1
|
Sabater-Jara AB, Almagro L, Nicolás Sánchez I, Pedreño MÁ. Biotechnological Approach to Increase Oxyresveratrol Production in Mulberry In Vitro Plants under Elicitation. PLANTS (BASEL, SWITZERLAND) 2023; 12:546. [PMID: 36771627 PMCID: PMC9920829 DOI: 10.3390/plants12030546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 01/10/2023] [Accepted: 01/21/2023] [Indexed: 06/18/2023]
Abstract
Morus alba L. is used for a range of therapeutic purposes in Asian traditional medicine, and its extracts are reported to be effective against lipidemia, diabetes, and obesity, as well as being hepatoprotective and tyrosinase-inhibitory. They are also included in cosmetic products as anti-aging and skin-whitening agents. Stilbenes, the major bioactive compounds found in M. alba, have received renewed attention recently because of their putative activity against COVID-19. In this study M. alba plants were established in vitro, and the effect of elicitation on plant growth and stilbene accumulation, specifically oxyresveratrol and trans-resveratrol, was investigated. Different concentrations of the elicitors including methyl jasmonate and cyclodextrins were applied, and stilbene levels were determined in leaves, roots, and the culture medium. Elicitation of the M. alba plants with 5 mM cyclodextrins, alone or in combination with 10 µM methyl jasmonate, significantly increased the total phenolic content in the culture medium and leaves after 7 days of treatment. The higher total phenolic content in the roots of control plants and those treated only with methyl jasmonate indicated that cyclodextrins promoted metabolite release to the culture medium. Notably, the cyclodextrin-treated plants with the highest levels of oxy- and trans-resveratrol also had the highest total phenolic content and antioxidant capacity. These results indicate that elicited M. alba in vitro plants constitute a promising alternative source of bioactive stilbenes to supply pharmaceutical and cosmeceutical industries.
Collapse
|
2
|
Sivanandhan G, Kapildev G, Selvaraj N, Lim YP. The effect of chitosan and β-cyclodextrin on glucosinolate biosynthesis in Brassica rapa ssp. pekinensis (Chinese cabbage) shoot culture. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2023; 194:570-575. [PMID: 36525938 DOI: 10.1016/j.plaphy.2022.12.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 11/26/2022] [Accepted: 12/10/2022] [Indexed: 06/17/2023]
Abstract
Chitosan is a polycationic polysaccharide derived from chitin, and β-cyclodextrin is a type of macrocyclic oligosaccharide linked by α-1,4 glycosidic bonds. These compounds are recognized as effective elicitors in the biosynthesis of secondary metabolites in plants. These elicitors were studied to assess the growth of shoots and the synthesis of glucosinolates (GSLs) from elicited shoots in Chinese cabbage under controlled in vitro conditions for the first time. Chitosan at 150 mg L-1 supplemented in the optimized shoot induction recovered maximum quantities of total GSLs (7.344 μmol g-1 DW) at the end of 5th week of culture duration, followed by β-cyclodextrin (15 mg L-1) with the synthesis of GSLs (6.379 μmol g-1 DW) at the end of 4th week of culture. The application of chitosan completely deteriorated the growth of shoots, whereas β-cyclodextrin did not affect and even increased the growth of shoots (4.66 g DW). Upon elicitation, the individual got GSLs contents exhibited various fold changes (1.78-to-23.5-fold). Real-time PCR analysis of essential GSLs biosynthesis genes like MAM1, ST5b, AOP2, FMOGS-OX1, CYP83B1, CYP81F2, ST5a, and CYP81F4 revealed substantial higher expression upon elicitation. This present study would provide a steady production of GSLs in Chinese cabbage shoots with the influence of carbohydrate-based elicitors for pharmaceutical or food companies in the future.
Collapse
Affiliation(s)
- Ganeshan Sivanandhan
- Department of Horticulture, College of Agriculture and Life Science, Chungnam National University, Daejeon, 34134, Republic of Korea
| | - Gnanajothi Kapildev
- Department of Microbial Biotechnology, Bharathiar University, Coimbatore, 641046, Tamil Nadu, India
| | - Natesan Selvaraj
- Department of Botany, Periyar E.V.R College, Tiruchirappalli, 620023, Tamil Nadu, India
| | - Yong Pyo Lim
- Department of Horticulture, College of Agriculture and Life Science, Chungnam National University, Daejeon, 34134, Republic of Korea.
