, China.,Department of Medical Oncology, Jinling Hospital, Nanjing Medical University, Nanjing, China.,Department of Medical Oncology, Nanjing School of Clinical Medicine, Jinling Hospital, Southern Medical University, Nanjing, China
| |
Collapse
|
13
|
Zhou Z, Mu D, Zhang D, Zhang X, Ding X, Yang J, Bai X, Hu M. PD-L1 in Combination with CD8 +TIL and HIF-1α are Promising Prognosis Predictors of Head and Neck Squamous Cell Carcinoma. Cancer Manag Res 2020; 12:13233-13239. [PMID: 33380831 PMCID: PMC7767713 DOI: 10.2147/cmar.s285691] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Accepted: 12/02/2020] [Indexed: 12/17/2022] Open
Abstract
Objective The aim of this study was to evaluate the prognosis effect of PD-L1 in combination with CD8+ tumor-infiltrating lymphocyte (TIL) or HIF-1α in head and neck squamous cell carcinoma (HNSCC). Methods A total of 63 patients who underwent surgical resection were included in this study. The level of PD-L1, CD8+ TIL, and HIF-1α was determined by immunohistochemical analysis. The survival of patients was evaluated by Kaplan–Meier analysis. The prognostic power of these parameters was evaluated by C-index. Results We observed that the survival of patients, who had a high level of PD-L1 in tumor cells, was significantly shorter than those who had a low level of PD-L1. However, the survival of patients who had a high level of PD-L1 in tumor microenvironment was significantly longer than patients with a low level of PD-L1 in tumor microenvironment. In addition, high level of CD8+ tumor-infiltrating lymphocyte or low level of HIF-1α level suggests a better prognosis. Moreover, we observed that PD-L1 in combination with CD8+ tumor-infiltrating lymphocyte and HIF-1α could significantly improve the prognostic effect of current TNM stage. Conclusion The results of this study suggest that the level of PD-L1, CD8+TIL, and HIF-1α are useful prognostic biomarkers for patients with HNSCC. Incorporating these biomarkers into current TNM stage of HNSCC improve the discriminatory capability of TNM stage.
Collapse
Affiliation(s)
- Zihan Zhou
- Department of Oncology, Weifang Medical University, Weifang, Shandong, People's Republic of China.,Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, People's Republic of China
| | - Dianbin Mu
- Department of Pathology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, People's Republic of China
| | - Dexian Zhang
- Department of Pathology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, People's Republic of China
| | - Xianbin Zhang
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, People's Republic of China
| | - Xingchen Ding
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, People's Republic of China
| | - Jia Yang
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, People's Republic of China
| | - Xinbin Bai
- Department of Oncology, Jining Cancer Hospital, Jining, Shandong, People's Republic of China
| | - Man Hu
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, People's Republic of China
| |
Collapse
|
14
|
What Is on the Horizon for Novel Immunotherapies in Lung Cancer? ACTA ACUST UNITED AC 2020; 26:555-560. [PMID: 33298728 DOI: 10.1097/ppo.0000000000000486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Programmed death (ligand) 1 checkpoint inhibitors have become standard treatment in patients with non-small cell lung cancer. Recently, combinations of nivolumab and ipilimumab have entered the clinic based on regulatory approval. Oftentimes, these checkpoint inhibitors are given in conjunction with chemotherapy. Through increased understanding of checkpoint evasion by cancer cells, many promising studies using combination therapies have continued to develop that aim to attack cancer cells by eliciting immunogenic responses through different modalities. Novel approaches include (1) using vaccines to trigger immune response, (2) combining multiple checkpoint inhibitors, (3) targeting inflammatory responses, (4) utilizing multitargeted tyrosine kinase inhibitors, (5) employing agonists of T-cell stimulators, and (6) applying specific biomarker antagonists to treat lung cancer patients. Herein, we discuss several studies that aim to answer what lies ahead in lung cancer treatment.
