1
|
Sacramento CM, Saito MT, Casati MZ, Sallum EA, Casarin RCV, Silvério KG. CCKR signaling map, G-Protein bindings, hormonal regulation, and neural mechanisms may influence the osteogenic/cementogenic differentiation potential of hPDLSCs. Arch Oral Biol 2024; 168:106069. [PMID: 39208712 DOI: 10.1016/j.archoralbio.2024.106069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 08/14/2024] [Accepted: 08/19/2024] [Indexed: 09/04/2024]
Abstract
OBJECTIVE Periodontal regeneration poses challenges due to the periodontium's complexity, relying on mesenchymal cells from the periodontal ligament (hPDLSCs) to regenerate hard tissues like bone and cementum. While some hPDLSCs have high regeneration potential (HOP-hPDLSCs), most are low potential (LOP-hPDLSCs). This study analyzed hPDLSCs from a single donor to minimize inter-individual variability and focus on key differences in differentiation potentials. DESIGN This study used RNA-seq, genomic databases, and bioinformatics tools to explore signaling pathways (SPs), biological processes (BPs), and molecular functions (MFs) guiding HOP cells to mineralized matrix production. It also investigated limitations of LOP cells and strategies for enhancing their osteo/cementogenesis. RESULTS In basal conditions, HOP exhibited a multifunctional gene network with higher expression of genes related to osteo/cementogenesis, cell differentiation, immune modulation, stress response, and hormonal regulation. In contrast, LOP focused on steroid hormone biosynthesis and nucleic acid maintenance. During osteo/cementogenic induction, HOP showed strong modulation of genes related to angiogenesis, cell division, mesenchymal differentiation, and extracellular matrix production. LOP demonstrated neural synaptic-related processes and preserved cellular cytoskeleton integrity. CCKR map signaling and G-protein receptor bindings gained significance during osteo/cementogenesis in HOP-hPDLSCs. Both HOP and LOP shared common BPs related to gastrointestinal and reproductive system development. CONCLUSION The osteo/cementogenic differentiation of HOP cells may be regulated by CCKR signaling, G-protein bindings, and specific hormonal regulation. LOP cells seem committed to neural mechanisms. This study sheds light on hPDLSCs' complex characteristics, offering a deeper understanding of their differentiation potential for future periodontal regeneration research and therapies.
Collapse
Affiliation(s)
- Catharina Marques Sacramento
- Faculdade de Odontologia de Piracicaba, Universidade Estadual de Campinas - UNICAMP, Piracicaba 13414-903, Brazil
| | - Miki Taketomi Saito
- Faculdade de Odontologia, Universidade Federal do Pará - UFPA, Departamento de Saúde Coletiva, Belém 66075-110, Brazil.
| | - Márcio Zaffalon Casati
- Faculdade de Odontologia de Piracicaba, Universidade Estadual de Campinas - UNICAMP, Piracicaba 13414-903, Brazil.
| | - Enilson Antonio Sallum
- Faculdade de Odontologia de Piracicaba, Universidade Estadual de Campinas - UNICAMP, Piracicaba 13414-903, Brazil.
| | - Renato Correa Viana Casarin
- Faculdade de Odontologia de Piracicaba, Universidade Estadual de Campinas - UNICAMP, Piracicaba 13414-903, Brazil.
| | - Karina Gonzales Silvério
- Faculdade de Odontologia de Piracicaba, Universidade Estadual de Campinas - UNICAMP, Piracicaba 13414-903, Brazil.
| |
Collapse
|
2
|
Zheng WV, Li Y, Xu Y, Lu D, Zhou T, Li D, Cheng X, Xiong Y, Wang S, Chen Z. Different isoforms of growth hormone (20 kD-GH and 22 kD-GH) shows different biological activities in mesenchymal stem cell (MSC). Cell Cycle 2022; 21:934-947. [PMID: 35188065 PMCID: PMC9037433 DOI: 10.1080/15384101.2022.2035491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
There are two main types of growth hormone (GH) in the circulatory system. One is 22 kD-GH, which is the predominant isoform in the circulating system, 90% GH is present as a 22 kD protein, and 10% of GH is present as a 20 kD protein. Amino acid sequences are identical between 20 kD-GH and 22 kD-GH protein, except that 20 kD-GH lacks 15 amino acid residues 32 to 46. Studies have shown that GH has many important biological effects on mesenchymal stem cells (MSCs). However, so far, the cellular characteristics of the two types of GH have not been studied in BM-MSCs. Furthermore, the biological activity of 20 kD-GH has not been explored in BM-MSCs. For this, in the current work, BM-MSCs were used as in vitro cell model. We have carried out the current research using a series of experimental techniques (such as Western-blot and indirect immunofluorescence). Firstly, we explored the cell behavior of two types of GH in the Bm-MSC model and found that they showed different biological characteristics; Secondly, we investigated the biological characteristics of 20 kD-GH and 22 kD-GH, and results showed that 22 kD-GH and 20 kD-GH exhibited different signaling profiles; Thirdly, we found that the 20 kD-GH and 22 kD-GH Gexhibited different regulatory effects on the osteogenic differentiation of BM-MSCs. The current research lays a solid foundation for further studies on the regulatory effects of GH on MSCs.