| |
Collapse
|
3
|
García-Pérez P, Lozano-Milo E, Zhang L, Miras-Moreno B, Landin M, Lucini L, Gallego PP. Neurofuzzy logic predicts a fine-tuning metabolic reprogramming on elicited Bryophyllum PCSCs guided by salicylic acid. FRONTIERS IN PLANT SCIENCE 2022; 13:991557. [PMID: 36212372 PMCID: PMC9541431 DOI: 10.3389/fpls.2022.991557] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Accepted: 09/08/2022] [Indexed: 06/16/2023]
Abstract
Novel approaches to the characterization of medicinal plants as biofactories have lately increased in the field of biotechnology. In this work, a multifaceted approach based on plant tissue culture, metabolomics, and machine learning was applied to decipher and further characterize the biosynthesis of phenolic compounds by eliciting cell suspension cultures from medicinal plants belonging to the Bryophyllum subgenus. The application of untargeted metabolomics provided a total of 460 phenolic compounds. The biosynthesis of 164 of them was significantly modulated by elicitation. The application of neurofuzzy logic as a machine learning tool allowed for deciphering the critical factors involved in the response to elicitation, predicting their influence and interactions on plant cell growth and the biosynthesis of several polyphenols subfamilies. The results indicate that salicylic acid plays a definitive genotype-dependent role in the elicitation of Bryophyllum cell cultures, while methyl jasmonate was revealed as a secondary factor. The knowledge provided by this approach opens a wide perspective on the research of medicinal plants and facilitates their biotechnological exploitation as biofactories in the food, cosmetic and pharmaceutical fields.
Collapse
Affiliation(s)
- Pascual García-Pérez
- Agrobiotech for Health, Plant Biology and Soil Science Department, Faculty of Biology, University of Vigo, Vigo, Spain
- Sustainable Food Process Department, Università Cattolica del Sacro Cuore, Piacenza, Italy
| | - Eva Lozano-Milo
- Agrobiotech for Health, Plant Biology and Soil Science Department, Faculty of Biology, University of Vigo, Vigo, Spain
- Cluster de Investigación y Transferencia Agroalimentaria del Campus da Auga (CITACA), University of Vigo, Orense Campus, Ourense, Spain
| | - Leilei Zhang
- Sustainable Food Process Department, Università Cattolica del Sacro Cuore, Piacenza, Italy
| | - Begoña Miras-Moreno
- Sustainable Food Process Department, Università Cattolica del Sacro Cuore, Piacenza, Italy
| | - Mariana Landin
- Pharmacology, Pharmacy, and Pharmaceutical Technology Department, I+D Farma (GI-1645), Faculty of Pharmacy, Instituto de Materiales de la Universidade de Santiago de Compostela (iMATUS) and Health Research Institute of Santiago de Compostela (IDIS), Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| | - Luigi Lucini
- Agrobiotech for Health, Plant Biology and Soil Science Department, Faculty of Biology, University of Vigo, Vigo, Spain
| | - Pedro P. Gallego
- Agrobiotech for Health, Plant Biology and Soil Science Department, Faculty of Biology, University of Vigo, Vigo, Spain
- Cluster de Investigación y Transferencia Agroalimentaria del Campus da Auga (CITACA), University of Vigo, Orense Campus, Ourense, Spain
| |
Collapse
|
4
|
Corchete P, Almagro L, Gabaldón JA, Pedreño MA, Palazón J. Phenylpropanoids in Silybum marianum cultures treated with cyclodextrins coated with magnetic nanoparticles. Appl Microbiol Biotechnol 2022; 106:2393-2401. [PMID: 35344093 PMCID: PMC8989811 DOI: 10.1007/s00253-022-11886-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 03/08/2022] [Accepted: 03/12/2022] [Indexed: 11/28/2022]
Abstract
The glucose oligosaccharide-derived cyclodextrins (CDs) are used for improving bioactive compound production in plant cell cultures because, in addition to their elicitation activity, CDs promote product removal from cells. However, despite these advantages, the industrial application of CDs is hampered by their high market price. A strategy to overcome this constraint was recently tested, in which reusable CD polymers coated with magnetic Fe3O4 nanoparticles were harnessed in Vitis vinifera cell cultures to produce t-resveratrol (t-R). In this study, we applied hydroxypropyl-β-CDs (HPCD) and HPCDs coated with magnetic nanoparticles (HPCD-EPI-MN) in methyl jasmonate (MJ)-treated transgenic Silybum marianum cultures ectopically expressing either a stilbene synthase gene (STS) or a chalcone synthase gene (CHS), and compared their effects on the yields of t-R and naringenin (Ng), respectively. HPCD-EPI-MN at 15 g/L stimulated the accumulation of metabolites in the culture medium of the corresponding transgenic cell lines, with up to 4 mg/L of t-R and 3 mg/L of Ng released after 3 days. Similar amounts were produced in cultures treated with HPCD. Concentrations higher than 15 g/L of HPCD-EPI-MN and prolonged incubation periods negatively affected cell growth and viability in both transgenic cell lines. Reutilization of HPCD-EPI-MN was possible in three elicitation cycles (72 h each), after which the polymer retained 25-30% of its initial efficiency, indicating good stability and reusability. Due to their capacity to adsorb metabolites and their recyclability, the application of magnetic CD polymers may reduce the costs of establishing efficient secondary metabolite production systems on a commercial scale. KEY POINTS: • Long-term transgenic S. marianum suspensions stably produce transgene products • t-R and Ng accumulated extracellularly in cultures elicited with HPCD and HPCD-EPI-MN • The recyclability of HPCD-EPI-MN for metabolite production was proven.
