1
|
Chang TS, Ding HY, Wang TY, Wu JY, Tsai PW, Suratos KS, Tayo LL, Liu GC, Ting HJ. In silico-guided synthesis of a new, highly soluble, and anti-melanoma flavone glucoside: Skullcapflavone II-6'-O-β-glucoside. Biotechnol Appl Biochem 2024. [PMID: 39449153 DOI: 10.1002/bab.2685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Accepted: 10/10/2024] [Indexed: 10/26/2024]
Abstract
Guided by in silico analysis tools and biotransformation technology, new derivatives of natural compounds with heightened bioactivities can be explored and synthesized efficiently. In this study, in silico data mining and molecular docking analysis predicted that glucosides of skullcapflavone II (SKII) were new flavonoid compounds and had higher binding potential to oncogenic proteins than SKII. These benefits guided us to perform glycosylation of SKII by utilizing four glycoside hydrolases and five glycosyltransferases (GTs). Findings unveiled that exclusive glycosylation of SKII was achieved solely through the action of GTs, with Bacillus subtilis BsUGT489 exhibiting the highest catalytic glycosylation efficacy. Structure analysis determined the glycosylated product as a novel compound, skullcapflavone II-6'-O-β-glucoside (SKII-G). Significantly, the aqueous solubility of SKII-G exceeded its precursor, SKII, by 272-fold. Furthermore, SKII-G demonstrated noteworthy anti-melanoma activity against human A2058 cells, exhibiting an IC50 value surpassing that of SKII by 1.4-fold. Intriguingly, no substantial cytotoxic effects were observed in a murine macrophage cell line, RAW 264.7. This promising anti-melanoma activity without adverse effects on macrophages suggests that SKII-G could be a potential candidate for further preclinical and clinical studies. The in silico tool-guided synthesis of a new, highly soluble, and potent anti-melanoma glucoside, SKII-G, provides a rational design to facilitate the future discovery of new and bioactive compounds.
Collapse
Affiliation(s)
- Te-Sheng Chang
- Department of Biological Sciences and Technology, National University of Tainan, Tainan, Taiwan
| | - Hsiou-Yu Ding
- Department of Cosmetic Science, Chia Nan University of Pharmacy and Science, Tainan, Taiwan
| | - Tzi-Yuan Wang
- Biodiversity Research Center, Academia Sinica, Taipei, Taiwan
| | - Jiumn-Yih Wu
- Department of Food Science, National Quemoy University, Kinmen, Taiwan
| | - Po-Wei Tsai
- Department of Food Science, National Taiwan Ocean University, Keelung, Taiwan
| | - Khyle S Suratos
- School of Chemical, Biological, Materials Engineering and Sciences, Mapúa University, Manila, Philippines
- School of Graduate Studies, Mapúa University, Manila, Philippines
| | - Lemmuel L Tayo
- School of Chemical, Biological, Materials Engineering and Sciences, Mapúa University, Manila, Philippines
- Department of Biology, School of Health Sciences, Mapúa University, Makati, Philippines
| | - Guan-Cheng Liu
- Department of Biological Sciences and Technology, National University of Tainan, Tainan, Taiwan
| | - Huei-Ju Ting
- Department of Biological Sciences and Technology, National University of Tainan, Tainan, Taiwan
| |
Collapse
|
2
|
Chang TS, Ding HY, Wu JY, Lin HY, Wang TY. Glycosylation of 6-gingerol and unusual spontaneous deglucosylation of two novel intermediates to form 6-shogaol-4'- O-β-glucoside by bacterial glycosyltransferase. Appl Environ Microbiol 2024; 90:e0077924. [PMID: 39315794 PMCID: PMC11497796 DOI: 10.1128/aem.00779-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Accepted: 08/31/2024] [Indexed: 09/25/2024] Open
Abstract
6-Gingerol is a major phenolic compound within ginger (Zingiber officinale), often used in healthcare; however, its lower bioavailability is partly due to its poor solubility. Four bacterial glycosyltransferases (GTs) were tested to glycosylate 6-gingerol into soluble gingerol glucosides. BsUGT489 was a suitable GT to biotransform 6-gingerol into five significant products, which could be identified via nucleic magnetic resonance and mass spectrometry as 6-gingerol-4',5-O-β-diglucoside (1), 6-gingerol-4'-O-β-glucoside (2), 6-gingerol-5-O-β-glucoside (3), 6-shogaol-4'-O-β-glucoside (4), and 6-shogaol (5). The enzyme kinetics of BsUGT489 showed substrate inhibition toward 6-gingerol