Collapse
Affiliation(s)
- Wei V. Zheng
- Intervention and Cell Therapy Center, Peking University Shenzhen Hospital, Shenzhen, China
| | - Yaqin Li
- Department of Infectious Disease, Peking University Shenzhen Hospital, Shenzhen, China
| | - Yanwei Xu
- Intervention and Cell Therapy Center, Peking University Shenzhen Hospital, Shenzhen, China
| | - Donghui Lu
- Department of Endocrinology, Peking University Shenzhen Hospital, Shenzhen, China
| | - Tao Zhou
- Intervention and Cell Therapy Center, Peking University Shenzhen Hospital, Shenzhen, China
| | - Dezhi Li
- Intervention and Cell Therapy Center, Peking University Shenzhen Hospital, Shenzhen, China
| | - Xianyi Cheng
- Intervention and Cell Therapy Center, Peking University Shenzhen Hospital, Shenzhen, China,Department of Minimal Invasion Intervention, Peking University Shenzhen Hospital, Shenzhen, China
| | - Yu Xiong
- Intervention and Cell Therapy Center, Peking University Shenzhen Hospital, Shenzhen, China,Department of Minimal Invasion Intervention, Peking University Shenzhen Hospital, Shenzhen, China
| | - Shaobin Wang
- Health Management Center of Peking University Shenzhen Hospital, Shenzhen, China
| | - Zaizhong Chen
- Intervention and Cell Therapy Center, Peking University Shenzhen Hospital, Shenzhen, China,Department of Minimal Invasion Intervention, Peking University Shenzhen Hospital, Shenzhen, China,CONTACT Zaizhong Chen Department of Minimal Invasion Intervention, Peking University Shenzhen Hospital, Shenzhen, China
| |
Collapse
|
3
|
Whitlock JH, Soelter TM, Williams AS, Hardigan AA, Lasseigne BN. Liquid biopsies in epilepsy: biomarkers for etiology, diagnosis, prognosis, and therapeutics. Hum Cell 2022; 35:15-22. [PMID: 34694568 PMCID: PMC8732818 DOI: 10.1007/s13577-021-00624-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Accepted: 09/29/2021] [Indexed: 01/19/2023]
Abstract
Epilepsy is one of the most common diseases of the central nervous system, impacting nearly 50 million people around the world. Heterogeneous in nature, epilepsy presents in children and adults alike. Currently, surgery is one treatment approach that can completely cure epilepsy. However, not all individuals are eligible for surgical procedures or have successful outcomes. In addition to surgical approaches, antiepileptic drugs (AEDs) have also allowed individuals with epilepsy to achieve freedom from seizures. Others have found treatment through nonpharmacologic approaches such as vagus nerve stimulation, or responsive neurostimulation. Difficulty in accessing samples of human brain tissue along with advances in sequencing technology have driven researchers to investigate sampling liquid biopsies in blood, serum, plasma, and cerebrospinal fluid within the context of epilepsy. Liquid biopsies provide minimal or non-invasive sample collection approaches and can be assayed relatively easily across multiple time points, unlike tissue-based sampling. Various efforts have investigated circulating nucleic acids from these samples including microRNAs, cell-free DNA, transfer RNAs, and long non-coding RNAs. Here, we review nucleic acid-based liquid biopsies in epilepsy to improve understanding of etiology, diagnosis, prediction, and therapeutic monitoring.