Collapse
Affiliation(s)
- Purificación Corchete
- Departamento de Botánica y Fisiología Vegetal, Facultad de Biología, Universidad de Salamanca, Salamanca, Spain.
| | - Lorena Almagro
- Departamento de Fisiología Vegetal, Facultad de Biología, Universidad de Murcia, Murcia, Spain
| | - Jose Antonio Gabaldón
- Departamento de Tecnología de la Alimentación y Nutrición, Universidad Católica San Antonio de Murcia, Murcia, Spain
| | - María Angeles Pedreño
- Departamento de Fisiología Vegetal, Facultad de Biología, Universidad de Murcia, Murcia, Spain
| | - Javier Palazón
- Laboratori de Fisiologia Vegetal, Facultat de Farmacia, Universitat de Barcelona, Barcelona, Spain
| |
Collapse
|
5
|
Mikhailov OV. The Physical Chemistry and Chemical Physics (PCCP) Section of the International Journal of Molecular Sciences in Its Publications: The First 300 Thematic Articles in the First 3 Years. Int J Mol Sci 2021; 23:241. [PMID: 35008667 PMCID: PMC8745423 DOI: 10.3390/ijms23010241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Accepted: 12/15/2021] [Indexed: 11/16/2022] Open
Abstract
The Physical Chemistry and Chemical Physics Section (PCCP Section) is one of the youngest among the sections of the International Journal of Molecular Sciences (IJMS)-the year 2021 will only mark three years since its inception [...].
Collapse
Affiliation(s)
- Oleg V Mikhailov
- Department of Analytical Chemistry, Certification and Quality Management, Kazan National Research Technological University, K. Marx Street 68, 420015 Kazan, Russia
| |
Collapse
|
6
|
Polyphenols as Antioxidants for Extending Food Shelf-Life and in the Prevention of Health Diseases: Encapsulation and Interfacial Phenomena. Biomedicines 2021; 9:biomedicines9121909. [PMID: 34944722 PMCID: PMC8698762 DOI: 10.3390/biomedicines9121909] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 11/25/2021] [Accepted: 12/02/2021] [Indexed: 01/23/2023] Open
Abstract
Toxicity caused by the exposure to human-made chemicals and environmental conditions has become a major health concern because they may significantly increase the formation of reactive oxygen species (ROS), negatively affecting the endogenous antioxidant defense. Living systems have evolved complex antioxidant mechanisms to protect cells from oxidative conditions. Although oxidative stress contributes to various pathologies, the intake of molecules such as polyphenols, obtained from natural sources, may limit their effects because of their antioxidant and antimicrobial properties against lipid peroxidation and against a broad range of foodborne pathogens. Ingestion of polyphenol-rich foods, such as fruits and vegetables, help to reduce the harmful effects of ROS, but the use of supramolecular and nanomaterials as delivery systems has emerged as an efficient method to improve their pharmacological and therapeutic effects. Suitable exogenous polyphenolic antioxidants should be readily absorbed and delivered to sites where pathological oxidative damage may take place, for instance, intracellular locations. Many potential antioxidants have a poor bioavailability, but they can be encapsulated to improve their ideal solubility and permeability profile. Development of effective antioxidant strategies requires the creation of new nanoscale drug delivery systems to significantly reduce oxidative stress. In this review we provide an overview of the oxidative stress process, highlight some properties of ROS, and discuss the role of natural polyphenols as bioactives in controlling the overproduction of ROS and bacterial and fungal growth, paying special attention to their encapsulation in suitable delivery systems and to their location in colloidal systems where interfaces play a crucial role.