for producing two glucosides. The kinetic parameters were determined as KM (110 µM), kcat (862 min-1), and KI (571 µM) for the production of 6-gingerol-4'-O-β-glucoside (2) and KM (104 µM), kcat (889 min-1), and KI (545 µM) for the production of 6-gingerol-5-O-β-glucoside (3). The aqueous solubility of the three 6-gingerol glucosides, compound (1) to (3), was greatly improved. However, 6-shogaol-4'-O-β-glucoside (4) was found to be a product biotransformed from 6-shogaol (5). This study first confirmed that the glucose moiety at the C-5 position of both 6-gingerol-4',5-O-β-diglucoside (1) and 6-gingerol-5-O-β-glucoside (3) caused spontaneous deglucosylation through β-elimination to form 6-shogaol-4'-O-β-glucoside (4) and 6-shogaol (5), respectively. Moreover, the GTs could glycosylate 6-shogaol to form 6-shogaol-4'-O-β-glucoside (4). The assays showed 6-shogaol-4'-O-β-glucoside (4) had higher anti-inflammatory activity (IC50 value of 10.3 ± 0.2 µM) than 6-gingerol. The 6-gingerol-5-O-β-glucoside (3) possessed 346-fold higher solubility than 6-shogaol, in which the highly soluble glucoside is a potential prodrug of 6-shogaol via spontaneous deglucosylation. This unusual deglucosylation plays a vital role in influencing the anti-inflammatory activity. IMPORTANCE Both 6-gingerols and 6-shogaol possess multiple bioactivities. However, their poor solubility limits their application. The present study used bacterial GTs to catalyze the glycosylation of 6-gingerol, and the resulting gingerol glycosides were found to be new compounds with improved solubility and anti-inflammatory activity. In addition, two of the 6-gingerol glucosides were found to undergo spontaneous deglucosylation to form 6-shogaol or 6-shogaol glucosides. The unique spontaneous deglucosylation property of the new 6-gingerol glucosides makes them a good candidate for the prodrug of 6-shogaol.
Collapse
Affiliation(s)
- Te-Sheng Chang
- Department of Biological Sciences and Technology, National University of Tainan, Tainan, Taiwan
| | - Hsiou-Yu Ding
- Department of Cosmetic Science, Chia Nan University of Pharmacy and Science, Tainan, Taiwan
| | - Jiumn-Yih Wu
- Department of Food Science, National Quemoy University, Kinmen, Taiwan
| | - Han-Ying Lin
- Department of Biological Sciences and Technology, National University of Tainan, Tainan, Taiwan
| | - Tzi-Yuan Wang
- Biodiversity Research Center, Academia Sinica, Taipei, Taiwan
| |
Collapse
|
3
|
Chang TS, Wu JY, Ding HY, Tayo LL, Suratos KS, Tsai PW, Wang TY, Fong YN, Ting HJ. Predictive Production of a New Highly Soluble Glucoside, Corylin-7-O-β-Glucoside with Potent Anti-inflammatory and Anti-melanoma Activities. Appl Biochem Biotechnol 2024:10.1007/s12010-024-05071-6. [PMID: 39377873 DOI: 10.1007/s12010-024-05071-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/19/2024] [Indexed: 10/09/2024]
Abstract
Computational tools can now facilitate screening precursors and selecting suitable biotransformation enzymes for producing new bioactive compounds. This study applied the data-mining approach to screen for candidate precursors of glycosyltransferases to produce new glucosides from 412 commercial natural compounds. Among five candidates, experimental results showed that only corylin could be glycosylated by the bacterial glycosyltransferase, BsUGT489. Analysis of interaction potential between candidates and glycosyltransferase by molecular docking tools also found that corylin was the only compatible substrate. The new glucoside was purified and confirmed to be corylin-7-O-β-glucoside. The aqueous solubility of corylin-7-O-β-glucoside was 14.2 times more than its precursor aglycone, corylin. Corylin-7-O-β-glucoside retained anti-inflammatory activity in lipopolysaccharide-induced nitric oxide production of murine macrophage RAW 264.7 cells, with an IC50 value of 121.1 ± 9.5 µM. Further, corylin-7-O-β-glucoside exhibited more potent anti-melanoma activity against murine B16 and human A2058 melanoma cells than corylin. Together, predictive studies facilitate the production of a new glucoside, corylin-7-O-β-glucoside, which is highly soluble and possesses anti-inflammatory and anti-melanoma activities and therefore has promising future applications in pharmacology.
