1
|
Alhasan B, Gladova YA, Sverchinsky DV, Aksenov ND, Margulis BA, Guzhova IV. Hsp70 Negatively Regulates Autophagy via Governing AMPK Activation, and Dual Hsp70-Autophagy Inhibition Induces Synergetic Cell Death in NSCLC Cells. Int J Mol Sci 2024; 25:9090. [PMID: 39201776 PMCID: PMC11354248 DOI: 10.3390/ijms25169090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 08/12/2024] [Accepted: 08/20/2024] [Indexed: 09/03/2024] Open
Abstract
Proteostasis mechanisms, such as proteotoxic-stress response and autophagy, are increasingly recognized for their roles in influencing various cancer hallmarks such as tumorigenesis, drug resistance, and recurrence. However, the precise mechanisms underlying their coordination remain not fully elucidated. The aim of this study is to investigate the molecular interplay between Hsp70 and autophagy in lung adenocarcinoma cells and elucidate its impact on the outcomes of anticancer therapies in vitro. For this purpose, we utilized the human lung adenocarcinoma A549 cell line and genetically modified it by knockdown of Hsp70 or HSF1, and the H1299 cell line with knockdown or overexpression of Hsp70. In addition, several treatments were employed, including treatment with Hsp70 inhibitors (VER-155008 and JG-98), HSF1 activator ML-346, or autophagy modulators (SAR405 and Rapamycin). Using immunoblotting, we found that Hsp70 negatively regulates autophagy by directly influencing AMPK activation, uncovering a novel regulatory mechanism of autophagy by Hsp70. Genetic or chemical Hsp70 overexpression was associated with the suppression of AMPK and autophagy. Conversely, the inhibition of Hsp70, genetically or chemically, resulted in the upregulation of AMPK-mediated autophagy. We further investigated whether Hsp70 suppression-mediated autophagy exhibits pro-survival- or pro-death-inducing effects via MTT test, colony formation, CellTiter-Glo 3D-Spheroid viability assay, and Annexin/PI apoptosis assay. Our results show that combined inhibition of Hsp70 and autophagy, along with cisplatin treatment, synergistically reduces tumor cell metabolic activity, growth, and viability in 2D and 3D tumor cell models. These cytotoxic effects were exerted by substantially potentiating apoptosis, while activating autophagy via rapamycin slightly rescued tumor cells from apoptosis. Therefore, our findings demonstrate that the combined inhibition of Hsp70 and autophagy represents a novel and promising therapeutic approach that may disrupt the capacity of refractory tumor cells to withstand conventional therapies in NSCLC.
Collapse
Affiliation(s)
- Bashar Alhasan
- Lab of Cell Protection Mechanisms, Institute of Cytology, Russian Academy of Sciences, 194064 St. Petersburg, Russia; (Y.A.G.); (D.V.S.); (N.D.A.); (B.A.M.); (I.V.G.)
| | | | | | | | | | | |
Collapse
|
2
|
Ferretti GDS, Quaas CE, Bertolini I, Zuccotti A, Saatci O, Kashatus JA, Sharmin S, Lu DY, Poli ANR, Quesnelle AF, Rodriguez-Blanco J, de Cubas AA, Hobbs GA, Liu Q, O'Bryan JP, Salvino JM, Kashatus DF, Sahin O, Barnoud T. HSP70-mediated mitochondrial dynamics and autophagy represent a novel vulnerability in pancreatic cancer. Cell Death Differ 2024; 31:881-896. [PMID: 38802657 PMCID: PMC11239841 DOI: 10.1038/s41418-024-01310-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 04/29/2024] [Accepted: 05/01/2024] [Indexed: 05/29/2024] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC), the most prevalent type of pancreatic cancer, is one of the deadliest forms of cancer with limited therapy options. Overexpression of the heat shock protein 70 (HSP70) is a hallmark of cancer that is strongly associated with aggressive disease and worse clinical outcomes. However, the underlying mechanisms by which HSP70 allows tumor cells to thrive under conditions of continuous stress have not been fully described. Here, we report that PDAC has the highest expression of HSP70 relative to normal tissue across all cancers analyzed. Furthermore, HSP70 expression is associated with tumor grade and is further enhanced in metastatic PDAC. We show that genetic or therapeutic ablation of HSP70 alters mitochondrial subcellular localization, impairs mitochondrial dynamics, and promotes mitochondrial swelling to induce apoptosis. Mechanistically, we find that targeting HSP70 suppresses the PTEN-induced kinase 1 (PINK1) mediated phosphorylation of dynamin-related protein 1 (DRP1). Treatment with the HSP70 inhibitor AP-4-139B was efficacious as a single agent in primary and metastatic mouse models of PDAC. In addition, we demonstrate that HSP70 inhibition promotes the AMP-activated protein kinase (AMPK) mediated phosphorylation of Beclin-1, a key regulator of autophagic flux. Accordingly, we find that the autophagy inhibitor hydroxychloroquine (HCQ) enhances the ability of AP-4-139B to mediate anti-tumor activity in vivo. Collectively, our results suggest that HSP70 is a multi-functional driver of tumorigenesis that orchestrates mitochondrial dynamics and autophagy. Moreover, these findings support the rationale for concurrent inhibition of HSP70 and autophagy as a novel therapeutic approach for HSP70-driven PDAC.
Collapse
Affiliation(s)
- Giulia D S Ferretti
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, SC, USA
- Hollings Cancer Center, Medical University of South Carolina, Charleston, SC, USA
| | - Colleen E Quaas
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, SC, USA
- Hollings Cancer Center, Medical University of South Carolina, Charleston, SC, USA
| | - Irene Bertolini
- Molecular and Cellular Oncogenesis Program, The Wistar Institute, Philadelphia, PA, USA
| | - Alessandro Zuccotti
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, SC, USA
- Hollings Cancer Center, Medical University of South Carolina, Charleston, SC, USA
| | - Ozge Saatci
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, SC, USA
- Hollings Cancer Center, Medical University of South Carolina, Charleston, SC, USA
| | - Jennifer A Kashatus
- Department of Microbiology, Immunology, and Cancer Biology, University of Virginia Health System, Charlottesville, VA, USA
| | - Salma Sharmin
- Department of Microbiology, Immunology, and Cancer Biology, University of Virginia Health System, Charlottesville, VA, USA
| | - David Y Lu
- Molecular and Cellular Oncogenesis Program, The Wistar Institute, Philadelphia, PA, USA
| | | | - Abigail F Quesnelle
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, SC, USA
- Hollings Cancer Center, Medical University of South Carolina, Charleston, SC, USA
| | - Jezabel Rodriguez-Blanco
- Hollings Cancer Center, Medical University of South Carolina, Charleston, SC, USA
- Darby Children's Research Institute, Department of Pediatrics, Medical University of South Carolina, Charleston, SC, USA
| | - Aguirre A de Cubas
- Hollings Cancer Center, Medical University of South Carolina, Charleston, SC, USA
- Department of Microbiology and Immunology, Medical University of South Carolina, Charleston, SC, USA
| | - G Aaron Hobbs
- Hollings Cancer Center, Medical University of South Carolina, Charleston, SC, USA
- Department of Cell and Molecular Pharmacology and Experimental Therapeutics, Medical University of South Carolina, Charleston, SC, USA
| | - Qin Liu
- Molecular and Cellular Oncogenesis Program, The Wistar Institute, Philadelphia, PA, USA
| | - John P O'Bryan
- Hollings Cancer Center, Medical University of South Carolina, Charleston, SC, USA
- Department of Cell and Molecular Pharmacology and Experimental Therapeutics, Medical University of South Carolina, Charleston, SC, USA
- Ralph H. Johnson VA Medical Center, Charleston, SC, USA
| | - Joseph M Salvino
- Molecular and Cellular Oncogenesis Program, The Wistar Institute, Philadelphia, PA, USA
| | - David F Kashatus
- Department of Microbiology, Immunology, and Cancer Biology, University of Virginia Health System, Charlottesville, VA, USA
| | - Ozgur Sahin
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, SC, USA
- Hollings Cancer Center, Medical University of South Carolina, Charleston, SC, USA
| | - Thibaut Barnoud
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, SC, USA.
- Hollings Cancer Center, Medical University of South Carolina, Charleston, SC, USA.
| |
Collapse
|
3
|
Mahboubi H, Yu H, Malca M, McCusty D, Stochaj U. Pifithrin-µ Induces Stress Granule Formation, Regulates Cell Survival, and Rewires Cellular Signaling. Cells 2024; 13:885. [PMID: 38891018 PMCID: PMC11172192 DOI: 10.3390/cells13110885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 04/30/2024] [Accepted: 05/15/2024] [Indexed: 06/20/2024] Open
Abstract
(1) Background: Stress granules (SGs) are cytoplasmic protein-RNA condensates that assemble in response to various insults. SG production is driven by signaling pathways that are relevant to human disease. Compounds that modulate SG characteristics are therefore of clinical interest. Pifithrin-µ is a candidate anti-tumor agent that inhibits members of the hsp70 chaperone family. While hsp70s are required for granulostasis, the impact of pifithrin-µ on SG formation is unknown. (2) Methods: Using HeLa cells as model system, cell-based assays evaluated the effects of pifithrin-µ on cell viability. Quantitative Western blotting assessed cell signaling events and SG proteins. Confocal microscopy combined with quantitative image analyses examined multiple SG parameters. (3) Results: Pifithrin-µ induced bona fide SGs in the absence of exogenous stress. These SGs were dynamic; their properties were determined by the duration of pifithrin-µ treatment. The phosphorylation of eIF2α was mandatory to generate SGs upon pifithrin-µ exposure. Moreover, the formation of pifithrin-µ SGs was accompanied by profound changes in cell signaling. Pifithrin-µ reduced the activation of 5'-AMP-activated protein kinase, whereas the pro-survival protein kinase Akt was activated. Long-term pifithrin-µ treatment caused a marked loss of cell viability. (4) Conclusions: Our study identified stress-related changes in cellular homeostasis that are elicited by pifithrin-µ. These insights are important knowledge for the appropriate therapeutic use of pifithrin-µ and related compounds.
Collapse
Affiliation(s)
- Hicham Mahboubi
- Department of Physiology, McGill University, Montreal, QC H3G 1Y6, Canada (H.Y.); (M.M.)
| | - Henry Yu
- Department of Physiology, McGill University, Montreal, QC H3G 1Y6, Canada (H.Y.); (M.M.)
| | - Michael Malca
- Department of Physiology, McGill University, Montreal, QC H3G 1Y6, Canada (H.Y.); (M.M.)
| | - David McCusty
- Department of Physiology, McGill University, Montreal, QC H3G 1Y6, Canada (H.Y.); (M.M.)
| | - Ursula Stochaj
- Department of Physiology, McGill University, Montreal, QC H3G 1Y6, Canada (H.Y.); (M.M.)
- Quantitative Life Sciences Program, McGill University, Montreal, QC H3G 1Y6, Canada
| |
Collapse
|
4
|
Kunachowicz D, Król-Kulikowska M, Raczycka W, Sleziak J, Błażejewska M, Kulbacka J. Heat Shock Proteins, a Double-Edged Sword: Significance in Cancer Progression, Chemotherapy Resistance and Novel Therapeutic Perspectives. Cancers (Basel) 2024; 16:1500. [PMID: 38672583 PMCID: PMC11048091 DOI: 10.3390/cancers16081500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 04/10/2024] [Accepted: 04/12/2024] [Indexed: 04/28/2024] Open
Abstract
Heat shock proteins (Hsps) are involved in one of the adaptive mechanisms protecting cells against environmental and metabolic stress. Moreover, the large role of these proteins in the carcinogenesis process, as well as in chemoresistance, was noticed. This review aims to draw attention to the possibilities of using Hsps in developing new cancer therapy methods, as well as to indicate directions for future research on this topic. In order to discuss this matter, a thorough review of the latest scientific literature was carried out, taking into account the importance of selected proteins from the Hsp family, including Hsp27, Hsp40, Hsp60, Hsp70, Hsp90 and Hsp110. One of the more characteristic features of all Hsps is that they play a multifaceted role in cancer progression, which makes them an obvious target for modern anticancer therapy. Some researchers emphasize the importance of directly inhibiting the action of these proteins. In turn, others point to their possible use in the design of cancer vaccines, which would work by inducing an immune response in various types of cancer. Due to these possibilities, it is believed that the use of Hsps may contribute to the progress of oncoimmunology, and thus help in the development of modern anticancer therapies, which would be characterized by higher effectiveness and lower toxicity to the patients.