Collapse
Affiliation(s)
- Jordan H Whitlock
- Cell, Developmental and Integrative Biology, The University of Alabama at Birmingham, Birmingham, AL, USA
| | - Tabea M Soelter
- Cell, Developmental and Integrative Biology, The University of Alabama at Birmingham, Birmingham, AL, USA
| | - Avery S Williams
- Cell, Developmental and Integrative Biology, The University of Alabama at Birmingham, Birmingham, AL, USA
| | - Andrew A Hardigan
- Cell, Developmental and Integrative Biology, The University of Alabama at Birmingham, Birmingham, AL, USA
- Department of Neurosurgery, Duke University Medical Center, Durham, NC, USA
| | - Brittany N Lasseigne
- Cell, Developmental and Integrative Biology, The University of Alabama at Birmingham, Birmingham, AL, USA.
| |
Collapse
|
4
|
Zheng WV, Li Y, Xu Y, Zhou T, Li D, Cheng X, Xiong Y, Wang S, Chen Z. 22-kD growth hormone-induced nuclear GHR/STAT5/CyclinD1 signaling pathway plays an important role in promoting mesenchymal stem cell proliferation. Biofactors 2022; 48:67-85. [PMID: 34866251 DOI: 10.1002/biof.1805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 09/27/2021] [Accepted: 10/19/2021] [Indexed: 11/10/2022]
Abstract
Growth hormone (GH) exhibited the important biological activities in the mesenchymal stem cell (MSCs). However, the cellular behavior and properties of GH/GHR in MSCs remain unclear. A series of experiments (such as confocal laser scanning microscope [CLSM] and Western-blot) were performed to systematically investigate the cellular behavior of GH/GHR in MSCs, and the results showed that GH/GHR not only internalized into the cytoplasm, but also transported into the cell nuclei of MSCs. Furthermore, we studied the molecular mechanism by which GH/GHR internalized into cell, and the results indicated that clathrin plays more important role in the process of GHR internalization. More importantly, it can be found that nuclear-targeted GHR has the important biological functions in MSCs, which could promote MSCs proliferation. We further revealed the molecular mechanism by which nuclear-localized GHR regulates MSCs proliferation, and found that nuclear-targeted GHR enhanced the phosphorylation of STAT5, and the activated STAT5 initiates the transcription of CyclinD1, after which, the complex of CyclinD1 and CDK4 further phosphorylates Rb, and the activated Rb releases E2F1, the released E2F1 ultimately realizes the biological function of GH promoting cell proliferation. In short, in the current study,we used MSCs as a model to study the cellular behavior and properties of GH/GHR, and found that GH/GHR can internalize into cell cytoplasm and transport into the cell nuclei. Further work showed that nuclear GHR could drive cell proliferation via GHR/STAT5/CyclinD1 signaling pathway. The current research has laid an important foundation for further study on the regulatory effect of GH on MSCs.
Collapse
Affiliation(s)
- Wei V Zheng
- Intervention and Cell Therapy Center, Peking University Shenzhen Hospital, Shenzhen, Guangdong, China
| | - Yaqin Li
- Department of Infectious Disease, Peking University Shenzhen Hospital, Shenzhen, Guangdong, China
| | - Yanwei Xu
- Intervention and Cell Therapy Center, Peking University Shenzhen Hospital, Shenzhen, Guangdong, China
| | - Tao Zhou
- Intervention and Cell Therapy Center, Peking University Shenzhen Hospital, Shenzhen, Guangdong, China
| | - Dezhi Li
- Intervention and Cell Therapy Center, Peking University Shenzhen Hospital, Shenzhen, Guangdong, China
| | - Xianyi Cheng
- Intervention and Cell Therapy Center, Peking University Shenzhen Hospital, Shenzhen, Guangdong, China
- Department of Minimally Invasion Intervention, Peking University Shenzhen Hospital, Shenzhen, Guangdong, China
| | - Yu Xiong
- Intervention and Cell Therapy Center, Peking University Shenzhen Hospital, Shenzhen, Guangdong, China
- Department of Minimally Invasion Intervention, Peking University Shenzhen Hospital, Shenzhen, Guangdong, China
| | - Shaobin Wang
- Health Management Center, Peking University Shenzhen Hospital, Shenzhen, Guangdong, China
| | - Zaizhong Chen
- Intervention and Cell Therapy Center, Peking University Shenzhen Hospital, Shenzhen, Guangdong, China
- Department of Minimally Invasion Intervention, Peking University Shenzhen Hospital, Shenzhen, Guangdong, China
| |
Collapse
|
5
|
Vohra AH, Upadhyay KK, Joshi AS, Vyas HS, Thadani J, Devkar RV. Melatonin-primed ADMSCs elicit an efficacious therapeutic response in improving high-fat diet induced non-alcoholic fatty liver disease in C57BL/6J mice. EGYPTIAN LIVER JOURNAL 2021. [DOI: 10.1186/s43066-021-00157-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Abstract
Background
Stem cells are widely used for therapy including treatment of liver damage. Adipose-derived mesenchymal stem cells (ADMSCs) administered to treat fatty liver are known to improve liver function but their use is restricted due to a poor success rate. This study investigates efficacy of melatonin-primed ADMSCs (Mel. MSCs) in experimentally induced non-alcoholic fatty liver disease (NAFLD).