Collapse
|
7
|
García-Pérez P, Zhang L, Miras-Moreno B, Lozano-Milo E, Landin M, Lucini L, Gallego PP. The Combination of Untargeted Metabolomics and Machine Learning Predicts the Biosynthesis of Phenolic Compounds in Bryophyllum Medicinal Plants (Genus Kalanchoe). PLANTS (BASEL, SWITZERLAND) 2021; 10:plants10112430. [PMID: 34834793 PMCID: PMC8620224 DOI: 10.3390/plants10112430] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/10/2021] [Revised: 11/08/2021] [Accepted: 11/09/2021] [Indexed: 06/13/2023]
Abstract
Phenolic compounds constitute an important family of natural bioactive compounds responsible for the medicinal properties attributed to Bryophyllum plants (genus Kalanchoe, Crassulaceae), but their production by these medicinal plants has not been characterized to date. In this work, a combinatorial approach including plant tissue culture, untargeted metabolomics, and machine learning is proposed to unravel the critical factors behind the biosynthesis of phenolic compounds in these species. The untargeted metabolomics revealed 485 annotated compounds that were produced by three Bryophyllum species cultured in vitro in a genotype and organ-dependent manner. Neurofuzzy logic (NFL) predictive models assessed the significant influence of genotypes and organs and identified the key nutrients from culture media formulations involved in phenolic compound biosynthesis. Sulfate played a critical role in tyrosol and lignan biosynthesis, copper in phenolic acid biosynthesis, calcium in stilbene biosynthesis, and magnesium in flavanol biosynthesis. Flavonol and anthocyanin biosynthesis was not significantly affected by mineral components. As a result, a predictive biosynthetic model for all the Bryophyllum genotypes was proposed. The combination of untargeted metabolomics with machine learning provided a robust approach to achieve the phytochemical characterization of the previously unexplored species belonging to the Bryophyllum subgenus, facilitating their biotechnological exploitation as a promising source of bioactive compounds.
Collapse
Affiliation(s)
- Pascual García-Pérez
- Agrobiotech for Health Group, Plant Biology and Soil Science Department, Biology Faculty, University of Vigo, E-36310 Vigo, Spain; (P.G.-P.); (E.L.-M.); (P.P.G.)
- CITACA—Agri-Food Research and Transfer Cluster, University of Vigo, E-32004 Ourense, Spain
| | - Leilei Zhang
- Department for Sustainable Food Process, Università Cattolica del Sacro Cuore, Via Emilia Parmense 84, 29122 Piacenza, Italy; (L.Z.); (B.M.-M.)
| | - Begoña Miras-Moreno
- Department for Sustainable Food Process, Università Cattolica del Sacro Cuore, Via Emilia Parmense 84, 29122 Piacenza, Italy; (L.Z.); (B.M.-M.)
| | - Eva Lozano-Milo
- Agrobiotech for Health Group, Plant Biology and Soil Science Department, Biology Faculty, University of Vigo, E-36310 Vigo, Spain; (P.G.-P.); (E.L.-M.); (P.P.G.)
- CITACA—Agri-Food Research and Transfer Cluster, University of Vigo, E-32004 Ourense, Spain
| | - Mariana Landin
- I+D Farma Group (GI-1645), Department of Pharmacology, Pharmacy and Pharmaceutical Technology, Faculty of Pharmacy, Universidade de Santiago de Compostela, E-15782 Santiago de Compostela, Spain;
- Health Research Institute of Santiago de Compostela (IDIS), E-15706 Santiago de Compostela, Spain
| | - Luigi Lucini
- Department for Sustainable Food Process, Università Cattolica del Sacro Cuore, Via Emilia Parmense 84, 29122 Piacenza, Italy; (L.Z.); (B.M.-M.)
| | - Pedro P. Gallego
- Agrobiotech for Health Group, Plant Biology and Soil Science Department, Biology Faculty, University of Vigo, E-36310 Vigo, Spain; (P.G.-P.); (E.L.-M.); (P.P.G.)