Collapse
Affiliation(s)
- Dominika Kunachowicz
- Department of Pharmaceutical Biochemistry, Faculty of Pharmacy, Wroclaw Medical University, Borowska 211A, 50-556 Wroclaw, Poland; (D.K.); (M.K.-K.)
| | - Magdalena Król-Kulikowska
- Department of Pharmaceutical Biochemistry, Faculty of Pharmacy, Wroclaw Medical University, Borowska 211A, 50-556 Wroclaw, Poland; (D.K.); (M.K.-K.)
| | - Wiktoria Raczycka
- Faculty of Medicine, Wroclaw Medical University, Pasteura 1, 50-367 Wroclaw, Poland; (W.R.); (J.S.); (M.B.)
| | - Jakub Sleziak
- Faculty of Medicine, Wroclaw Medical University, Pasteura 1, 50-367 Wroclaw, Poland; (W.R.); (J.S.); (M.B.)
| | - Marta Błażejewska
- Faculty of Medicine, Wroclaw Medical University, Pasteura 1, 50-367 Wroclaw, Poland; (W.R.); (J.S.); (M.B.)
| | - Julita Kulbacka
- Department of Molecular and Cellular Biology, Faculty of Pharmacy, Wroclaw Medical University, Borowska 211A, 50-556 Wroclaw, Poland
- Department of Immunology and Bioelectrochemistry, State Research Institute Centre for Innovative Medicine Santariškių g. 5, LT-08406 Vilnius, Lithuania
- DIVE IN AI, 53-307 Wroclaw, Poland
| |
Collapse
|
5
|
Leone S, Srivastava A, Herrero-Ruiz A, Hummel B, Tittel L, Campalastri R, Aprile-Garcia F, Tan JH, Rawat P, Andersson P, Willis AE, Sawarkar R. HSP70 binds to specific non-coding RNA and regulates human RNA polymerase III. Mol Cell 2024; 84:687-701.e7. [PMID: 38266641 DOI: 10.1016/j.molcel.2024.01.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 10/20/2023] [Accepted: 01/02/2024] [Indexed: 01/26/2024]
Abstract
Molecular chaperones are critical for protein homeostasis and are implicated in several human pathologies such as neurodegeneration and cancer. While the binding of chaperones to nascent and misfolded proteins has been studied in great detail, the direct interaction between chaperones and RNA has not been systematically investigated. Here, we provide the evidence for widespread interaction between chaperones and RNA in human cells. We show that the major chaperone heat shock protein 70 (HSP70) binds to non-coding RNA transcribed by RNA polymerase III (RNA Pol III) such as tRNA and 5S rRNA. Global chromatin profiling revealed that HSP70 binds genomic sites of transcription by RNA Pol III. Detailed biochemical analyses showed that HSP70 alleviates the inhibitory effect of cognate tRNA transcript on tRNA gene transcription. Thus, our study uncovers an unexpected role of HSP70-RNA interaction in the biogenesis of a specific class of non-coding RNA with wider implications in cancer therapeutics.
Collapse
Affiliation(s)
- Sergio Leone
- MRC Toxicology Unit, University of Cambridge, Cambridge CB21QR, UK.
| | | | | | - Barbara Hummel
- Max Planck Institute of Immunobiology and Epigenetics, Freiburg 79108, Germany
| | - Lena Tittel
- Max Planck Institute of Immunobiology and Epigenetics, Freiburg 79108, Germany
| | | | | | - Jun Hao Tan
- MRC Toxicology Unit, University of Cambridge, Cambridge CB21QR, UK
| | - Prashant Rawat
- Max Planck Institute of Immunobiology and Epigenetics, Freiburg 79108, Germany
| | - Patrik Andersson
- Safety Innovation, Clinical Pharmacology and Safety Sciences, AstraZeneca R&D, Gothenburg 43183, Sweden
| | - Anne E Willis
- MRC Toxicology Unit, University of Cambridge, Cambridge CB21QR, UK
| | - Ritwick Sawarkar
- MRC Toxicology Unit, University of Cambridge, Cambridge CB21QR, UK; Max Planck Institute of Immunobiology and Epigenetics, Freiburg 79108, Germany.
| |
Collapse
|
6
|
Somu P, Mohanty S, Basavegowda N, Yadav AK, Paul S, Baek KH. The Interplay between Heat Shock Proteins and Cancer Pathogenesis: A Novel Strategy for Cancer Therapeutics. Cancers (Basel) 2024; 16:638. [PMID: 38339390 PMCID: PMC10854888 DOI: 10.3390/cancers16030638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 01/29/2024] [Accepted: 01/30/2024] [Indexed: 02/12/2024] Open
Abstract
Heat shock proteins (HSPs) are developmentally conserved families of protein found in both prokaryotic and eukaryotic organisms. HSPs are engaged in a diverse range of physiological processes, including molecular chaperone activity to assist the initial protein folding or promote the unfolding and refolding of misfolded intermediates to acquire the normal or native conformation and its translocation and prevent protein aggregation as well as in immunity, apoptosis, and autophagy. These molecular chaperonins are classified into various families according to their molecular size or weight, encompassing small HSPs (e.g., HSP10 and HSP27), HSP40, HSP60, HSP70, HSP90, and the category of large HSPs that include HSP100 and ClpB proteins. The overexpression of HSPs is induced to counteract cell stress at elevated levels in a variety of solid tumors, including anticancer chemotherapy, and is closely related to a worse prognosis and therapeutic resistance to cancer cells. HSPs are also involved in anti-apoptotic properties and are associated with processes of cancer progression and development, such as metastasis, invasion, and cell proliferation. This review outlines the previously mentioned HSPs and their significant involvement in diverse mechanisms of tumor advancement and metastasis, as well as their contribution to identifying potential targets for therapeutic interventions.
Collapse
Affiliation(s)
- Prathap Somu
- Department of Biotechnology and Chemical Engineering, School of Civil & Chemical Engineering, Manipal University Jaipur, Dehmi Kalan, Jaipur 303007, India;
| | - Sonali Mohanty
- Department of Biotechnology and Medical Engineering, National Institute of Technology, Rourkela 769008, India;
| | - Nagaraj Basavegowda
- Department of Biotechnology, Yeungnam University, Gyeongsan 38451, Republic of Korea;
| | - Akhilesh Kumar Yadav
- Department of Environmental Engineering and Management, Chaoyang University of Technology, Taichung 413310, Taiwan;
- Department of Bioengineering, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Chennai 602105, India
| | - Subhankar Paul
- Department of Biotechnology and Medical Engineering, National Institute of Technology, Rourkela 769008, India;
| | - Kwang-Hyun Baek
- Department of Biotechnology, Yeungnam University, Gyeongsan 38451, Republic of Korea;
| |
Collapse
|
7
|
Dizaj SM, Kouhsoltani M, Pourreza K, Sharifi S, Abdolahinia ED. Preparation, Characterization, and Evaluation of the Anticancer Effect of Mesoporous Silica Nanoparticles Containing Rutin and Curcumin. Pharm Nanotechnol 2024; 12:269-275. [PMID: 37594097 DOI: 10.2174/2211738511666230818092706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 06/25/2023] [Accepted: 07/13/2023] [Indexed: 08/19/2023]
Abstract
AIMS AND OBJECTIVE The aim of this study was the preparation of mesoporous silica nanoparticles co-loaded with rutin and curcumin (Rut-Cur-MSNs) and the assessment of its physicochemical properties as well as its cytotoxicity on the head and neck cancer cells (HN5). Besides, ROS generation of HN5 cells exposed to Rut-Cur-MSNs was evaluated. Several investigations showed that rutin and curcumin have potential effects as anticancer phytochemicals; however, their low aqueous solubility and poor bioavailability limited their applications. The assessment of physicochemical properties and anticancer effect of prepared nanoparticles was the objective of this study. METHODS The physicochemical properties of produced nanoparticles were evaluated. The toxicity of Rut-Cur-MSNs on HN5 cells was assessed. In addition, the ROS production in cells treated with Rut- Cur-MSNs was assessed compared to control untreated cells. RESULTS The results showed that Rut-Cur-MSNs have mesoporous structure, nanometer size and negative surface charge. The X-ray diffraction pattern showed that the prepared nanoparticles belong to the family of silicates named MCM-41. The cytotoxicity of Rut-Cur-MSNs at 24 h was significantly higher than that of rutin-loaded MSNs (Rut-MSNs) and curcumin-loaded MSNs (Cur-MSNs) (p<0.05). CONCLUSION The achieved results recommend that the prepared mesoporous silica nanoparticles containing rutin and curcumin can be a useful nanoformulation for the treatment of cancer. The produced nanomaterial in this study can be helpful for cancer therapy.
Collapse
Affiliation(s)
- Solmaz Maleki Dizaj
- Department of Dental Biomaterials, Faculty of Dentistry, Tabriz University of Medical Sciences, Tabriz, Iran
- Dental and Periodontal Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Maryam Kouhsoltani
- Oral and Maxillofacial Department of Pathology, Faculty of Dentistry, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Kosar Pourreza
- Oral and Maxillofacial Department of Pathology, Faculty of Dentistry, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Simin Sharifi
- Dental and Periodontal Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Elaheh Dalir Abdolahinia
- Research Center for Pharmaceutical Nanotechnology (RCPN), Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
8
|
Rocca C, Soda T, De Francesco EM, Fiorillo M, Moccia F, Viglietto G, Angelone T, Amodio N. Mitochondrial dysfunction at the crossroad of cardiovascular diseases and cancer. J Transl Med 2023; 21:635. [PMID: 37726810 PMCID: PMC10507834 DOI: 10.1186/s12967-023-04498-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Accepted: 09/01/2023] [Indexed: 09/21/2023] Open
Abstract
A large body of evidence indicates the existence of a complex pathophysiological relationship between cardiovascular diseases and cancer. Mitochondria are crucial organelles whose optimal activity is determined by quality control systems, which regulate critical cellular events, ranging from intermediary metabolism and calcium signaling to mitochondrial dynamics, cell death and mitophagy. Emerging data indicate that impaired mitochondrial quality control drives myocardial dysfunction occurring in several heart diseases, including cardiac hypertrophy, myocardial infarction, ischaemia/reperfusion damage and metabolic cardiomyopathies. On the other hand, diverse human cancers also dysregulate mitochondrial quality control to promote their initiation and progression, suggesting that modulating mitochondrial homeostasis may represent a promising therapeutic strategy both in cardiology and oncology. In this review, first we briefly introduce the physiological mechanisms underlying the mitochondrial quality control system, and then summarize the current understanding about the impact of dysregulated mitochondrial functions in cardiovascular diseases and cancer. We also discuss key mitochondrial mechanisms underlying the increased risk of cardiovascular complications secondary to the main current anticancer strategies, highlighting the potential of strategies aimed at alleviating mitochondrial impairment-related cardiac dysfunction and tumorigenesis. It is hoped that this summary can provide novel insights into precision medicine approaches to reduce cardiovascular and cancer morbidities and mortalities.
Collapse
Affiliation(s)
- Carmine Rocca
- Cellular and Molecular Cardiovascular Pathophysiology Laboratory, Department of Biology, E and E.S. (DiBEST), University of Calabria, Arcavacata di Rende, 87036, Cosenza, Italy
| | - Teresa Soda
- Department of Health Science, University Magna Graecia of Catanzaro, 88100, Catanzaro, Italy
| | - Ernestina Marianna De Francesco
- Endocrinology Unit, Department of Clinical and Experimental Medicine, University of Catania, Garibaldi-Nesima Hospital, 95122, Catania, Italy
| | - Marco Fiorillo
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036, Rende, Italy
| | - Francesco Moccia
- Laboratory of General Physiology, Department of Biology and Biotechnology "L. Spallanzani", University of Pavia, 27100, Pavia, Italy
| | - Giuseppe Viglietto
- Department of Experimental and Clinical Medicine, Magna Graecia University of Catanzaro, 88100, Catanzaro, Italy
| | - Tommaso Angelone
- Cellular and Molecular Cardiovascular Pathophysiology Laboratory, Department of Biology, E and E.S. (DiBEST), University of Calabria, Arcavacata di Rende, 87036, Cosenza, Italy.
- National Institute of Cardiovascular Research (I.N.R.C.), 40126, Bologna, Italy.
| | - Nicola Amodio
- Department of Experimental and Clinical Medicine, Magna Graecia University of Catanzaro, 88100, Catanzaro, Italy.
| |
Collapse
|
9
|
Magyar CTJ, Vashist YK, Stroka D, Kim-Fuchs C, Berger MD, Banz VM. Heat shock protein 90 (HSP90) inhibitors in gastrointestinal cancer: where do we currently stand?-A systematic review. J Cancer Res Clin Oncol 2023; 149:8039-8050. [PMID: 36966394 PMCID: PMC10374781 DOI: 10.1007/s00432-023-04689-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Accepted: 03/09/2023] [Indexed: 03/27/2023]
Abstract
PURPOSE Dysregulated expression of heat shock proteins (HSP) plays a fundamental role in tumor development and progression. Consequently, HSP90 may be an effective tumor target in oncology, including the treatment of gastrointestinal cancers. METHODS We carried out a systematic review of data extracted from clinicaltrials.gov and pubmed.gov, which included all studies available until January 1st, 2022. The published data was evaluated using primary and secondary endpoints, particularly with focus on overall survival, progression-free survival, and rate of stable disease. RESULTS Twenty trials used HSP90 inhibitors in GI cancers, ranging from phase I to III clinical trials. Most studies assessed HSP90 inhibitors as a second line treatment. Seventeen of the 20 studies were performed prior to 2015 and only few studies have results pending. Several studies were terminated prematurely, due to insufficient efficacy or toxicity. Thus far, the data suggests that HSP90 inhibitor NVP-AUY922 might improve outcome for colorectal cancer and gastrointestinal stromal tumors. CONCLUSION It currently remains unclear which subgroup of patients might benefit from HSP90 inhibitors and at what time point these inhibitors may be beneficial. There are only few new or ongoing studies initiated during the last decade.