Results
MSCs treated with LPS showed prominent DCFDA fluorescence as compared to the untreated cells. Also, the JC-1 staining had accounted for higher intensity of green monomer and a weak fluorescence of red dimer indicating weaker mitochondrial membrane potential. But melatonin co-treatment could make necessary corrective changes as evidenced by reverse set of results. The overall cell survival was also found to be improved following melatonin treatment as evidenced by the MTT assay. Also, the antioxidant (Nrf2 and Ho-1) and anti-inflammatory genes (Il-4 and Il-10) showed a decrement in their mRNA levels following LPS treatment whereas the pro-inflammatory genes (Tnf-α, Il-6, Tlr-4, and Lbp) showed a reciprocal increment in the said group. Melatonin co-treatment accounted for an improved status of antioxidant and anti-inflammatory genes as evidenced by their mRNA levels. High-fat high-fructose diet (HFFD) fed C57BL/6J mice recorded higher serum AST and ALT levels and fatty manifestation in histology of liver along with lowered mRNA levels of antioxidant (Nrf2, Catalase, and Gss) genes and Hgf. These set of parameters showed a significant improvement in HFFD + Mel.MSC group.
Conclusion
A significant improvement in viability of MSCs was recorded due to lowered intracellular oxidative stress and improves mitochondrial membrane potential. Further, melatonin-primed MSCs accounted for a significant decrement in fatty manifestations in liver and an improved physiological status of NAFLD in HFFD fed C57BL/6J mice. Taken together, it is hypothesized that melatonin priming to MSCs prior to its use can significantly augment the success of stem cell therapy.
Collapse
|
6
|
Hong H, Baatar D, Hwang SG. The difference of castration timing of Korean Hanwoo bulls does not significantly affect the carcass characteristics. JOURNAL OF ANIMAL SCIENCE AND TECHNOLOGY 2021; 63:426-439. [PMID: 33987616 PMCID: PMC8071752 DOI: 10.5187/jast.2021.e26] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 12/03/2020] [Accepted: 12/07/2020] [Indexed: 11/20/2022]
Abstract
It is already well known that castration improves marbling quality but exact timing of castration is still highly debated in beef cattle production industry. After castration, blood hormonal changes occur in steer and objective of this study was to investigate the effects of growth hormone (GH) levels on adipocyte differentiation in stromal vascular cells (SVCs) and transdifferentiation into adipocytes in C2C12 myoblasts. Total GH concentrations were measured via enzyme-linked immunosorbent assay (ELISA) in 24 male calves and 4 female calves. Cell proliferation, cellular triglyceride (TG) accumulation, and the cell's lipolytic capability were measured in C2C12 myoblasts and SVCs. Myogenic, adipogenic, and brown adipocyte-specific gene expression was measured via real-time polymerase chain reaction (PCR) using SYBR green. Serum GH levels were the highest in late-castrated calves. Treatment with 5 ng/mL GH resulted in greater TG accumulation as well as increased CCAAT-enhancer-binding protein (C/EBP)α and peroxisome proliferator-activated receptor (PPAR)γ expression compared to that after treatment with 15 ng/mL GH. Treatment with 5 ng/mL GH also resulted in lower myogenin (myo)G and myoD expression compared to that after treatment with 15 ng/mL GH. The expression of bone morphogenetic protein (BMP) 7 after treatment with 5 ng/mL GH was higher than that after treatment with 15 ng/mL GH. But carcass characteristics data showed no significant difference between early and late castrated steers. Therefore, our results indicate that castration timing does not seem to be inevitable determinate of carcass qualities, particularly carcass weight and marbling score in Hanwoo beef cattle.