- CITACA—Agri-Food Research and Transfer Cluster, University of Vigo, E-32004 Ourense, Spain
| |
Collapse
|
8
|
García-Pérez P, Lozano-Milo E, Landin M, Gallego PP. From Ethnomedicine to Plant Biotechnology and Machine Learning: The Valorization of the Medicinal Plant Bryophyllum sp. PHARMACEUTICALS (BASEL, SWITZERLAND) 2020; 13:ph13120444. [PMID: 33291844 PMCID: PMC7762000 DOI: 10.3390/ph13120444] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 12/02/2020] [Accepted: 12/02/2020] [Indexed: 12/18/2022]
Abstract
The subgenus Bryophyllum includes about 25 plant species native to Madagascar, and is widely used in traditional medicine worldwide. Different formulations from Bryophyllum have been employed for the treatment of several ailments, including infections, gynecological disorders, and chronic diseases, such as diabetes, neurological and neoplastic diseases. Two major families of secondary metabolites have been reported as responsible for these bioactivities: phenolic compounds and bufadienolides. These compounds are found in limited amounts in plants because they are biosynthesized in response to different biotic and abiotic stresses. Therefore, novel approaches should be undertaken with the aim of achieving the phytochemical valorization of Bryophyllum sp., allowing a sustainable production that prevents from a massive exploitation of wild plant resources. This review focuses on the study of phytoconstituents reported on Bryophyllum sp.; the application of plant tissue culture methodology as a reliable tool for the valorization of bioactive compounds; and the application of machine learning technology to model and optimize the full phytochemical potential of Bryophyllum sp. As a result, Bryophyllum species can be considered as a promising source of plant bioactive compounds, with enormous antioxidant and anticancer potential, which could be used for their large-scale biotechnological exploitation in cosmetic, food, and pharmaceutical industries.
Collapse
Affiliation(s)
- Pascual García-Pérez
- Applied Plant & Soil Biology, Plant Biology and Soil Science Department, Biology Faculty, University of Vigo, E-36310 Vigo, Spain; (P.G.-P.); (E.L.-M.)
- CITACA—Agri-Food Research and Transfer Cluster, University of Vigo, E-32004 Ourense, Spain
| | - Eva Lozano-Milo
- Applied Plant & Soil Biology, Plant Biology and Soil Science Department, Biology Faculty, University of Vigo, E-36310 Vigo, Spain; (P.G.-P.); (E.L.-M.)
- CITACA—Agri-Food Research and Transfer Cluster, University of Vigo, E-32004 Ourense, Spain
| | - Mariana Landin
- Pharmacology, Pharmacy and Pharmaceutical Technology Department, Grupo I+D Farma (GI-1645), Pharmacy Faculty, University of Santiago, E-15782 Santiago de Compostela, Spain;
- Health Research Institute of Santiago de Compostela (IDIS), E-15782 Santiago de Compostela, Spain
| | - Pedro P. Gallego
- Applied Plant & Soil Biology, Plant Biology and Soil Science Department, Biology Faculty, University of Vigo, E-36310 Vigo, Spain; (P.G.-P.); (E.L.-M.)
- CITACA—Agri-Food Research and Transfer Cluster, University of Vigo, E-32004 Ourense, Spain
- Correspondence:
| |
Collapse
|
9
|
Matencio A, Navarro-Orcajada S, García-Carmona F, López-Nicolás JM. Applications of cyclodextrins in food science. A review. Trends Food Sci Technol 2020. [DOI: 10.1016/j.tifs.2020.08.009] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
10
|
García-Pérez P, Losada-Barreiro S, Bravo-Díaz C, Gallego PP. Exploring the Use of Bryophyllum as Natural Source of Bioactive Compounds with Antioxidant Activity to Prevent Lipid Oxidation of Fish Oil-In-Water Emulsions. PLANTS (BASEL, SWITZERLAND) 2020; 9:E1012. [PMID: 32796522 PMCID: PMC7464648 DOI: 10.3390/plants9081012] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 08/06/2020] [Accepted: 08/06/2020] [Indexed: 12/13/2022]
Abstract
The current industrial requirements for food naturalness are forcing the development of new strategies to achieve the production of healthier foods by replacing the use of synthetic additives with bioactive compounds from natural sources. Here, we investigate the use of plant tissue culture as a biotechnological solution to produce plant-derived bioactive compounds with antioxidant activity and their application to protect fish oil-in-water emulsions against lipid peroxidation. The total phenolic content of Bryophyllum plant extracts ranges from 3.4 to 5.9 mM, expressed as gallic acid equivalents (GAE). The addition of Bryophyllum extracts to 4:6 fish oil-in-water emulsions results in a sharp (eight-fold) increase in the antioxidant efficiency due to the incorporation of polyphenols to the interfacial region. In the emulsions, the antioxidant efficiency of extracts increased linearly with concentration and levelled off at 500 μM GAE, reaching a plateau region. The antioxidant efficiency increases modestly (12%) upon increasing the pH from 3.0 to 5.0, while an increase in temperature from 10 to 30 °C causes a six-fold decrease in the antioxidant efficiency. Overall, results show that Bryophyllum plant-derived extracts are promising sources of bioactive compounds with antioxidant activity that can be eventually be used to control lipid oxidation in food emulsions containing (poly)unsaturated fatty acids.