Collapse
Affiliation(s)
- Christian Tibor Josef Magyar
- Department of Visceral Surgery and Medicine, Inselspital, Bern University Hospital, University of Bern, 3010 Bern, Switzerland
| | | | - Deborah Stroka
- Department of Visceral Surgery and Medicine, Inselspital, Bern University Hospital, University of Bern, 3010 Bern, Switzerland
| | - Corina Kim-Fuchs
- Department of Visceral Surgery and Medicine, Inselspital, Bern University Hospital, University of Bern, 3010 Bern, Switzerland
| | - Martin D. Berger
- Department of Medical Oncology, Inselspital, Bern University Hospital, University of Bern, 3010 Bern, Switzerland
| | - Vanessa M. Banz
- Department of Visceral Surgery and Medicine, Inselspital, Bern University Hospital, University of Bern, 3010 Bern, Switzerland
| |
Collapse
|
10
|
Naus E, Derweduwe M, Lampi Y, Claeys A, Pauwels J, Langenberg T, Claes F, Xu J, Haemels V, Atak ZK, van der Kant R, Van Durme J, De Baets G, Ligon KL, Fiers M, Gevaert K, Aerts S, Rousseau F, Schymkowitz J, De Smet F. Reduced Levels of Misfolded and Aggregated Mutant p53 by Proteostatic Activation. Cells 2023; 12:cells12060960. [PMID: 36980299 PMCID: PMC10047295 DOI: 10.3390/cells12060960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 12/21/2022] [Accepted: 02/27/2023] [Indexed: 03/29/2023] Open
Abstract
In malignant cancer, excessive amounts of mutant p53 often lead to its aggregation, a feature that was recently identified as druggable. Here, we describe that induction of a heat shock-related stress response mediated by Foldlin, a small-molecule tool compound, reduces the protein levels of misfolded/aggregated mutant p53, while contact mutants or wild-type p53 remain largely unaffected. Foldlin also prevented the formation of stress-induced p53 nuclear inclusion bodies. Despite our inability to identify a specific molecular target, Foldlin also reduced protein levels of aggregating SOD1 variants. Finally, by screening a library of 778 FDA-approved compounds for their ability to reduce misfolded mutant p53, we identified the proteasome inhibitor Bortezomib with similar cellular effects as Foldlin. Overall, the induction of a cellular heat shock response seems to be an effective strategy to deal with pathological protein aggregation. It remains to be seen however, how this strategy can be translated to a clinical setting.
Collapse
Affiliation(s)
- Evelyne Naus
- VIB-KU Leuven Center for Brain & Disease Research, Herestraat 49, 3000 Leuven, Belgium; (E.N.); (Y.L.); (T.L.); (F.C.); (J.X.); (Z.K.A.); (R.v.d.K.); (J.V.D.); (G.D.B.); (M.F.); (S.A.); (F.R.); (J.S.)
- Switch Laboratory, Department for Cellular and Molecular Medicine, Katholieke Universiteit Leuven, 3000 Leuven, Belgium
| | - Marleen Derweduwe
- The Laboratory for Precision Cancer Medicine, Translational Cell and Tissue Research Unit, Department of Imaging and Pathology, Katholieke Universiteit Leuven, 3000 Leuven, Belgium (V.H.); (K.G.)
| | - Youlia Lampi
- VIB-KU Leuven Center for Brain & Disease Research, Herestraat 49, 3000 Leuven, Belgium; (E.N.); (Y.L.); (T.L.); (F.C.); (J.X.); (Z.K.A.); (R.v.d.K.); (J.V.D.); (G.D.B.); (M.F.); (S.A.); (F.R.); (J.S.)
- Switch Laboratory, Department for Cellular and Molecular Medicine, Katholieke Universiteit Leuven, 3000 Leuven, Belgium
| | - Annelies Claeys
- The Laboratory for Precision Cancer Medicine, Translational Cell and Tissue Research Unit, Department of Imaging and Pathology, Katholieke Universiteit Leuven, 3000 Leuven, Belgium (V.H.); (K.G.)
| | - Jarne Pauwels
- VIB-UGent Center for Medical Biotechnology, 9052 Ghent, Belgium;
- Department of Biomolecular Medicine, Ghent University, 9052 Ghent, Belgium
| | - Tobias Langenberg
- VIB-KU Leuven Center for Brain & Disease Research, Herestraat 49, 3000 Leuven, Belgium; (E.N.); (Y.L.); (T.L.); (F.C.); (J.X.); (Z.K.A.); (R.v.d.K.); (J.V.D.); (G.D.B.); (M.F.); (S.A.); (F.R.); (J.S.)
- Switch Laboratory, Department for Cellular and Molecular Medicine, Katholieke Universiteit Leuven, 3000 Leuven, Belgium
| | - Filip Claes
- VIB-KU Leuven Center for Brain & Disease Research, Herestraat 49, 3000 Leuven, Belgium; (E.N.); (Y.L.); (T.L.); (F.C.); (J.X.); (Z.K.A.); (R.v.d.K.); (J.V.D.); (G.D.B.); (M.F.); (S.A.); (F.R.); (J.S.)
- Switch Laboratory, Department for Cellular and Molecular Medicine, Katholieke Universiteit Leuven, 3000 Leuven, Belgium
| | - Jie Xu
- VIB-KU Leuven Center for Brain & Disease Research, Herestraat 49, 3000 Leuven, Belgium; (E.N.); (Y.L.); (T.L.); (F.C.); (J.X.); (Z.K.A.); (R.v.d.K.); (J.V.D.); (G.D.B.); (M.F.); (S.A.); (F.R.); (J.S.)
- Switch Laboratory, Department for Cellular and Molecular Medicine, Katholieke Universiteit Leuven, 3000 Leuven, Belgium
| | - Veerle Haemels
- The Laboratory for Precision Cancer Medicine, Translational Cell and Tissue Research Unit, Department of Imaging and Pathology, Katholieke Universiteit Leuven, 3000 Leuven, Belgium (V.H.); (K.G.)
| | - Zeynep Kalender Atak
- VIB-KU Leuven Center for Brain & Disease Research, Herestraat 49, 3000 Leuven, Belgium; (E.N.); (Y.L.); (T.L.); (F.C.); (J.X.); (Z.K.A.); (R.v.d.K.); (J.V.D.); (G.D.B.); (M.F.); (S.A.); (F.R.); (J.S.)
- Laboratory of Computational Biology, Center for Human Genetics, Katholieke Universiteit Leuven, 3000 Leuven, Belgium
| | - Rob van der Kant
- VIB-KU Leuven Center for Brain & Disease Research, Herestraat 49, 3000 Leuven, Belgium; (E.N.); (Y.L.); (T.L.); (F.C.); (J.X.); (Z.K.A.); (R.v.d.K.); (J.V.D.); (G.D.B.); (M.F.); (S.A.); (F.R.); (J.S.)
- Switch Laboratory, Department for Cellular and Molecular Medicine, Katholieke Universiteit Leuven, 3000 Leuven, Belgium
| | - Joost Van Durme
- VIB-KU Leuven Center for Brain & Disease Research, Herestraat 49, 3000 Leuven, Belgium; (E.N.); (Y.L.); (T.L.); (F.C.); (J.X.); (Z.K.A.); (R.v.d.K.); (J.V.D.); (G.D.B.); (M.F.); (S.A.); (F.R.); (J.S.)
- Switch Laboratory, Department for Cellular and Molecular Medicine, Katholieke Universiteit Leuven, 3000 Leuven, Belgium
| | - Greet De Baets
- VIB-KU Leuven Center for Brain & Disease Research, Herestraat 49, 3000 Leuven, Belgium; (E.N.); (Y.L.); (T.L.); (F.C.); (J.X.); (Z.K.A.); (R.v.d.K.); (J.V.D.); (G.D.B.); (M.F.); (S.A.); (F.R.); (J.S.)
- Switch Laboratory, Department for Cellular and Molecular Medicine, Katholieke Universiteit Leuven, 3000 Leuven, Belgium
| | - Keith L. Ligon
- Department of Medical Oncology, Center for Molecular Oncologic Pathology, Dana-Farber Cancer Institute, Boston, MA 02215, USA;
- The Broad Institute, Cambridge, MA 02142, USA
- Department of Pathology, Division of Neuropathology, Brigham and Women’s Hospital and Children’s Hospital Boston, Boston, MA 02215, USA
- Department of Pathology, Harvard Medical School, Boston, MA 02215, USA
| | - Mark Fiers
- VIB-KU Leuven Center for Brain & Disease Research, Herestraat 49, 3000 Leuven, Belgium; (E.N.); (Y.L.); (T.L.); (F.C.); (J.X.); (Z.K.A.); (R.v.d.K.); (J.V.D.); (G.D.B.); (M.F.); (S.A.); (F.R.); (J.S.)
- Department of Medical Oncology, Center for Molecular Oncologic Pathology, Dana-Farber Cancer Institute, Boston, MA 02215, USA;
| | - Kris Gevaert
- The Laboratory for Precision Cancer Medicine, Translational Cell and Tissue Research Unit, Department of Imaging and Pathology, Katholieke Universiteit Leuven, 3000 Leuven, Belgium (V.H.); (K.G.)
- VIB-UGent Center for Medical Biotechnology, 9052 Ghent, Belgium;
| | - Stein Aerts
- VIB-KU Leuven Center for Brain & Disease Research, Herestraat 49, 3000 Leuven, Belgium; (E.N.); (Y.L.); (T.L.); (F.C.); (J.X.); (Z.K.A.); (R.v.d.K.); (J.V.D.); (G.D.B.); (M.F.); (S.A.); (F.R.); (J.S.)
- Laboratory of Computational Biology, Center for Human Genetics, Katholieke Universiteit Leuven, 3000 Leuven, Belgium
| | - Frederic Rousseau
- VIB-KU Leuven Center for Brain & Disease Research, Herestraat 49, 3000 Leuven, Belgium; (E.N.); (Y.L.); (T.L.); (F.C.); (J.X.); (Z.K.A.); (R.v.d.K.); (J.V.D.); (G.D.B.); (M.F.); (S.A.); (F.R.); (J.S.)
- Switch Laboratory, Department for Cellular and Molecular Medicine, Katholieke Universiteit Leuven, 3000 Leuven, Belgium
| | - Joost Schymkowitz
- VIB-KU Leuven Center for Brain & Disease Research, Herestraat 49, 3000 Leuven, Belgium; (E.N.); (Y.L.); (T.L.); (F.C.); (J.X.); (Z.K.A.); (R.v.d.K.); (J.V.D.); (G.D.B.); (M.F.); (S.A.); (F.R.); (J.S.)
- Switch Laboratory, Department for Cellular and Molecular Medicine, Katholieke Universiteit Leuven, 3000 Leuven, Belgium
| | - Frederik De Smet
- The Laboratory for Precision Cancer Medicine, Translational Cell and Tissue Research Unit, Department of Imaging and Pathology, Katholieke Universiteit Leuven, 3000 Leuven, Belgium (V.H.); (K.G.)
- Correspondence:
| |
Collapse
|
11
|
Alhasan B, Mikeladze M, Guzhova I, Margulis B. Autophagy, molecular chaperones, and unfolded protein response as promoters of tumor recurrence. Cancer Metastasis Rev 2023; 42:217-254. [PMID: 36723697 DOI: 10.1007/s10555-023-10085-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Accepted: 01/16/2023] [Indexed: 02/02/2023]
Abstract
Tumor recurrence is a paradoxical function of a machinery, whereby a small proportion of the cancer cell population enters a resistant, dormant state, persists long-term in this condition, and then transitions to proliferation. The dormant phenotype is typical of cancer stem cells, tumor-initiating cells, disseminated tumor cells, and drug-tolerant persisters, which all demonstrate similar or even equivalent properties. Cancer cell dormancy and its conversion to repopulation are regulated by several protein signaling systems that inhibit or induce cell proliferation and provide optimal interrelations between cancer cells and their special niche; these systems act in close connection with tumor microenvironment and immune response mechanisms. During dormancy and reawakening periods, cell proteostasis machineries, autophagy, molecular chaperones, and the unfolded protein response are recruited to protect refractory tumor cells from a wide variety of stressors and therapeutic insults. Proteostasis mechanisms functionally or even physically interfere with the main regulators of tumor relapse, and the significance of these interactions and implications in the tumor recurrence phases are discussed in this review.