Collapse
|
15
|
Hong W, Xue M, Jiang J, Zhang Y, Gao X. Circular RNA circ-CPA4/ let-7 miRNA/PD-L1 axis regulates cell growth, stemness, drug resistance and immune evasion in non-small cell lung cancer (NSCLC). J Exp Clin Cancer Res 2020; 39:149. [PMID: 32746878 PMCID: PMC7397626 DOI: 10.1186/s13046-020-01648-1] [Citation(s) in RCA: 225] [Impact Index Per Article: 56.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Accepted: 07/21/2020] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND Non-small cell lung cancer (NSCLC) cells derived intracellular and extracellular programmed cell death ligand 1 (PD-L1) promoted cancer progression and drug resistance, and facilitated tumor immune evasion. However, the detailed molecular mechanisms are still largely unknown. In the present study, we aimed to explore the role of circular RNA circ-CPA4/let-7 miRNA/PD-L1 axis in the regulation of NSCLC progression, drug resistance and tumor immune microenvironment. METHODS Real-Time qPCR and Western Blot analysis were conducted to examine gene expressions at transcriptional and translated levels, respectively. The regulatory mechanisms of circ-CPA4, let-7 miRNA and PD-L1 were validated by dual-luciferase reporter gene system and RNA pull-down assay. Cell growth and apoptosis were determined by CCK-8 assay, colony formation assay and Annexin V-FITC/PI double staining assay. Cell mobility was evaluated by transwell assay. RESULTS Circ-CPA4 and PD-L1 were high-expressed, while let-7 miRNA was low-expressed in NSCLC cells and cancer tissues compared to the human bronchial epithelial (HBE) cells and their paired clinical normal adjacent tissues, respectively. Besides, knock-down of circ-CPA4 inhibited cell growth, mobility and epithelial-mesenchymal transition (EMT), and promoted cell death in NSCLC cells by downregulating PD-L1 through serving as a RNA sponge for let-7 miRNA. In addition, the NSCLC cells derived PD-L1-containing exosomes promoted cell stemness and increased resistance of NSCLC cells to cisplatin. Notably, by co-culturing the NSCLC cells with CD8+ T cells isolated from human peripheral blood mononuclear cells (hPBMCs) in a transwell co-culturing system, we found that NSCLC cells inactivated CD8+ T cells in a secreted PD-L1-dependent manner. Further results suggested that circ-CPA4 also positively regulated exosomal PD-L1, and the NSCLC cells with circ-CPA4 ablation re-activated CD8+ T cells in the co-culturing system. CONCLUSION Taken together, circ-CPA4 regulated cell growth, mobility, stemness and drug resistance in NSCLC cells and inactivated CD8+ T cells in the tumor immune microenvironment through let-7 miRNA/PD-L1 axis.
Collapse
MESH Headings
- Animals
- Apoptosis
- B7-H1 Antigen/genetics
- B7-H1 Antigen/metabolism
- Biomarkers, Tumor/genetics
- Biomarkers, Tumor/metabolism
- Carboxypeptidases A/genetics
- Carcinoma, Non-Small-Cell Lung/drug therapy
- Carcinoma, Non-Small-Cell Lung/immunology
- Carcinoma, Non-Small-Cell Lung/metabolism
- Carcinoma, Non-Small-Cell Lung/secondary
- Cell Movement
- Cell Proliferation
- Drug Resistance, Neoplasm
- Epithelial-Mesenchymal Transition
- Female
- Gene Expression Regulation, Neoplastic
- Humans
- Immune Evasion
- Leukocytes, Mononuclear
- Lung Neoplasms/drug therapy
- Lung Neoplasms/immunology
- Lung Neoplasms/metabolism
- Lung Neoplasms/pathology
- Male
- Mice
- Mice, Nude
- MicroRNAs/genetics
- Middle Aged
- Neoplasm Invasiveness
- Neoplastic Stem Cells/metabolism
- Neoplastic Stem Cells/pathology
- Prognosis
- RNA, Circular/genetics
- Survival Rate
- Tumor Cells, Cultured
- Xenograft Model Antitumor Assays
Collapse
Affiliation(s)
- Weijun Hong
- Department of Respiratory Medicine, Minhang Hospital, Fudan University, 170 Xin-Song Road, Shanghai, 201199 China
| | - Min Xue
- Department of Respiratory Medicine, Minhang Hospital, Fudan University, 170 Xin-Song Road, Shanghai, 201199 China
| | - Jun Jiang
- State Key Laboratory of Genetic Engineering, Shanghai Engineering Research Center of Industrial Microorganisms, School of Life Sciences, Fudan University, Shanghai, 200438 China
| | - Yajuan Zhang
- Department of Respiratory Medicine, Minhang Hospital, Fudan University, 170 Xin-Song Road, Shanghai, 201199 China
| | - Xiwen Gao
- Department of Respiratory Medicine, Minhang Hospital, Fudan University, 170 Xin-Song Road, Shanghai, 201199 China
| |
Collapse
|