Collapse
Affiliation(s)
- Pascual García-Pérez
- Applied Plant & Soil Biology, Plant Biology and Soil Science Department, Biology Faculty, University of Vigo, 36310 Vigo, Spain;
- CITACA, Agri-Food Research and Transfer Cluster, University of Vigo, 32004 Ourense, Spain
| | - Sonia Losada-Barreiro
- Physical Chemistry Department, Chemistry Faculty, University of Vigo, 36310 Vigo, Spain;
- REQUIMTE-LAQV, Chemistry and Biochemistry Department, Science Faculty, University of Porto, 4169-007 Porto, Portugal
| | - Carlos Bravo-Díaz
- Physical Chemistry Department, Chemistry Faculty, University of Vigo, 36310 Vigo, Spain;
| | - Pedro P. Gallego
- Applied Plant & Soil Biology, Plant Biology and Soil Science Department, Biology Faculty, University of Vigo, 36310 Vigo, Spain;
- CITACA, Agri-Food Research and Transfer Cluster, University of Vigo, 32004 Ourense, Spain
| |
Collapse
|
11
|
García-Pérez P, Lozano-Milo E, Landín M, Gallego PP. Combining Medicinal Plant In Vitro Culture with Machine Learning Technologies for Maximizing the Production of Phenolic Compounds. Antioxidants (Basel) 2020; 9:antiox9030210. [PMID: 32143282 PMCID: PMC7139750 DOI: 10.3390/antiox9030210] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Revised: 02/27/2020] [Accepted: 03/02/2020] [Indexed: 11/23/2022] Open
Abstract
We combined machine learning and plant in vitro culture methodologies as a novel approach for unraveling the phytochemical potential of unexploited medicinal plants. In order to induce phenolic compound biosynthesis, the in vitro culture of three different species of Bryophyllum under nutritional stress was established. To optimize phenolic extraction, four solvents with different MeOH proportions were used, and total phenolic content (TPC), flavonoid content (FC) and radical-scavenging activity (RSA) were determined. All results were subjected to data modeling with the application of artificial neural networks to provide insight into the significant factors that influence such multifactorial processes. Our findings suggest that aerial parts accumulate a higher proportion of phenolic compounds and flavonoids in comparison to roots. TPC was increased under ammonium concentrations below 15 mM, and their extraction was maximum when using solvents with intermediate methanol proportions (55–85%). The same behavior was reported for RSA, and, conversely, FC was independent of culture media composition, and their extraction was enhanced using solvents with high methanol proportions (>85%). These findings confer a wide perspective about the relationship between abiotic stress and secondary metabolism and could serve as the starting point for the optimization of bioactive compound production at a biotechnological scale.
Collapse
Affiliation(s)
- Pascual García-Pérez
- Plant Biology and Soil Science Department, Biology Faculty, University of Vigo, 36310 Vigo, Spain; (P.G.-P.); (E.L.-M.)
| | - Eva Lozano-Milo
- Plant Biology and Soil Science Department, Biology Faculty, University of Vigo, 36310 Vigo, Spain; (P.G.-P.); (E.L.-M.)
| | - Mariana Landín
- Pharmacology, Pharmacy and Pharmaceutical Technology Department, Faculty of Pharmacy, University of Santiago, E-15782 Santiago de Compostela, Spain;
| | - Pedro Pablo Gallego
- Plant Biology and Soil Science Department, Biology Faculty, University of Vigo, 36310 Vigo, Spain; (P.G.-P.); (E.L.-M.)
- Correspondence: ; Tel.: +34-986-812-595
| |
Collapse
|