Collapse
Affiliation(s)
- Te-Sheng Chang
- Department of Biological Sciences and Technology, National University of Tainan, Tainan, Taiwan
| | - Jiumn-Yih Wu
- Department of Food Science, National Quemoy University, Kinmen, Taiwan
| | - Hsiou-Yu Ding
- Department of Cosmetic Science, Chia Nan University of Pharmacy and Science, Tainan, Taiwan
| | - Lemmuel L Tayo
- School of Chemical, Biological, Materials Engineering and Sciences, Mapúa University, 1002, Manila, Philippines
- Department of Biology, School of Health Sciences, Mapúa University, 1200, Makati, Philippines
| | - Khyle S Suratos
- School of Chemical, Biological, Materials Engineering and Sciences, Mapúa University, 1002, Manila, Philippines
- School of Graduate Studies, Mapúa University, 1002, Manila, Philippines
| | - Po-Wei Tsai
- Department of Food Science, National Taiwan Ocean University, Keelung, 202, Taiwan
| | - Tzi-Yuan Wang
- Biodiversity Research Center, Academia Sinica, Taipei, Taiwan
| | - Yu-Ning Fong
- Department of Food Science, National Quemoy University, Kinmen, Taiwan
| | - Huei-Ju Ting
- Department of Biological Sciences and Technology, National University of Tainan, Tainan, Taiwan.
| |
Collapse
|
4
|
Ding HY, Wang TY, Wu JY, Zhang YR, Chang TS. Novel Ganoderma triterpenoid saponins from the biotransformation-guided purification of a commercial Ganoderma extract. J Biosci Bioeng 2023; 135:402-410. [PMID: 36889998 DOI: 10.1016/j.jbiosc.2023.02.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 02/02/2023] [Accepted: 02/15/2023] [Indexed: 03/08/2023]
Abstract
Ganoderma sp. contains high amounts of diverse triterpenoids; however, few triterpenoid saponins could be isolated from the medicinal fungus. To produce novel Ganoderma triterpenoid saponins, biotransformation-guided purification (BGP) process was applied to a commercial Ganoderma extract. The commercial Ganoderma extract was partially separated into three fractions by preparative high-performance liquid chromatography, and the separated fractions were then directly biotransformed by a Bacillus glycosyltransferase (BsUGT489). One of the biotransformed products could be further purified and identified as a novel saponin: ganoderic acid C2 (GAC2)-3-O-β-glucoside by nucleic magnetic resonance (NMR) and mass spectral analyses. Based on the structure of the saponin, the predicted precursor should be the GAC2, which was confirmed to be biotransformed into four saponins, GAC2-3-O-β-glucoside, GAC2-3,15-O-β-diglucoside and two unknown GAC2 monoglucosides, revealed by NMR and mass spectral analyses. GAC2-3-O-β-glucoside and GAC2-3,15-O-β-diglucoside possessed 17-fold and 200-fold higher aqueous solubility than that of GAC2, respectively. In addition, GAC2-3-O-β-glucoside retained the most anti-α-glucosidase activity of GAC2 and was comparable with that of the anti-diabetes drug (acarbose). The present study showed that the BGP process is an efficient strategy to survey novel and bioactive molecules from crude extracts of natural products.