Collapse
Affiliation(s)
- Heeok Hong
- Department of Animal Science and
Technology, Konkuk University, Seoul 05029, Korea
| | - Delgerzul Baatar
- Laboratory of Genetics, Institute of
Biology, Peace Avenue, Bayanzurkh District, Ulaanbaatar 13330,
Mongolia
- School of Animal Life Convergence Science,
Hankyong National University, Anseong 17579, Korea
| | - Seong-Gu Hwang
- School of Animal Life Convergence Science,
Hankyong National University, Anseong 17579, Korea
| |
Collapse
|
7
|
Chaves LH, Giovanini AF, Zielak JC, Scariot R, Gonzaga CC, Storrer CLM, Khajotia SS, Esteban Florez FL, Deliberador TM. Growth hormone effects on healing efficacy, bone resorption and renal morphology of rats: histological and histometric study in rat calvaria. Heliyon 2020; 6:e05226. [PMID: 33102851 PMCID: PMC7575886 DOI: 10.1016/j.heliyon.2020.e05226] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Revised: 06/18/2020] [Accepted: 10/08/2020] [Indexed: 01/11/2023] Open
Abstract
Previous reports demonstrated the utility of systemic application of growth hormone (GH) in the treatment of bone defects. Very few studies correlated bone repair efficacy with hepatic and renal side effects promoted by locally-delivered GH. The objectives of this study were to assess the bone repair properties along with hepatic and renal adverse effects promoted by local application of GH in a rat model. Thirty-two rats were randomly divided (4 groups; n = 8/group), as follows: (i) AB (autogenous bone + local application of saline solution [SS]), (ii) AB+ (autogenous bone + SS local application + SS irrigation), (iii) AB/GH+ (autogenous bone + SS local application + GH irrigation) and (iv) AB/GHL+ (autogenous bone + GH local application + GH irrigation). Critical-sized defects (diameter = 5.0 mm) were surgically created by a single operator in the calvaria of rats. Defects were filled with ground autogenous bone. Defects pertaining to AB+ and AB/GH+ received a mixture of autogenous bone and a SS-saturated (0.02 mL) collagen sponge covered with bovine cortical membrane. Defects in group AB/GHL+, were filled with the same biomaterials saturated with GH (0.02 mL). SS (0.1 mL) or GH (0.1 mL, equivalent to 0.4 IU) were applied locally on alternate days (8 weeks) in animals in groups AB, AB+ and AB/GH+ or AB/GHL+, respectively. Bone repair properties was determined in hematoxylin/eosin-stained slices using traditional histologic and histomorphometric techniques along with optical microscopy and digital image analysis. Statistical differences among groups was determined using Kruskal-Wallis and Tukey post hoc tests (α = 0.05). Histology results indicated that AB and AB+ displayed greater presence of autogenous bone as compared to AB/GH+ and AB/GHL+. Histomorphometric results indicated significantly higher osteoid matrix formation in AB and AB+ when compared to AB/GHL+ (p = 0.009). Kidneys and livers were found to have their glomeruli preserved in AB and AB+. Strong glomeruli necrosis and large areas of protein deposition were found in AB/GH+. Abnormal small-sized glomeruli were found in AB/GHL+. The utilization of autogenous bone graft associated with local application and irrigation with GH was shown to not improve the bone repair in calvarial critical-sized defects in a rat model.