Collapse
Affiliation(s)
- Bashar Alhasan
- Institute of Cytology, Russian Academy of Sciences, Tikhoretsky Ave. 4, 194064, St. Petersburg, Russia.
| | - Marina Mikeladze
- Institute of Cytology, Russian Academy of Sciences, Tikhoretsky Ave. 4, 194064, St. Petersburg, Russia
| | - Irina Guzhova
- Institute of Cytology, Russian Academy of Sciences, Tikhoretsky Ave. 4, 194064, St. Petersburg, Russia
| | - Boris Margulis
- Institute of Cytology, Russian Academy of Sciences, Tikhoretsky Ave. 4, 194064, St. Petersburg, Russia
| |
Collapse
|
12
|
Evaluation of the efficacy of heat shock protein inhibitors and antifungal drug combinations against Candida spp. RENDICONTI LINCEI. SCIENZE FISICHE E NATURALI 2022. [DOI: 10.1007/s12210-022-01118-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
13
|
Hoffman LM, Jensen CC, Beckerle MC. Phosphorylation of the small heat shock protein HspB1 regulates cytoskeletal recruitment and cell motility. Mol Biol Cell 2022; 33:ar100. [PMID: 35767320 DOI: 10.1091/mbc.e22-02-0057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
The small heat shock protein HspB1, also known as Hsp25/27, is a ubiquitously expressed molecular chaperone that responds to mechanical cues. Uniaxial cyclic stretch activates the p38 mitogen-activated protein kinase (MAPK) signaling cascade and increases the phosphorylation of HspB1. Similar to the mechanosensitive cytoskeletal regulator zyxin, phospho-HspB1 is recruited to features of the stretch-stimulated actin cytoskeleton. To evaluate the role of HspB1 and its phosphoregulation in modulating cell function, we utilized CRISPR/Cas9-edited HspB1-null cells and determined they were altered in behaviors such as actin cytoskeletal remodeling, cell spreading, and cell motility. In our model system, expression of WT HspB1, but not nonphosphorylatable HspB1, rescued certain characteristics of the HspB1-null cells including the enhanced cell motility of HspB1-null cells and the deficient actin reinforcement of stretch-stimulated HspB1-null cells. The recruitment of HspB1 to high-tension structures in geometrically constrained cells, such as actin comet tails emanating from focal adhesions, also required a phosphorylatable HspB1. We show that mechanical signals activate posttranslational regulation of the molecular chaperone, HspB1, and are required for normal cell behaviors including actin cytoskeletal remodeling, cell spreading, and cell migration.
Collapse
Affiliation(s)
- Laura M Hoffman
- Huntsman Cancer Institute, University of Utah, Salt Lake City, UT 84112.,Department of Biology, University of Utah, Salt Lake City, UT 84112
| | | | - Mary C Beckerle
- Huntsman Cancer Institute, University of Utah, Salt Lake City, UT 84112.,Department of Biology, University of Utah, Salt Lake City, UT 84112.,Department of Oncological Sciences, University of Utah, Salt Lake City, UT 84112
| |
Collapse
|
14
|
Tukaj S, Sitko K. Heat Shock Protein 90 (Hsp90) and Hsp70 as Potential Therapeutic Targets in Autoimmune Skin Diseases. Biomolecules 2022; 12:biom12081153. [PMID: 36009046 PMCID: PMC9405624 DOI: 10.3390/biom12081153] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 08/13/2022] [Accepted: 08/18/2022] [Indexed: 12/22/2022] Open
Abstract
Over a hundred different autoimmune diseases have been described to date, which can affect every organ in the body, including the largest one, the skin. In fact, up to one-fifth of the world's population suffers from chronic, noninfectious inflammatory skin diseases, the development of which is significantly influenced by an autoimmune response. One of the hallmarks of autoimmune diseases is the loss of immune tolerance, which leads to the formation of autoreactive lymphocytes or autoantibodies and, consequently, to chronic inflammation and tissue damage. The treatment of autoimmune skin diseases mainly focuses on immunosuppression (using, e.g., corticosteroids) but almost never leads to the development of permanent mechanisms of immune tolerance. In addition, current therapies and their long-term administration may cause serious adverse effects. Hence, safer and more effective therapies that bring sustained balance between pro- and anti-inflammatory responses are still desired. Both intra- and extracellular heat shock proteins (Hsps), specifically well-characterized inducible Hsp90 and Hsp70 chaperones, have been highlighted as therapeutic targets for autoimmune diseases. This review presents preclinical data on the involvement of Hsp90 and Hsp70 in modulating the immune response, specifically in the context of the treatment of selected autoimmune skin diseases with emphasis on autoimmune bullous skin diseases and psoriasis.
Collapse
|
15
|
Very N, El Yazidi-Belkoura I. Targeting O-GlcNAcylation to overcome resistance to anti-cancer therapies. Front Oncol 2022; 12:960312. [PMID: 36059648 PMCID: PMC9428582 DOI: 10.3389/fonc.2022.960312] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Accepted: 07/19/2022] [Indexed: 12/14/2022] Open
Abstract
In cancer cells, metabolic reprogramming is associated with an alteration of the O-GlcNAcylation homeostasis. This post-translational modification (PTM) that attaches O-GlcNAc moiety to intracellular proteins is dynamically and finely regulated by the O-GlcNAc Transferase (OGT) and the O-GlcNAcase (OGA). It is now established that O-GlcNAcylation participates in many features of cancer cells including a high rate of cell growth, invasion, and metastasis but little is known about its impact on the response to therapies. The purpose of this review is to highlight the role of O-GlcNAc protein modification in cancer resistance to therapies. We summarize the current knowledge about the crosstalk between O-GlcNAcylation and molecular mechanisms underlying tumor sensitivity/resistance to targeted therapies, chemotherapies, immunotherapy, and radiotherapy. We also discuss potential benefits and strategies of targeting O-GlcNAcylation to overcome cancer resistance.
Collapse
Affiliation(s)
- Ninon Very
- Université de Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1011-EGID, Lille, France
| | - Ikram El Yazidi-Belkoura
- Université de Lille, CNRS, UMR 8576-UGSF-Unité de Glycobiologie Structurale et Fonctionnelle, Lille, France
- *Correspondence: Ikram El Yazidi-Belkoura,
| |
Collapse
|
16
|
Nikotina AD, Vladimirova SA, Kokoreva NE, Komarova EY, Aksenov ND, Efremov S, Leonova E, Pavlov R, Kartsev VG, Zhang Z, Margulis BA, Guzhova IV. Combined Cytotoxic Effect of Inhibitors of Proteostasis on Human Colon Cancer Cells. Pharmaceuticals (Basel) 2022; 15:ph15080923. [PMID: 35893747 PMCID: PMC9331496 DOI: 10.3390/ph15080923] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 07/19/2022] [Accepted: 07/21/2022] [Indexed: 02/04/2023] Open
Abstract
Despite significant progress in the diagnosis and treatment of colorectal cancer, drug resistance continues to be a major limitation of therapy. In this regard, studies aimed at creating combination therapy are gaining popularity. One of the most promising adjuvants are inhibitors of the proteostasis system, chaperone machinery, and autophagy. The main HSP regulator, HSF1, is overactivated in cancer cells and autophagy sustains the survival of malignant cells. In this work, we focused on the selection of combination therapy for the treatment of rectal cancer cells obtained from patients after tumor biopsy without prior treatment. We characterized the migration, proliferation, and chaperone status in the resulting lines and also found them to be resistant to a number of drugs widely used in the clinic. However, these cells were sensitive to the autophagy inhibitor, chloroquine. For combination therapy, we used an HSF1 activity inhibitor discovered earlier in our laboratory, the cardenolide CL-43, which has already been proven as an auxiliary component of combined therapy in established cell lines. CL-43 effectively suppressed HSF1 activity and Hsp70 expression in all investigated cells. We tested the autophagy inhibitor, chloroquine, in combination with CL-43. Our results indicate that the use of an inhibitor of HSF1 activity in combination with an autophagy inhibitor results in effective cancer cell death, therefore, this therapeutic approach may be a promising treatment regimen for certain patients.
Collapse
Affiliation(s)
- Alina D. Nikotina
- Institute of Cytology of Russian Academy of Sciences, Tikhoretsky Ave. 4, 194064 St. Petersburg, Russia; (A.D.N.); (S.A.V.); (N.E.K.); (E.Y.K.); (N.D.A.); (B.A.M.)
| | - Snezhana A. Vladimirova
- Institute of Cytology of Russian Academy of Sciences, Tikhoretsky Ave. 4, 194064 St. Petersburg, Russia; (A.D.N.); (S.A.V.); (N.E.K.); (E.Y.K.); (N.D.A.); (B.A.M.)
| | - Nadezhda E. Kokoreva
- Institute of Cytology of Russian Academy of Sciences, Tikhoretsky Ave. 4, 194064 St. Petersburg, Russia; (A.D.N.); (S.A.V.); (N.E.K.); (E.Y.K.); (N.D.A.); (B.A.M.)
| | - Elena Y. Komarova
- Institute of Cytology of Russian Academy of Sciences, Tikhoretsky Ave. 4, 194064 St. Petersburg, Russia; (A.D.N.); (S.A.V.); (N.E.K.); (E.Y.K.); (N.D.A.); (B.A.M.)
| | - Nikolay D. Aksenov
- Institute of Cytology of Russian Academy of Sciences, Tikhoretsky Ave. 4, 194064 St. Petersburg, Russia; (A.D.N.); (S.A.V.); (N.E.K.); (E.Y.K.); (N.D.A.); (B.A.M.)
| | - Sergey Efremov
- Saint-Petersburg State University Hospital, Fontanka River enb.154, 190103 St. Petersburg, Russia; (S.E.); (E.L.); (R.P.)
| | - Elizaveta Leonova
- Saint-Petersburg State University Hospital, Fontanka River enb.154, 190103 St. Petersburg, Russia; (S.E.); (E.L.); (R.P.)
| | - Rostislav Pavlov
- Saint-Petersburg State University Hospital, Fontanka River enb.154, 190103 St. Petersburg, Russia; (S.E.); (E.L.); (R.P.)
| | - Viktor G. Kartsev
- InterBioScreen, Institutsky Ave. 7a, Chernogolovka, 142432 Moscow, Russia;
| | - Zhichao Zhang
- School of Chemistry, Dalian University of Technology, Dalian 116024, China;
| | - Boris A. Margulis
- Institute of Cytology of Russian Academy of Sciences, Tikhoretsky Ave. 4, 194064 St. Petersburg, Russia; (A.D.N.); (S.A.V.); (N.E.K.); (E.Y.K.); (N.D.A.); (B.A.M.)
| | - Irina V. Guzhova
- Institute of Cytology of Russian Academy of Sciences, Tikhoretsky Ave. 4, 194064 St. Petersburg, Russia; (A.D.N.); (S.A.V.); (N.E.K.); (E.Y.K.); (N.D.A.); (B.A.M.)
- Correspondence: ; Tel.: +7-(921)786-4860
| |
Collapse
|
17
|
Smulders L, Altman R, Briseno C, Saatchi A, Wallace L, AlSebaye M, Stahelin RV, Nikolaidis N. Phosphatidylinositol Monophosphates Regulate the Membrane Localization of HSPA1A, a Stress-Inducible 70-kDa Heat Shock Protein. Biomolecules 2022; 12:biom12060856. [PMID: 35740982 PMCID: PMC9221345 DOI: 10.3390/biom12060856] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 06/16/2022] [Accepted: 06/18/2022] [Indexed: 02/02/2023] Open
Abstract
HSPA1A is a molecular chaperone that regulates the survival of stressed and cancer cells. In addition to its cytosolic pro-survival functions, HSPA1A also localizes and embeds in the plasma membrane (PM) of stressed and tumor cells. Membrane-associated HSPA1A exerts immunomodulatory functions and renders tumors resistant to standard therapies. Therefore, understanding and manipulating HSPA1A's surface presentation is a promising therapeutic. However, HSPA1A's pathway to the cell surface remains enigmatic because this protein lacks known membrane localization signals. Considering that HSPA1A binds to lipids, like phosphatidylserine (PS) and monophosphorylated phosphoinositides (PIPs), we hypothesized that this interaction regulates HSPA1A's PM localization and anchorage. To test this hypothesis, we subjected human cell lines to heat shock, depleted specific lipid targets, and quantified HSPA1A's PM localization using confocal microscopy and cell surface biotinylation. These experiments revealed that co-transfection of HSPA1A with lipid-biosensors masking PI(4)P and PI(3)P significantly reduced HSPA1A's heat-induced surface presentation. Next, we manipulated the cellular lipid content using ionomycin, phenyl arsine oxide (PAO), GSK-A1, and wortmannin. These experiments revealed that HSPA1A's PM localization was unaffected by ionomycin but was significantly reduced by PAO, GSK-A1, and wortmannin, corroborating the findings obtained by the co-transfection experiments. We verified these results by selectively depleting PI(4)P and PI(4,5)P2 using a rapamycin-induced phosphatase system. Our findings strongly support the notion that HSPA1A's surface presentation is a multifaceted lipid-driven phenomenon controlled by the binding of the chaperone to specific endosomal and PM lipids.