Collapse
Affiliation(s)
- Hsiou-Yu Ding
- Department of Cosmetic Science, Chia Nan University of Pharmacy and Science, Tainan 717, Taiwan
| | - Tzi-Yuan Wang
- Biodiversity Research Center, Academia Sinica, Taipei 115, Taiwan
| | - Jiumn-Yih Wu
- Department of Food Science, National Quemoy University, Kinmen 892, Taiwan
| | - Yun-Rong Zhang
- Department of Biological Sciences and Technology, National University of Tainan, Tainan 700, Taiwan
| | - Te-Sheng Chang
- Department of Biological Sciences and Technology, National University of Tainan, Tainan 700, Taiwan.
| |
Collapse
|
5
|
Novel Glycosylation by Amylosucrase to Produce Glycoside Anomers. BIOLOGY 2022; 11:biology11060822. [PMID: 35741343 PMCID: PMC9220500 DOI: 10.3390/biology11060822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Revised: 05/24/2022] [Accepted: 05/25/2022] [Indexed: 11/16/2022]
Abstract
Simple Summary All livings are composed of cells, which contain lipid, proteins, nuclei acids, and saccharides. Saccharides include polysaccharides, oligo saccharides, disaccharides, which are linked by monosaccharides. Monosaccharides such as glucose exist in two forms, named α and β anomer, in solution. In addition, monosaccharides could be linked with lipid, proteins, nuclei acids or other saccharide to form glycosides through glycosylation. In nature, glycosylation is catalyzed by enzymes. Until now, all enzymes catalyzed glycosylation to form glycosides with either α or β form but not both. This study found an enzyme, amylosucrase from Deinococcus geothermalis (DgAS), could catalyze glycosylation of a kind of lipid named ganoderic acids triterpenoids from a medicinal fungus Ganoderma lucidum to form both α and β anomer of glycosides. This is the first report that enzymes could catalyze such glycosylation and a possible reaction mechanism was proposed. Abstract Glycosylation occurring at either lipids, proteins, or sugars plays important roles in many biological systems. In nature, enzymatic glycosylation is the formation of a glycosidic bond between the anomeric carbon of the donor sugar and the functional group of the sugar acceptor. This study found novel glycoside anomers without an anomeric carbon linkage of the sugar donor. A glycoside hydrolase (GH) enzyme, amylosucrase from Deinococcus geothermalis (DgAS), was evaluated to glycosylate ganoderic acid F (GAF), a lanostane triterpenoid from medicinal fungus Ganoderma lucidum, at different pH levels. The results showed that GAF was glycosylated by DgAS at acidic conditions pH 5 and pH 6, whereas the activity dramatically decreased to be undetectable at pH 7 or pH 8. The biotransformation product was purified by preparative high-performance liquid chromatography and identified as unusual α-glucosyl-(2→26)-GAF and β-glucosyl-(2→26)-GAF anomers by mass and nucleic magnetic resonance (NMR) spectroscopy. We further used DgAS to catalyze another six triterpenoids. Under the acidic conditions, two of six compounds, ganoderic acid A (GAA) and ganoderic acid G (GAG), could be converted to α–glucosyl-(2→26)-GAA and β–glucosyl-(2→26)-GAA anomers and α-glucosyl-(2→26)-GAG and β-glucosyl-(2→26)-GAG anomers, respectively. The glycosylation of triterpenoid aglycones was first confirmed to be converted via a GH enzyme, DgAS. The novel enzymatic glycosylation-formed glycoside anomers opens a new bioreaction in the pharmaceutical industry and in the biotechnology sector.