Collapse
Affiliation(s)
- Luis Henrique Chaves
- School of Health Sciences, Graduate Program in Dentistry, Universidade Positivo, Rua Prof. Pedro Viriato Parigot de Souza 5300, Curitiba, Paraná 81280-330, Brazil
| | - Allan Fernando Giovanini
- School of Health Sciences, Graduate Program in Dentistry, Universidade Positivo, Rua Prof. Pedro Viriato Parigot de Souza 5300, Curitiba, Paraná 81280-330, Brazil
| | - Joao Cesar Zielak
- School of Health Sciences, Graduate Program in Dentistry, Universidade Positivo, Rua Prof. Pedro Viriato Parigot de Souza 5300, Curitiba, Paraná 81280-330, Brazil
| | - Rafaela Scariot
- School of Health Sciences, Graduate Program in Dentistry, Universidade Positivo, Rua Prof. Pedro Viriato Parigot de Souza 5300, Curitiba, Paraná 81280-330, Brazil
| | - Carla Castiglia Gonzaga
- School of Health Sciences, Graduate Program in Dentistry, Universidade Positivo, Rua Prof. Pedro Viriato Parigot de Souza 5300, Curitiba, Paraná 81280-330, Brazil
| | - Carmen Lucia Mueller Storrer
- School of Health Sciences, Graduate Program in Dentistry, Universidade Positivo, Rua Prof. Pedro Viriato Parigot de Souza 5300, Curitiba, Paraná 81280-330, Brazil
| | - Sharukh Soli Khajotia
- Department of Restorative Sciences Division of Dental Biomaterials, College of Dentistry, University of Oklahoma Health Sciences Center, 1201 N. Stonewall Ave., Oklahoma City, Oklahoma, 73117, USA
| | - Fernando Luis Esteban Florez
- Department of Restorative Sciences Division of Dental Biomaterials, College of Dentistry, University of Oklahoma Health Sciences Center, 1201 N. Stonewall Ave., Oklahoma City, Oklahoma, 73117, USA
| | - Tatiana Miranda Deliberador
- School of Health Sciences, Graduate Program in Dentistry, Universidade Positivo, Rua Prof. Pedro Viriato Parigot de Souza 5300, Curitiba, Paraná 81280-330, Brazil
| |
Collapse
|
8
|
Why Should Growth Hormone (GH) Be Considered a Promising Therapeutic Agent for Arteriogenesis? Insights from the GHAS Trial. Cells 2020; 9:cells9040807. [PMID: 32230747 PMCID: PMC7226428 DOI: 10.3390/cells9040807] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Revised: 02/25/2020] [Accepted: 03/25/2020] [Indexed: 01/07/2023] Open
Abstract
Despite the important role that the growth hormone (GH)/IGF-I axis plays in vascular homeostasis, these kind of growth factors barely appear in articles addressing the neovascularization process. Currently, the vascular endothelium is considered as an authentic gland of internal secretion due to the wide variety of released factors and functions with local effects, including the paracrine/autocrine production of GH or IGF-I, for which the endothelium has specific receptors. In this comprehensive review, the evidence involving these proangiogenic hormones in arteriogenesis dealing with the arterial occlusion and making of them a potential therapy is described. All the elements that trigger the local and systemic production of GH/IGF-I, as well as their possible roles both in physiological and pathological conditions are analyzed. All of the evidence is combined with important data from the GHAS trial, in which GH or a placebo were administrated to patients suffering from critical limb ischemia with no option for revascularization. We postulate that GH, alone or in combination, should be considered as a promising therapeutic agent for helping in the approach of ischemic disease.
Collapse
|
9
|
Wójcik D, Beń-Skowronek I. Craniofacial Morphology in Children with Growth Hormone Deficiency and Turner Syndrome. Diagnostics (Basel) 2020; 10:E88. [PMID: 32046211 PMCID: PMC7168196 DOI: 10.3390/diagnostics10020088] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2020] [Revised: 01/27/2020] [Accepted: 02/04/2020] [Indexed: 12/31/2022] Open
Abstract
The review aims to collect and demonstrate recent knowledge about craniofacial morphology in growth hormone (GH)-deficient children and children with Turner syndrome. The review describes also the effects of growth hormone treatment on craniofacial morphology of children with growth hormone deficiency and Turner syndrome. Regardless of the disorder it accompanies, short stature is associated with similar craniofacial features characteristic of all short-statured children. Characteristic craniofacial features involve lesser dimensions of the cranial base and mandibular length, proportionately smaller posterior than anterior facial height, retrognathic face, and posterior rotation of the mandible. We also analyze orthodontic treatment in children affected by disorders associated with GH deficiency or provided with growth hormone treatment in the aspect of craniofacial growth. Recent publications show also the connection between growth hormone receptor polymorphism and craniofacial growth. Specialists and orthodontists treating short-statured children must be aware of the results of studies on craniofacial morphology and educate themselves on the topic of craniofacial growth in children with short stature. Moreover, knowledge of the influence of GH therapy on growth of craniofacial structures is necessary to decide the proper timing and planning of orthodontic treatment.
Collapse
Affiliation(s)
- Dorota Wójcik
- Department of Dental Prosthetics, Medical University of Lublin, 20-081 Lublin, Poland
| | - Iwona Beń-Skowronek
- Department of Paediatric Endocrinology and Diabetology with Endocrine—Metabolic Laboratory, Medical University of Lublin, 20-093 Lublin, Poland;
| |
Collapse
|