Collapse
Affiliation(s)
- Larissa Smulders
- Department of Biological Science, Center for Applied Biotechnology Studies, and Center for Computational and Applied Mathematics, College of Natural Sciences and Mathematics, California State University Fullerton, Fullerton, CA 92834, USA; (L.S.); (R.A.); (C.B.); (A.S.); (L.W.); (M.A.)
| | - Rachel Altman
- Department of Biological Science, Center for Applied Biotechnology Studies, and Center for Computational and Applied Mathematics, College of Natural Sciences and Mathematics, California State University Fullerton, Fullerton, CA 92834, USA; (L.S.); (R.A.); (C.B.); (A.S.); (L.W.); (M.A.)
| | - Carolina Briseno
- Department of Biological Science, Center for Applied Biotechnology Studies, and Center for Computational and Applied Mathematics, College of Natural Sciences and Mathematics, California State University Fullerton, Fullerton, CA 92834, USA; (L.S.); (R.A.); (C.B.); (A.S.); (L.W.); (M.A.)
| | - Alireza Saatchi
- Department of Biological Science, Center for Applied Biotechnology Studies, and Center for Computational and Applied Mathematics, College of Natural Sciences and Mathematics, California State University Fullerton, Fullerton, CA 92834, USA; (L.S.); (R.A.); (C.B.); (A.S.); (L.W.); (M.A.)
| | - Leslie Wallace
- Department of Biological Science, Center for Applied Biotechnology Studies, and Center for Computational and Applied Mathematics, College of Natural Sciences and Mathematics, California State University Fullerton, Fullerton, CA 92834, USA; (L.S.); (R.A.); (C.B.); (A.S.); (L.W.); (M.A.)
| | - Maha AlSebaye
- Department of Biological Science, Center for Applied Biotechnology Studies, and Center for Computational and Applied Mathematics, College of Natural Sciences and Mathematics, California State University Fullerton, Fullerton, CA 92834, USA; (L.S.); (R.A.); (C.B.); (A.S.); (L.W.); (M.A.)
| | - Robert V. Stahelin
- Department of Medicinal Chemistry and Molecular Pharmacology and the Purdue University Cancer Center, Purdue University, West Lafayette, IN 47907, USA;
| | - Nikolas Nikolaidis
- Department of Biological Science, Center for Applied Biotechnology Studies, and Center for Computational and Applied Mathematics, College of Natural Sciences and Mathematics, California State University Fullerton, Fullerton, CA 92834, USA; (L.S.); (R.A.); (C.B.); (A.S.); (L.W.); (M.A.)
- Correspondence: ; Tel.: +1-657-278-4526
| |
Collapse
|
18
|
Plangger A, Rath B, Hochmair M, Funovics M, Neumayer C, Zeillinger R, Hamilton G. Synergistic cytotoxicity of the CDK4 inhibitor Fascaplysin in combination with EGFR inhibitor Afatinib against Non-small Cell Lung Cancer. Invest New Drugs 2022; 40:215-223. [PMID: 34596822 PMCID: PMC8993745 DOI: 10.1007/s10637-021-01181-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Accepted: 09/16/2021] [Indexed: 11/25/2022]
Abstract
In the absence of suitable molecular markers, non-small cell lung cancer (NSCLC) patients have to be treated with chemotherapy with poor results at advanced stages. Therefore, the activity of the anticancer marine drug fascaplysin was tested against primary NSCLC cell lines established from pleural effusions. Cytotoxicity of the drug or combinations were determined using MTT assays and changes in intracellular phosphorylation by Western blot arrays. Fascaplysin revealed high cytotoxicity against NSCLC cells and exhibit an activity pattern different of the standard drug cisplatin. Furthermore, fascaplysin synergizes with the EGFR tyrosine kinase inhibitor (TKI) afatinib to yield a twofold increased antitumor effect. Interaction with the Chk1/2 inhibitor AZD7762 confirm the differential effects of fascplysin and cisplatin. Protein phosphorylation assays showed hypophosphorylation of Akt1/2/3 and ERK1/2 as well as hyperphosphorylation of stress response mediators of H1299 NSCLC cells. In conclusion, fascaplysin shows high cytotoxicity against pleural primary NSCLC lines that could be further boosted when combined with the EGFR TKI afatinib.
Collapse
Affiliation(s)
- Adelina Plangger
- Institute of Pharmacology, Medical University of Vienna, Vienna, Austria
| | - Barbara Rath
- Institute of Pharmacology, Medical University of Vienna, Vienna, Austria
| | - Maximilian Hochmair
- Department of Respiratory & Critical Care Medicine, Karl Landsteiner Institute of Lung Research & Pulmonary Oncology, Vienna, Austria
| | - Martin Funovics
- Division of Cardiovascular and Interventional Radiology, Department of Biomedical Imaging and Image-Guided Therapy Medical, University of Vienna, Vienna, Austria
| | - Christoph Neumayer
- Department of Vascular Surgery, Medical University of Vienna, Vienna, Austria
| | - Robert Zeillinger
- Molecular Oncology Group, Department of Obstetrics and Gynecology, Medical University of Vienna, Vienna, Austria
| | - Gerhard Hamilton
- Institute of Pharmacology, Medical University of Vienna, Vienna, Austria.
| |
Collapse
|
19
|
Cyran AM, Zhitkovich A. Heat Shock Proteins and HSF1 in Cancer. Front Oncol 2022; 12:860320. [PMID: 35311075 PMCID: PMC8924369 DOI: 10.3389/fonc.2022.860320] [Citation(s) in RCA: 43] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Accepted: 02/07/2022] [Indexed: 12/23/2022] Open
Abstract
Fitness of cells is dependent on protein homeostasis which is maintained by cooperative activities of protein chaperones and proteolytic machinery. Upon encountering protein-damaging conditions, cells activate the heat-shock response (HSR) which involves HSF1-mediated transcriptional upregulation of a group of chaperones - the heat shock proteins (HSPs). Cancer cells experience high levels of proteotoxic stress due to the production of mutated proteins, aneuploidy-induced excess of components of multiprotein complexes, increased translation rates, and dysregulated metabolism. To cope with this chronic state of proteotoxic stress, cancers almost invariably upregulate major components of HSR, including HSF1 and individual HSPs. Some oncogenic programs show dependence or coupling with a particular HSR factor (such as frequent coamplification of HSF1 and MYC genes). Elevated levels of HSPs and HSF1 are typically associated with drug resistance and poor clinical outcomes in various malignancies. The non-oncogene dependence ("addiction") on protein quality controls represents a pancancer target in treating human malignancies, offering a potential to enhance efficacy of standard and targeted chemotherapy and immune checkpoint inhibitors. In cancers with specific dependencies, HSR components can serve as alternative targets to poorly druggable oncogenic drivers.
Collapse
Affiliation(s)
- Anna M Cyran
- Legoretta Cancer Center, Department of Pathology and Laboratory Medicine, Brown University, Providence, RI, United States
| | - Anatoly Zhitkovich
- Legoretta Cancer Center, Department of Pathology and Laboratory Medicine, Brown University, Providence, RI, United States
| |
Collapse
|
20
|
Zhao R, Zhang R, Feng L, Dong Y, Zhou J, Qu S, Gai S, Yang D, Ding H, Yang P. Constructing virus-like SiO x/CeO 2/VO x nanozymes for 1064 nm light-triggered mild-temperature photothermal therapy and nanozyme catalytic therapy. NANOSCALE 2022; 14:361-372. [PMID: 34878482 DOI: 10.1039/d1nr06128c] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
The construction of nanoplatforms with combined photothermal properties and cascading enzymatic activities has become an active area of anticancer research. However, the overheating of photothermal therapy (PTT) and the specific properties of tumor microenvironment (TME) greatly impaired the therapeutic efficiency. Herein, we rationally fabricated a virus-like SiOx/CeO2/VOx (SCV) nanoplatform for 1064 nm near-infrared (NIR) triggered mild-temperature PTT and nanozyme catalytic therapy. Firstly, the virus-like shape of SiOx/CeO2/VOx made it favorable for cell adhesion and improved its phagocytosis in cells, and the SCV generated an effective PTT effect upon 1064 nm laser irradiation. Particularly, the produced VO2+ in TME could be used as a heat shock protein inhibitor to inhibit the expression of heat shock protein 60 (HSP60) to enhance the PTT efficiency. Moreover, the SCV nanozyme exhibited obvious peroxidase-mimic (POD) catalytic activity, which could generate highly toxic free radical ions (˙OH) under acidic conditions. The mild-temperature heat and ˙OH produced by enzymatic catalysis effectively blocked the tumor growth, as verified firmly by in vitro and in vivo tests. Our designed virus-like SCV nanozyme with POD mimic enzyme activity and a mild photothermal effect may provide a new way of thinking about the combination therapy model.
Collapse
Affiliation(s)
- Ruoxi Zhao
- Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin, 150001, P. R. China.
| | - Rui Zhang
- Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin, 150001, P. R. China.
| | - Lili Feng
- Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin, 150001, P. R. China.
| | - Yushan Dong
- Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin, 150001, P. R. China.
| | - Jialing Zhou
- Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin, 150001, P. R. China.
| | - Songnan Qu
- Joint Key Laboratory of the Ministry of Education, Institute of Applied Physics and Materials Engineering, University of Macau, Macau, 999078, P. R. China
| | - Shili Gai
- Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin, 150001, P. R. China.
| | - Dan Yang
- Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin, 150001, P. R. China.
- Joint Key Laboratory of the Ministry of Education, Institute of Applied Physics and Materials Engineering, University of Macau, Macau, 999078, P. R. China
| | - He Ding
- Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin, 150001, P. R. China.
| | - Piaoping Yang
- Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin, 150001, P. R. China.
| |
Collapse
|
21
|
Kumari D, Fisher EA, Brodsky JL. Hsp40s play distinct roles during the initial stages of apolipoprotein B biogenesis. Mol Biol Cell 2021; 33:ar15. [PMID: 34910568 PMCID: PMC9236142 DOI: 10.1091/mbc.e21-09-0436] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Apolipoprotein B (ApoB) is the primary component of atherogenic lipoproteins, which transport serum fats and cholesterol. Therefore, elevated levels of circulating ApoB are a primary risk factor for cardiovascular disease. During ApoB biosynthesis in the liver and small intestine under nutrient-rich conditions, ApoB cotranslationally translocates into the endoplasmic reticulum (ER) and is lipidated and ultimately secreted. Under lipid-poor conditions, ApoB is targeted for ER Associated Degradation (ERAD). Although prior work identified select chaperones that regulate ApoB biogenesis, the contributions of cytoplasmic Hsp40s are undefined. To this end, we screened ApoB-expressing yeast and determined that a class A ER-associated Hsp40, Ydj1, associates with and facilitates the ERAD of ApoB. Consistent with these results, a homologous Hsp40, DNAJA1, functioned similarly in rat hepatoma cells. DNAJA1 deficient cells also secreted hyperlipidated lipoproteins, in accordance with attenuated ERAD. In contrast to the role of DNAJA1 during ERAD, DNAJB1-a class B Hsp40-helped stabilize ApoB. Depletion of DNAJA1 and DNAJB1 also led to opposing effects on ApoB ubiquitination. These data represent the first example in which different Hsp40s exhibit disparate effects during regulated protein biogenesis in the ER, and highlight distinct roles that chaperones can play on a single ERAD substrate.
Collapse
Affiliation(s)
- Deepa Kumari
- Department of Biological Sciences, A320 Langley Hall, Fifth & Ruskin Ave, University of Pittsburgh, Pittsburgh, PA 15260 USA
| | - Edward A Fisher
- Department of Medicine, Leon H. Charney Division of Cardiology, Cardiovascular Research Center, New York University Grossman School of Medicine, New York, United States
| | - Jeffrey L Brodsky
- Department of Biological Sciences, A320 Langley Hall, Fifth & Ruskin Ave, University of Pittsburgh, Pittsburgh, PA 15260 USA
| |
Collapse
|
22
|
Rai R, Kennedy AL, Isingizwe ZR, Javadian P, Benbrook DM. Similarities and Differences of Hsp70, hsc70, Grp78 and Mortalin as Cancer Biomarkers and Drug Targets. Cells 2021; 10:cells10112996. [PMID: 34831218 PMCID: PMC8616428 DOI: 10.3390/cells10112996] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 10/29/2021] [Accepted: 11/01/2021] [Indexed: 12/17/2022] Open
Abstract
Background: Upregulation of Heath Shock Protein 70 (HSP70) chaperones supports cancer cell survival. Their high homology causes a challenge to differentiate them in experimental or prevention and treatment strategies. The objective of this investigation was to determine similarities and differences of Hsp70, hsc70, Grp78 and Mortalin members of the HSP70 family encoded by HSPA1, HSPA8, HSPA5 and HSPA9 genes, respectively. Methods: Literature reviews were conducted using HSPA1, HSPA5, HSPA8 and HSPA9 gene or protein names or synonyms combined with biological or cancer-relevant terms. Ingenuity Pathway Analysis was used to identify and compare profiles of proteins that directly bind individual chaperones and their associated pathways. TCGA data was probed to identify associations of hsc70 with cancer patient survival. ClinicalTrials.gov was used to identify HSP70 family studies. Results: The chaperones have similar protein folding functions. Their different cellular effects are determined by co-chaperones and client proteins combined with their intra- and extra-cellular localizations. Their upregulation is associated with worse patient prognosis in multiple cancers and can stimulate tumor immune responses or drug resistance. Their inhibition selectively kills cancer over healthy cells. Conclusions: Differences in Hsp70, hsc70, Grp78 and mortalin provide opportunities to calibrate HSP70 inhibitors for individual cancers and combination therapies.
Collapse
Affiliation(s)
- Rajani Rai
- Gynecologic Oncology Section, Obstetrics and Gynecology Department, Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA; (R.R.); (P.J.)
| | - Amy L. Kennedy
- Pathology Department, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA;
| | - Zitha Redempta Isingizwe
- Pharmaceutical Sciences Department, Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA;
| | - Pouya Javadian
- Gynecologic Oncology Section, Obstetrics and Gynecology Department, Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA; (R.R.); (P.J.)
| | - Doris Mangiaracina Benbrook
- Gynecologic Oncology Section, Obstetrics and Gynecology Department, Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA; (R.R.); (P.J.)