Collapse
|
6
|
Enzymatic Synthesis of Novel Vitexin Glucosides. Molecules 2021; 26:molecules26206274. [PMID: 34684855 PMCID: PMC8539612 DOI: 10.3390/molecules26206274] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 10/13/2021] [Accepted: 10/14/2021] [Indexed: 01/20/2023] Open
Abstract
Vitexin is a C-glucoside flavone that exhibits a wide range of pharmaceutical activities. However, the poor solubility of vitexin limits its applications. To resolve this limitation, two glycoside hydrolases (GHs) and four glycosyltransferases (GTs) were assayed for glycosylation activity toward vitexin. The results showed that BtGT_16345 from the Bacillus thuringiensis GA A07 strain possessed the highest glycosylation activity, catalyzing the conversion of vitexin into new compounds, vitexin-4'-O-β-glucoside (1) and vitexin-5-O-β-glucoside (2), which showed greater aqueous solubility than vitexin. To our knowledge, this is the first report of vitexin glycosylation. Based on the multiple bioactivities of vitexin, the two highly soluble vitexin derivatives might have high potential for pharmacological usage in the future.
Collapse
|
7
|
Glycosylation of Ganoderic Acid G by Bacillus Glycosyltransferases. Int J Mol Sci 2021; 22:ijms22189744. [PMID: 34575908 PMCID: PMC8468440 DOI: 10.3390/ijms22189744] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 08/30/2021] [Accepted: 09/07/2021] [Indexed: 11/16/2022] Open
Abstract
Ganoderma lucidum is a medicinal fungus abundant in triterpenoids, its primary bioactive components. Although numerous Ganoderma triterpenoids have already been identified, rare Ganoderma triterpenoid saponins were recently discovered. To create novel Ganoderma saponins, ganoderic acid G (GAG) was selected for biotransformation using four Bacillus glycosyltransferases (GTs) including BtGT_16345 from the Bacillus thuringiensis GA A07 strain and three GTs (BsGT110, BsUGT398, and BsUGT489) from the Bacillus subtilis ATCC 6633 strain. The results showed that BsUGT489 catalyzed the glycosylation of GAG to GAG-3-o-β-glucoside, while BsGT110 catalyzed the glycosylation of GAG to GAG-26-o-β-glucoside, which showed 54-fold and 97-fold greater aqueous solubility than that of GAG, respectively. To our knowledge, these two GAG saponins are new compounds. The glycosylation specificity of the four Bacillus GTs highlights the possibility of novel Ganoderma triterpenoid saponin production in the future.
Collapse
|
8
|
Abstract
Ganoderma lucidum is a medicinal fungus whose numerous triterpenoids are its main bioactive constituents. Although hundreds of Ganoderma triterpenoids have been identified, Ganoderma triterpenoid glycosides, also named triterpenoid saponins, have been rarely found. Ganoderic acid A (GAA), a major Ganoderma triterpenoid, was synthetically cascaded to form GAA-15-O-β-glucopyranoside (GAA-15-G) by glycosyltransferase (BtGT_16345) from Bacillus thuringiensis GA A07 and subsequently biotransformed into a series of GAA glucosides by cyclodextrin glucanotransferase (Toruzyme® 3.0 L) from Thermoanaerobacter sp. The optimal reaction conditions for the second-step biotransformation of GAA-15-G were found to be 20% of maltose; pH 5; 60 °C. A series of GAA glucosides (GAA-G2, GAA-G3, and GAA-G4) could be purified with preparative high-performance liquid chromatography (HPLC) and identified by mass and nucleic magnetic resonance (NMR) spectral analysis. The major product, GAA-15-O-[α-glucopyranosyl-(1→4)-β-glucopyranoside] (GAA-G2), showed over 4554-fold higher aqueous solubility than GAA. The present study demonstrated that multiple Ganoderma triterpenoid saponins could be produced by sequential actions of BtGT_16345 and Toruzyme®, and the synthetic strategy that we proposed might be applied to many other Ganoderma triterpenoids to produce numerous novel Ganoderma triterpenoid saponins in the future.