- Pathology Department, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA;
- Pharmaceutical Sciences Department, Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA;
- Correspondence: ; Tel.: +1-405-271-5523
| |
Collapse
|
23
|
The plant diterpene epoxysiderol targets Hsp70 in cancer cells, affecting its ATPase activity and reducing its translocation to plasma membrane. Int J Biol Macromol 2021; 189:262-270. [PMID: 34437915 DOI: 10.1016/j.ijbiomac.2021.08.138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 08/17/2021] [Accepted: 08/17/2021] [Indexed: 11/23/2022]
Abstract
The ATP-dependent molecular chaperone Hsp70 is over-expressed in cancer cells where it plays pivotal roles in stabilization of onco-proteins, promoting cell proliferation and protecting cells from apoptosis and necrosis. Moreover, a relationship between the ability of cancer cells to migrate and the abundance of membrane-associated Hsp70 was shown. However, although Hsp70 is a promising target for cancer therapy, there is a still unsatisfied requirement of inhibitors possibly blocking its cancer-associated activities. Moving from the evidence that the plant diterpene oridonin efficiently targets Hsp70 1A in cancer cells, we set up a small kaurane diterpenoids collection and subjected it to a Surface Plasmon Resonance-screening, to identify new putative inhibitors of this chaperone. The results obtained suggested epoxysiderol as an effective Hsp70 1A interactor; therefore, using a combination of bioanalytical, biochemical and bioinformatics approaches, this compound was shown to bind the nucleotide-binding-domain of the chaperone, thus affecting its ATPase activity. The interaction between epoxysiderol and Hsp70 1A was also demonstrated to actually occur inside cancer cells, significantly reduced the translocation of the chaperone to the cell membrane, thus suggesting a possible role of epoxysiderol as an anti-metastasis agent.
Collapse
|
24
|
The role of heat shock proteins in neoplastic processes and the research on their importance in the diagnosis and treatment of cancer. Contemp Oncol (Pozn) 2021; 25:73-79. [PMID: 34667432 PMCID: PMC8506434 DOI: 10.5114/wo.2021.106006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2021] [Accepted: 02/09/2021] [Indexed: 12/20/2022] Open
Abstract
Heat shock proteins (HSPs) are chaperones with highly conservative primary structure, necessary in the processes of protein folding to the most energetically advantageous conformation and maintaining their stability. HSPs perform a number of important functions in various cellular processes and are capable of modulating pathophysiological conditions at the cellular and systemic levels. An example is the high level of HSP expression in neoplastic tissues, which disrupts the apoptosis of transformed cells and promotes the processes of proliferation, invasion, and metastasis. In addition, an increasing amount of information is appearing about the participation of HSPs in the formation of multidrug resistance.This paper provides a review of the current state of research on the fundamental importance as well as the diagnostic and prognostic role of various classes of HSP in cancer treatment. It presents the prospects for using HSPs as biological markers of disease progression and targets in various cancer treatment strategies. However, the need for additional research is quite high. Only numerous joint efforts of research groups will allow the effective use of HSPs as a tool to combat cancer.
Collapse
|
25
|
Shkedi A, Adkisson M, Schroeder A, Eckalbar WL, Kuo SY, Neckers L, Gestwicki JE. Inhibitor Combinations Reveal Wiring of the Proteostasis Network in Prostate Cancer Cells. J Med Chem 2021; 64:14809-14821. [PMID: 34606726 PMCID: PMC8806517 DOI: 10.1021/acs.jmedchem.1c01342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The protein homeostasis (proteostasis) network is composed of multiple pathways that work together to balance protein folding, stability, and turnover. Cancer cells are particularly reliant on this network; however, it is hypothesized that inhibition of one node might lead to compensation. To better understand these connections, we dosed 22Rv1 prostate cancer cells with inhibitors of four proteostasis targets (Hsp70, Hsp90, proteasome, and p97), either alone or in binary combinations, and measured the effects on cell growth. The results reveal a series of additive, synergistic, and antagonistic relationships, including strong synergy between inhibitors of p97 and the proteasome and striking antagonism between inhibitors of Hsp90 and the proteasome. Based on RNA-seq, these relationships are associated, in part, with activation of stress pathways. Together, these results suggest that cocktails of proteostasis inhibitors might be a powerful way of treating some cancers, although antagonism that blunts the efficacy of both molecules is also possible.
Collapse
Affiliation(s)
- Arielle Shkedi
- Department of Pharmaceutical Chemistry and the Institute for Neurodegenerative Disease, University of California San Francisco, San Francisco CA 94158
| | - Michael Adkisson
- Functional Genomics Core, University of California San Francisco, San Francisco, CA 94158
| | - Andrew Schroeder
- Functional Genomics Core, University of California San Francisco, San Francisco, CA 94158
| | - Walter L Eckalbar
- Functional Genomics Core, University of California San Francisco, San Francisco, CA 94158
| | - Szu-Yu Kuo
- Department of Pharmaceutical Chemistry and the Institute for Neurodegenerative Disease, University of California San Francisco, San Francisco CA 94158
| | - Leonard Neckers
- Urologic Oncology Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892
| | - Jason E. Gestwicki
- Department of Pharmaceutical Chemistry and the Institute for Neurodegenerative Disease, University of California San Francisco, San Francisco CA 94158
| |
Collapse
|
26
|
Parris JL, Barnoud T, Leu JIJ, Leung JC, Ma W, Kirven NA, Poli ANR, Kossenkov AV, Liu Q, Salvino JM, George DL, Weeraratna AT, Chen Q, Murphy ME. HSP70 inhibition blocks adaptive resistance and synergizes with MEK inhibition for the treatment of NRAS-mutant melanoma. CANCER RESEARCH COMMUNICATIONS 2021; 1:17-29. [PMID: 35187538 PMCID: PMC8849551 DOI: 10.1158/2767-9764.crc-21-0033] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
NRAS-mutant melanoma is currently a challenge to treat. This is due to an absence of inhibitors directed against mutant NRAS, along with adaptive and acquired resistance of this tumor type to inhibitors in the MAPK pathway. Inhibitors to MEK (mitogen-activated protein kinase kinase) have shown some promise for NRAS-mutant melanoma. In this work we explored the use of MEK inhibitors for NRAS-mutant melanoma. At the same time we investigated the impact of the brain microenvironment, specifically astrocytes, on the response of a melanoma brain metastatic cell line to MEK inhibition. These parallel avenues led to the surprising finding that astrocytes enhance the sensitivity of melanoma tumors to MEK inhibitors (MEKi). We show that MEKi cause an upregulation of the transcription factor ID3, which confers resistance. This upregulation of ID3 is blocked by conditioned media from astrocytes. We show that silencing ID3 enhances the sensitivity of melanoma to MEK inhibitors, thus mimicking the effect of the brain microenvironment. Moreover, we report that ID3 is a client protein of the chaperone HSP70, and that HSP70 inhibition causes ID3 to misfold and accumulate in a detergent-insoluble fraction in cells. We show that HSP70 inhibitors synergize with MEK inhibitors against NRAS-mutant melanoma, and that this combination significantly enhances the survival of mice in two different models of NRAS-mutant melanoma. These studies highlight ID3 as a mediator of adaptive resistance, and support the combined use of MEK and HSP70 inhibitors for the therapy of NRAS-mutant melanoma. SIGNIFICANCE MEK inhibitors are currently used for NRAS-mutant melanoma, but have shown modest efficacy as single agents. This research shows a synergistic effect of combining HSP70 inhibitors with MEK inhibitors for the treatment of NRAS mutant melanoma.
Collapse
Affiliation(s)
- Joshua L.D. Parris
- Program(s) in Molecular and Cellular Oncogenesis, The Wistar Institute, Philadelphia, Pennsylvania.,Graduate Group in Cell and Molecular Biology, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania
| | - Thibaut Barnoud
- Program(s) in Molecular and Cellular Oncogenesis, The Wistar Institute, Philadelphia, Pennsylvania
| | - Julia I.-Ju Leu
- Department of Genetics, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania
| | - Jessica C. Leung
- Program(s) in Molecular and Cellular Oncogenesis, The Wistar Institute, Philadelphia, Pennsylvania
| | - Weili Ma
- Immunology, Microenvironment and Metastasis, The Wistar Institute, Philadelphia, Pennsylvania
| | - Nicole A. Kirven
- Program(s) in Molecular and Cellular Oncogenesis, The Wistar Institute, Philadelphia, Pennsylvania
| | - Adi Naryana Reddy Poli
- Program(s) in Molecular and Cellular Oncogenesis, The Wistar Institute, Philadelphia, Pennsylvania
| | - Andrew V. Kossenkov
- Gene Expression and Regulation, The Wistar Institute, Philadelphia, Pennsylvania
| | - Qin Liu
- Program(s) in Molecular and Cellular Oncogenesis, The Wistar Institute, Philadelphia, Pennsylvania
| | - Joseph M. Salvino
- Program(s) in Molecular and Cellular Oncogenesis, The Wistar Institute, Philadelphia, Pennsylvania
| | - Donna L. George
- Department of Genetics, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania
| | - Ashani T. Weeraratna
- Department of Biochemistry and Molecular Biology, Johns Hopkins University, Baltimore, Maryland 21205
| | - Qing Chen
- Immunology, Microenvironment and Metastasis, The Wistar Institute, Philadelphia, Pennsylvania
| | - Maureen E. Murphy
- Program(s) in Molecular and Cellular Oncogenesis, The Wistar Institute, Philadelphia, Pennsylvania.,Corresponding Author: Maureen Murphy, The Wistar Institute, 3601 Spruce Street, Room 356, Philadelphia, PA 19104. Phone: 215-495-6870; E-mail:
| |
Collapse
|
27
|
Moutafidi A, Gatzounis G, Zolota V, Assimakopoulou M. Heat shock factor 1 in brain tumors: a link with transient receptor potential channels TRPV1 and TRPA1. J Mol Histol 2021; 52:1233-1244. [PMID: 34591198 DOI: 10.1007/s10735-021-10025-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Accepted: 09/24/2021] [Indexed: 11/29/2022]
Abstract
Novel data report a "cross-talk" between Heat-Shock Factor 1 (HSF1) and the transient receptor potential vanilloid 1 cation channel (TRPV1) located in the cell membrane, introducing these channels as possible drug targets for the regulation of HSF1 activation. This study aims to investigate the co-expression of TRPV1 and HSF1 in human brain tumors. Additionally, the expression of the transient receptor potential ankyrin 1 channel (TRPA1), which is co-operated with TRPV1 in a plethora of cells, was studied. Immunohistochemical staining for HSF1, TRPV1 and TRPA1 expression was quantitatively analyzed in paraffin-embedded semi-serial tissue sections from 74 gliomas and 71 meningiomas. mRNA levels of HSF1, TRPV1 and TRPA1 were evaluated using real-time PCR. Although HSF1 was significantly increased compared with TRPV1/TRPA1 (p ≤ 0.001) in both gliomas and meningiomas, high co-expression levels for HSF1, TRPV1 and TRPA1 were found in 62.50% of diffuse fibrillary astrocytomas (WHO, grade II), 37.50% of anaplastic astrocytomas (WHO, grade III), 16.32% of glioblastomas multiforme (WHO, grade IV), and 42.25% of meningiomas (WHO, grade I and II). Correlation analysis revealed a relationship of HSF1 with TRPV1/TRPA1 in diffuse fibrillary astrocytomas (WHO, grade II) and benign meningiomas (WHO, grade I) contrary to glioblastomas multiforme (WHO, grade IV) and high grade meningiomas (WHO, grade II). Importantly, TRPA1 and TRPV1 expression levels were significantly increased in meningiomas compared with astrocytic tumors (p < 0.05). In conclusion, HSF1 and TRPV1/TRPA1 co-expression may be implicated in the pathogenesis of human brain tumors and should be considered for the therapeutic approaches for these tumors.
Collapse
Affiliation(s)
- Athanasia Moutafidi
- Department of Anatomy, Histology and Embryology, School of Medicine, Biomedical Sciences Research Building, University of Patras, 1 Asklipiou, 26504, Rion Patras, Greece
| | - George Gatzounis
- Department of Neurosurgery, University Hospital of Patras, 26504, Rion Patras, Greece
| | - Vassiliki Zolota
- Department of Pathology, University Hospital of Patras, 26504, Rion Patras, Greece
| | - Martha Assimakopoulou
- Department of Anatomy, Histology and Embryology, School of Medicine, Biomedical Sciences Research Building, University of Patras, 1 Asklipiou, 26504, Rion Patras, Greece.
| |
Collapse
|
28
|
Introductory Chapter: The Importance of Heat Shock Proteins in Survival and Pathogenesis of the Malaria Parasite Plasmodium falciparum. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021. [PMID: 34569019 DOI: 10.1007/978-3-030-78397-6_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/31/2023]
Abstract
Malaria did not die with the end of the age of western colonization but is still a major public health issue in large parts of the world. Despite repeated and concerted efforts to eradicate this disease, it has proved remarkably resilient, and constant vigilance and continuous research are required to discover new chinks in the parasite's armor and alleviate the suffering at both the individual and societal levels. A deeper understanding of the fundamental processes underlying parasite survival, propagation, virulence, and ability to cause disease is the key to the development of desperately needed new therapies and prophylactic drugs. Malaria parasites, by the nature of their lifecycle, are subject to a number of environmental and cellular stresses which they must overcome to survive. To this end, they express a number of heat shock proteins (HSPs), molecules specialized on buffering the effects of external stimuli, but which are also essential for normal cellular biochemistry. In this introductory chapter, I give a brief overview of the diversity of structure, function, and importance of these HSPs, and highlight some of the current and future research questions in this field. Additionally, this chapter acts as a bridge to the other chapters in this book. These chapters, I think you will agree, demonstrate that with regard to HSPs malaria parasites, as in so many things, obey the adage "Same same, but different."
Collapse
|
29
|
Bonanni D, Citarella A, Moi D, Pinzi L, Bergamini E, Rastelli G. Dual Targeting Strategies On Histone Deacetylase 6 (HDAC6) And Heat Shock Protein 90 (Hsp90). Curr Med Chem 2021; 29:1474-1502. [PMID: 34477503 DOI: 10.2174/0929867328666210902145102] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 07/08/2021] [Accepted: 07/23/2021] [Indexed: 11/22/2022]
Abstract
The design of multi-target drugs acting simultaneously on multiple signaling pathways is a growing field in medicinal chemistry, especially for the treatment of complex diseases such as cancer. Histone deacetylase 6 (HDAC6) is an established anticancer drug target involved in tumor cells transformation. Being an epigenetic enzyme at the interplay of many biological processes, HDAC6 has become an attractive target for polypharmacology studies aimed at improving therapeutic efficacy of anticancer drugs. For example, the molecular chaperone Heat shock protein 90 (Hsp90) is a substrate of HDAC6 deacetylation, and several lines of evidence demonstrate that simultaneous inhibition of HDAC6 and Hsp90 promote synergistic antitumor effects on different cancer cell lines, highlighting the potential benefits of developing a single molecule endowed with multi-target activity. This review will summarize the complex interplay between HDAC6 and Hsp90, providing also useful hints for multi-target drug design and discovery approaches in this field. To this end, crystallographic structures of HDAC6 and Hsp90 complexes will be extensively reviewed in the light of discussing binding pockets features and pharmacophore requirements and providing useful guidelines for the design of dual inhibitors. The few examples of multi-target inhibitors obtained so far, mostly based on chimeric approaches, will be summarized and put into context. Finally, the main features of HDAC6 and Hsp90 inhibitors will be compared, and ligand- and structure-based strategies potentially useful for the development of small molecular weight dual inhibitors will be proposed and discussed.
Collapse
Affiliation(s)
- Davide Bonanni
- Department of Life Sciences, University of Modena and Reggio Emilia Via Campi 183, 41125 Modena, Italy
| | - Andrea Citarella
- Department of Life Sciences, University of Modena and Reggio Emilia Via Campi 183, 41125 Modena, Italy
| | - Davide Moi
- Department of Life Sciences, University of Modena and Reggio Emilia Via Campi 183, 41125 Modena, Italy
| | - Luca Pinzi
- Department of Life Sciences, University of Modena and Reggio Emilia Via Campi 183, 41125 Modena, Italy
| | - Elisa Bergamini
- Department of Life Sciences, University of Modena and Reggio Emilia Via Campi 183, 41125 Modena, Italy
| | - Giulio Rastelli
- Department of Life Sciences, University of Modena and Reggio Emilia Via Campi 183, 41125 Modena, Italy
| |
Collapse
|
30
|
Li H, Sui X, Wang Z, Fu H, Wang Z, Yuan M, Liu S, Wang G, Guo Q. A new antisarcoma strategy: multisubtype heat shock protein/peptide immunotherapy combined with PD-L1 immunological checkpoint inhibitors. Clin Transl Oncol 2021; 23:1688-1704. [PMID: 33792840 PMCID: PMC8238772 DOI: 10.1007/s12094-021-02570-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2021] [Accepted: 02/07/2021] [Indexed: 12/11/2022]
Abstract
Osteosarcoma, a common malignant tumor in orthopedics, often has a very poor prognosis after lung metastasis. Immunotherapy has not achieved much progress in the treatment because of the characteristics of solid tumors and immune environment of osteosarcoma. The tumor environment is rather essential for sarcoma treatment. Our previous study demonstrated that heat shock proteins could be used as antitumor vaccines by carrying tumor antigen peptides, and we hypothesize that an anti-osteosarcoma effect may be increased with an immune check point inhibitor (PD-L1 inhibitor) as a combination treatment strategy. The present study prepared a multisubtype mixed heat shock protein osteosarcoma vaccine (mHSP/peptide vaccine) and concluded that the mHSP/peptide vaccine was more effective than a single subtype heat shock protein, like Grp94. Therefore, we used the mHSP/peptide vaccine in combination with a PD-L1 inhibitor to treat osteosarcoma, and the deterioration of osteosarcoma was effectively hampered. The mechanism of combined therapy was investigated, and AKT expression participates with sarcoma lung metastasis. This study proposed an antisarcoma strategy via stimulation of the immune system as a further alternative approach for sarcoma treatment and elucidated the mechanism of combined therapy.
Collapse
Affiliation(s)
- H. Li
- Institute of Orthopedics, Chinese PLA General Hospital, Beijing Key Laboratory of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma War Injuries, PLA, No. 28 Fuxing Road, Haidian District, Beijing, 100853 China
- Changzhi Second People’s Hospital, Changzhi, 046000 Shanxi China
| | - X. Sui
- Institute of Orthopedics, Chinese PLA General Hospital, Beijing Key Laboratory of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma War Injuries, PLA, No. 28 Fuxing Road, Haidian District, Beijing, 100853 China
| | - Z. Wang
- Institute of Orthopedics, Chinese PLA General Hospital, Beijing Key Laboratory of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma War Injuries, PLA, No. 28 Fuxing Road, Haidian District, Beijing, 100853 China
| | - H. Fu
- School of Medicine, Nankai University, Tianjin, 300071 China
| | - Z. Wang
- Institute of Orthopedics, Chinese PLA General Hospital, Beijing Key Laboratory of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma War Injuries, PLA, No. 28 Fuxing Road, Haidian District, Beijing, 100853 China
| | - M. Yuan
- Institute of Orthopedics, Chinese PLA General Hospital, Beijing Key Laboratory of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma War Injuries, PLA, No. 28 Fuxing Road, Haidian District, Beijing, 100853 China
| | - S. Liu
- Institute of Orthopedics, Chinese PLA General Hospital, Beijing Key Laboratory of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma War Injuries, PLA, No. 28 Fuxing Road, Haidian District, Beijing, 100853 China
| | - G. Wang
- Department of Microbiology and Immunology, Shanxi Medical University, Taiyuan, 030001 Shanxi China
| | - Q. Guo
- Institute of Orthopedics, Chinese PLA General Hospital, Beijing Key Laboratory of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma War Injuries, PLA, No. 28 Fuxing Road, Haidian District, Beijing, 100853 China
| |
Collapse
|
31
|
Prevention of High Glucose-Mediated EMT by Inhibition of Hsp70 Chaperone. Int J Mol Sci 2021; 22:ijms22136902. [PMID: 34199046 PMCID: PMC8268552 DOI: 10.3390/ijms22136902] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 06/11/2021] [Accepted: 06/24/2021] [Indexed: 12/29/2022] Open
Abstract
Hyperglycemia may contribute to the progression of carcinomas by triggering epithelial-to-mesenchymal transition (EMT). Some proteostasis systems are involved in metastasis; in this paper, we sought to explore the mechanism of Hsp70 chaperone in EMT. We showed that knockdown of Hsp70 reduced cell migration capacity concomitantly with levels of mRNA of the Slug, Snail, and Twist markers of EMT, in colon cancer cells incubated in high glucose medium. Conversely, treatment of cells with Hsp70 inducer U-133 were found to elevate cell motility, along with the other EMT markers. To prove that inhibiting Hsp70 may reduce EMT efficiency, we treated cells with a CL-43 inhibitor of the HSF1 transcription factor, which lowered Hsp70 and HSF1 content in the control and induced EMT in carcinoma cells. Importantly, CL-43 reduced migration capacity, EMT-linked transcription factors, and increased content of epithelial marker E-cadherin in colon cancer cells of three lines, including one derived from a clinical sample. To prove that Hsp70 chaperone should be targeted when inhibiting the EMT pathway, we treated cancer cells with 2-phenylethynesulfonamide (PES) and demonstrated that the compound inhibited substrate-binding capacity of Hsp70. Furthermore, PES suppressed EMT features, cell motility, and expression of specific transcription factors. In conclusion, the Hsp70 chaperone machine efficiently protects mechanisms of the EMT, and the safe inhibitors of the chaperone are needed to hamper metastasis at its initial stage.
Collapse
|
32
|
Inhibition of the Human Hsc70 System by Small Ligands as a Potential Anticancer Approach. Cancers (Basel) 2021; 13:cancers13122936. [PMID: 34208232 PMCID: PMC8230956 DOI: 10.3390/cancers13122936] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Accepted: 06/08/2021] [Indexed: 12/12/2022] Open
Abstract
Simple Summary High levels of Heat shock proteins (Hsps) in specific cancers are usually linked to a poor prognosis, tumor progression, invasiveness, and resistance to treatment. Chaperone inhibition could therefore be toxic for cancer cells due to their high dependence on chaperone activity to survive. This study shows the potential to repurpose the small chemical compound pinaverium bromide, currently used to treat functional gastrointestinal disorders, as a possible antitumor drug since it displays a marked toxicity against two melanoma cell lines without affecting the viability of fibroblast and primary melanocytes. This compound interacts with structural regions shared by representatives of the Hsp70 and Hsp110 families, inhibiting the substrate remodeling ability of the Hsp70 system in vitro and in a cellular context. Abstract Heat shock protein (Hsp) synthesis is upregulated in a wide range of cancers to provide the appropriate environment for tumor progression. The Hsp110 and Hsp70 families have been associated to cancer cell survival and resistance to chemotherapy. In this study, we explore the strategy of drug repurposing to find new Hsp70 and Hsp110 inhibitors that display toxicity against melanoma cancer cells. We found that the hits discovered using Apg2, a human representative of the Hsp110 family, as the initial target bind also to structural regions present in members of the Hsp70 family, and therefore inhibit the remodeling activity of the Hsp70 system. One of these compounds, the spasmolytic agent pinaverium bromide used for functional gastrointestinal disorders, inhibits the intracellular chaperone activity of the Hsp70 system and elicits its cytotoxic activity specifically in two melanoma cell lines by activating apoptosis. Docking and molecular dynamics simulations indicate that this compound interacts with regions located in the nucleotide-binding domain and the linker of the chaperones, modulating their ATPase activity. Thus, repurposing of pinaverium bromide for cancer treatment appears as a promising novel therapeutic approach.
Collapse
|
33
|
Vashum Y, Kottaiswamy A, Loganathan T, Sheriff FB, Samuel S. Anti-carcinogenic Effect of Cathepsin K Inhibitor, Odanacatib with a Low Dose of Cisplatin Against Human Breast Carcinoma MCF-7 and MDA-MB231 Cells. CURRENT CANCER THERAPY REVIEWS 2021. [DOI: 10.2174/1573394716666201222101925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Background:
A cross-linking agent commonly used for cancer chemotherapy is a platinum
compound such as cisplatin. However, with the acquisition of cellular drug resistance and adverse
side effects, the potency of cisplatin is, therefore, often tempered. To overcome these issues,
the present study has established the use of cathepsin k (CTSK) inhibitor as a potent chemosensitizer.
Methods:
The cytotoxic effect of cisplatin and odanacatib (ODN) on two different breast cancer patient-
derived cell lines, MDA-MB-231 and MCF-7, was assessed by MTT-based colorimetric assay.
The drug interaction coefficient CDI was used to evaluate the synergistically inhibitory impact
of the drug combination and immunoblot was used to examine the expression of certain proteins responsible
for cell survival and the mechanism of apoptosis.
Results:
In this study, we found that IC50 of ODN in combination with cisplatin (half of IC25) induced
a synergistic cytotoxic effect in different breast cancer cells. Diminished expression of Bcl-2
and increased expression of Bax aroused the cytochrome release, that triggered caspase-9 and -3 activation
in the combinatorial group. ODN with a lower dose of cisplatin significantly inhibited the
protein expression of novel chemoresistant factors such as STAT3, NFκB and IL-6.
Conclusion:
This study highlights the potential effects of the combination of ODN with a reduced
dose of cisplatin on improving the growth inhibition and apoptosis-inducing effect on breast cancer
cells via combined inhibition of NF-κB-induced IL-6 and STAT3 activation. The study result
suggests that the further development of this novel inhibitor in combination with a low dose of standard
cisplatin-based chemotherapy may contribute to an alternative treatment option for certain
cancers.