Collapse
|
9
|
Chang TS, Chiang CM, Wu JY, Tsai YL, Ting HJ. Production of a new triterpenoid disaccharide saponin from sequential glycosylation of ganoderic acid A by 2 Bacillus glycosyltransferases. Biosci Biotechnol Biochem 2021; 85:687-690. [PMID: 33580686 DOI: 10.1093/bbb/zbaa055] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2020] [Accepted: 10/07/2020] [Indexed: 12/23/2022]
Abstract
Ganoderic acid A (GAA) is a lanostane-type triterpenoid, isolated from medicinal fungus Ganoderma lucidum, and possesses multiple bioactivities. In the present study, GAA was sequentially biotransformed by 2 recently discovered Bacillus glycosyltransferases (GT), BtGT_16345 and BsGT110, and the final product was purified and identified as a new compound, GAA-15,26-O-β-diglucoside, which showed 1024-fold aqueous solubility than GAA.
Collapse
Affiliation(s)
- Te-Sheng Chang
- Department of Biological Sciences and Technology, National University of Tainan, Tainan, Taiwan
| | - Chien-Min Chiang
- Department of Pharmacy, Chia Nan University of Pharmacy and Science, Tainan, Taiwan
| | - Jiumn-Yih Wu
- Department of Food Science, National Quemoy University, Kinmen, Taiwan
| | - Yu-Li Tsai
- Department of Biological Sciences and Technology, National University of Tainan, Tainan, Taiwan
| | - Huei-Ju Ting
- Department of Biological Sciences and Technology, National University of Tainan, Tainan, Taiwan
| |
Collapse
|
10
|
Biotransformation of celastrol to a novel, well-soluble, low-toxic and anti-oxidative celastrol-29-O-β-glucoside by Bacillus glycosyltransferases. J Biosci Bioeng 2020; 131:176-182. [PMID: 33268318 DOI: 10.1016/j.jbiosc.2020.09.017] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 09/08/2020] [Accepted: 09/26/2020] [Indexed: 12/30/2022]
Abstract
Celastrol is a quinone-methide triterpenoid isolated from the root extracts of Tripterygium wilfordii (Thunder god vine). Although celastrol possesses multiple bioactivities, the potent toxicity and rare solubility in water hinder its clinical application. Biotransformation of celastrol using either whole cells or purified enzymes to form less toxic and more soluble derivatives has been proven difficult due to its potent antibiotic and enzyme-conjugation property. The present study evaluated biotransformation of celastrol by four glycosyltransferases from Bacillus species and found one glycosyltransferase (BsGT110) from Bacillus subtilis with significant activity toward celastrol. The biotransformation metabolite was purified and identified as celastrol-29-O-β-glucoside by mass and nuclear magnetic resonance spectroscopy. Celastrol-29-O-β-glucoside showed over 53-fold higher water solubility than celastrol, while maintained 50% of the free radical scavenging activity of celastrol. When using zebrafish as the in vivo animal model, celastrol-29-O-β-glucoside exhibited 50-fold less toxicity than celastrol. To our knowledge, the present study is not only the first report describing the biotransformation of celastrol, but also the first one detailing a new compound, celastrol-29-O-β-glucoside, that is generated in the biotransformation process. Moreover, celastrol-29-O-β-glucoside may serve as a potential candidate in the future medicine application due to its higher water solubility and lower toxicity.
Collapse
|
11
|
Carbohydrate-Active Enzymes: Structure, Activity, and Reaction Products. Int J Mol Sci 2020; 21:ijms21082727. [PMID: 32326403 PMCID: PMC7215940 DOI: 10.3390/ijms21082727] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Accepted: 04/11/2020] [Indexed: 12/18/2022] Open
|