Collapse
Affiliation(s)
- Yaongamphi Vashum
- Department of Biochemistry, VRR Institute of Biomedical Science (Affiliated to University of Madras), Chennai- 600056, Tamilnadu, India
| | - Amuthavalli Kottaiswamy
- Department of Biochemistry, VRR Institute of Biomedical Science (Affiliated to University of Madras), Chennai- 600056, Tamilnadu, India
| | - Tholcopiyan Loganathan
- Department of Biochemistry, VRR Institute of Biomedical Science (Affiliated to University of Madras), Chennai- 600056, Tamilnadu, India
| | - Fathima B. Sheriff
- Department of Biochemistry, VRR Institute of Biomedical Science (Affiliated to University of Madras), Chennai- 600056, Tamilnadu, India
| | - Shila Samuel
- Department of Biochemistry, VRR Institute of Biomedical Science (Affiliated to University of Madras), Chennai- 600056, Tamilnadu, India
| |
Collapse
|
34
|
Lung cancer: progression of heat shock protein 70 in association with flap endonuclease 1 protein. 3 Biotech 2021; 11:141. [PMID: 33708464 DOI: 10.1007/s13205-020-02598-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Accepted: 12/17/2020] [Indexed: 12/24/2022] Open
Abstract
Lung cancer is one of the leading causes of cancer deaths worldwide and existing approaches are not enough to manage, and hence, it is important to concentrate on new drug strategies. This study was aimed to identify the interacting partner of Flap endonuclease 1 (FEN1) and its role in cancer treatment. We identified a new FEN1 interacting partner confirmed it as Heat Shock Protein 70 (HSP 70), and its effect on FEN1 expression, in vitro. Additionally, we found that the 5-Fluorouracil's (5-FU) function was significantly improved when used in combination with HSP 70 inhibitor (KNK 437). The findings are interesting, elucidating the synergistic mechanism between two compounds which helps to develop a novel management strategy for over-expressed FEN1 in the lung. SUPPLEMENTARY INFORMATION The online version contains supplementary material available at 10.1007/s13205-020-02598-3.
Collapse
|
35
|
van Oosten-Hawle P, Bergink S, Blagg B, Brodsky J, Edkins A, Freeman B, Genest O, Hendershot L, Kampinga H, Johnson J, De Maio A, Masison D, Morano K, Multhoff G, Prodromou C, Prahlad V, Scherz-Shouval R, Zhuravleva A, Mollapour M, Truman AW. First Virtual International Congress on Cellular and Organismal Stress Responses, November 5-6, 2020. Cell Stress Chaperones 2021; 26:289-295. [PMID: 33559835 PMCID: PMC7871303 DOI: 10.1007/s12192-021-01192-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/18/2021] [Indexed: 11/29/2022] Open
Abstract
Members of the Cell Stress Society International (CSSI), Patricija van Oosten-Hawle (University of Leeds, UK), Mehdi Mollapour (SUNY Upstate Medical University, USA), Andrew Truman (University of North Carolina at Charlotte, USA) organized a new virtual meeting format which took place on November 5-6, 2020. The goal of this congress was to provide an international platform for scientists to exchange data and ideas among the Cell Stress and Chaperones community during the Covid-19 pandemic. Here we will highlight the summary of the meeting and acknowledge those who were honored by the CSSI.
Collapse
Affiliation(s)
- Patricija van Oosten-Hawle
- School of Molecular and Cell Biology and Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, LS2 9JT, UK.
| | - Steven Bergink
- Department of Biomedical Sciences of Cells and Systems, University Medical Center Groningen, Groningen, AV, 9713, The Netherlands
| | - Brian Blagg
- Department of Chemistry & Biochemistry, College of Science, University of Notre Dame, Notre Dame, IN, USA
| | - Jeff Brodsky
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA, USA
| | - Adrienne Edkins
- Biomedical Biotechnology Research Unit, Department of Biochemistry and Microbiology, Rhodes University, Grahamstown, 6140, South Africa
- Centre for Chemico- and Biomedicinal Research, Rhodes University, Grahamstown, 6140, South Africa
| | - Brian Freeman
- Department of Cell and Developmental Biology, University of Illinois Urbana-Champaign, Urbana, IL, 61801, USA
| | - Olivier Genest
- Aix Marseille University, CNRS, BIP UMR, 7281, Marseille, France
| | - Linda Hendershot
- Department of Tumor Cell Biology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Harm Kampinga
- Department of Cell Biology, University of Groningen, University Medical Center Groningen, Ant. Deusinglaan 1, 9713, AV, Groningen, The Netherlands
| | - Jill Johnson
- Department of Biological Sciences and the Center for Reproductive Biology, University of Idaho, Moscow, ID, 83844, USA
| | - Antonio De Maio
- Division of Trauma, Critical Care, Burns and Acute Care Surgery, Department of Surgery, School of Medicine, University of California San Diego, La Jolla, CA, 92093, USA
- Department of Neurosciences, School of Medicine, University of California San Diego, La Jolla, CA, 92093, USA
| | - Dan Masison
- Laboratory of Biochemistry and Genetics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, 8 Center Dr, Room 324, Bethesda, MD, 20892, USA
| | - Kevin Morano
- Department of Microbiology and Molecular Genetics, University of Texas Medical School at Houston, Houston, TX, 77030, USA
| | - Gabriele Multhoff
- Radiation Immuno-Oncology Group, Center for Translational Cancer Research (TranslaTUM), Technical University of Munich (TUM), 81675, Munich, Germany
- Department of Radiation Oncology, School of Medicine, Technical University of Munich (TUM), 81675, Munich, Germany
| | - Chris Prodromou
- Genome Damage and Stability Centre, University of Sussex, Brighton, BN1 9RQ, UK
| | - Veena Prahlad
- Department of Biology, Aging Mind and Brain Initiative, University of Iowa, Iowa City, IA, USA
- Iowa Neuroscience Institute, University of Iowa, Iowa City, IA, USA
| | - Ruth Scherz-Shouval
- Department of Biomolecular Sciences, The Weizmann Institute of Science, Rehovot, Israel
| | - Anastasia Zhuravleva
- School of Molecular and Cell Biology and Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, LS2 9JT, UK
| | - Mehdi Mollapour
- Department of Urology, SUNY Upstate Medical University, Syracuse, NY, 13210, USA.
- Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, Syracuse, NY, 13210, USA.
- Upstate Cancer Center, SUNY Upstate Medical University, Syracuse, NY, 13210, USA.
| | - Andrew W Truman
- Department of Biological Sciences, University of North Carolina at Charlotte, Charlotte, NC, 28223, USA.
| |
Collapse
|
36
|
Melatonin potentiates the cytotoxic effect of Neratinib in HER2 + breast cancer through promoting endocytosis and lysosomal degradation of HER2. Oncogene 2021; 40:6273-6283. [PMID: 34556812 PMCID: PMC8566236 DOI: 10.1038/s41388-021-02015-w] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Revised: 08/27/2021] [Accepted: 09/08/2021] [Indexed: 02/08/2023]
Abstract
Complete blockade of the HER2 protein itself and HER signaling network is critical to achieving effective HER2-targeted therapies. Despite the success of HER2-targeted therapies, the diseases will relapse in a significant fraction of patients with HER2+ breast cancers. How to improve the therapeutic efficacy of existing HER2-targeted agents remains an unmet clinical need. Here, we uncover a role of Melatonin in diminishing HER2-mediated signaling by destruction of HER2 protein. Mechanistically, Melatonin treatment attenuated the protective effect of the HSP90 chaperone complex on its client protein HER2, triggering ubiquitylation and subsequent endocytic lysosomal degradation of HER2. The inhibitory effect of Melatonin on HER2 signaling substantially enhanced the cytotoxic effects of the pan-HER inhibitor Neratinib in HER2+ breast cancer cells. Lastly, we demonstrate that dual inhibition of HER2 by combined use of Melatonin and Neratinib effectively blocked the growth of HER2+ breast tumor xenografts in vivo. Our findings shed light on the potential use of Melatonin in a novel dual HER2 blockade strategy for HER2+ breast cancer treatment.
Collapse
|
37
|
Alekseenko L, Shilina M, Kozhukharova I, Lyublinskaya O, Fridlyanskaya I, Nikolsky N, Grinchuk T. Impact of Polyallylamine Hydrochloride on Gene Expression and Karyotypic Stability of Multidrug Resistant Transformed Cells. Cells 2020; 9:E2332. [PMID: 33096691 PMCID: PMC7589997 DOI: 10.3390/cells9102332] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2020] [Revised: 09/25/2020] [Accepted: 10/19/2020] [Indexed: 12/12/2022] Open
Abstract
The synthetic polymer, polyallylamine hydrochloride (PAA), is found in a variety of applications in biotechnology and medicine. It is used in gene and siRNA transfer, to form microcapsules for targeted drug delivery to damaged and tumor cells. Conventional chemotherapy often does not kill all cancer cells and leads to multidrug resistance (MDR). Until recently, studies of the effects of PAA on cells have mainly focused on their morphological and genetic characteristics immediately or several hours after exposure to the polymer. The properties of the cell progeny which survived the sublethal effects of PAA and resumed their proliferation, were not monitored. The present study demonstrated that treatment of immortalized Chinese hamster cells CHLV-79 RJK sensitive (RJK) and resistant (RJKEB) to ethidium bromide (EB) with cytotoxic doses of PAA, selected cells with increased karyotypic instability, were accompanied by changes in the expression of p53 genes c-fos, topo2-α, hsp90, hsc70. These changes did not contribute to the progression of MDR, accompanied by the increased sensitivity of these cells to the toxic effects of doxorubicin (DOX). Our results showed that PAA does not increase the oncogenic potential of immortalized cells and confirmed that it can be used for intracellular drug delivery for anticancer therapy.
Collapse
|
38
|
Sato A, Hiramoto A, Kim HS, Wataya Y. Anticancer Strategy Targeting Cell Death Regulators: Switching the Mechanism of Anticancer Floxuridine-Induced Cell Death from Necrosis to Apoptosis. Int J Mol Sci 2020; 21:ijms21165876. [PMID: 32824286 PMCID: PMC7461588 DOI: 10.3390/ijms21165876] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2020] [Revised: 08/10/2020] [Accepted: 08/13/2020] [Indexed: 01/14/2023] Open
Abstract
Cell death can be broadly characterized as either necrosis or apoptosis, depending on the morphological and biochemical features of the cell itself. We have previously reported that the treatment of mouse mammary carcinoma FM3A cells with the anticancer drug floxuridine (FUdR) induces necrosis in the original clone F28-7 but apoptosis in the variant F28-7-A. We have identified regulators, including heat shock protein 90, lamin-B1, cytokeratin-19, and activating transcription factor 3, of cell death mechanisms by using comprehensive gene and protein expression analyses and a phenotype-screening approach. We also observed that the individual inhibition or knockdown of the identified regulators in F28-7 results in a shift from necrotic to apoptotic morphology. Furthermore, we investigated microRNA (miRNA, miR) expression profiles in sister cell strains F28-7 and F28-7-A using miRNA microarray analyses. We found that several unique miRNAs, miR-351-5p and miR-743a-3p, were expressed at higher levels in F28-7-A than in F28-7. Higher expression of these miRNAs in F28-7 induced by transfecting miR mimics resulted in a switch in the mode of cell death from necrosis to apoptosis. Our findings suggest that the identified cell death regulators may play key roles in the decision of cell death mechanism: necrosis or apoptosis.
Collapse
Affiliation(s)
- Akira Sato
- Department of Biochemistry and Molecular Biology, Faculty of Pharmaceutical Sciences, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan
- Correspondence: ; Tel.: +81-4-7121-3620
| | - Akiko Hiramoto
- Division of International Infectious Disease Control, Faculty of Pharmaceutical Sciences, Okayama University, 1-1-1 Tsushima-naka, Kita-ku, Okayama 700-8530, Japan; (A.H.); (H.-S.K.); (Y.W.)
| | - Hye-Sook Kim
- Division of International Infectious Disease Control, Faculty of Pharmaceutical Sciences, Okayama University, 1-1-1 Tsushima-naka, Kita-ku, Okayama 700-8530, Japan; (A.H.); (H.-S.K.); (Y.W.)
| | - Yusuke Wataya
- Division of International Infectious Disease Control, Faculty of Pharmaceutical Sciences, Okayama University, 1-1-1 Tsushima-naka, Kita-ku, Okayama 700-8530, Japan; (A.H.); (H.-S.K.); (Y.W.)
| |
Collapse
|
39
|
Argyriou AA, Bruna J, Park SB, Cavaletti G. Emerging pharmacological strategies for the management of chemotherapy-induced peripheral neurotoxicity (CIPN), based on novel CIPN mechanisms. Expert Rev Neurother 2020; 20:1005-1016. [PMID: 32667212 DOI: 10.1080/14737175.2020.1796639] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
INTRODUCTION Based on results of available clinical trials, the treatment and prevention of chemotherapy-induced peripheral neurotoxicity (CIPN) largely remains an unmet clinical need. However, new approaches have emerged in the last few years, attempting to modify the natural history of acute and late CIPN effects through a better knowledge of the pathogenic process on the molecular level. AREAS COVERED Clinical results of recently published (last 5 years) or ongoing emerging therapeutic/preventive pharmacological approaches based on novel CIPN mechanisms have been identified from Pubmed and ClinicalTrials.gov. Results are reviewed and discussed, in order to assess the trend of new clinical studies but also to infer the role novel approaches may have in the future. EXPERT OPINION The large heterogeneity of disease-causing mechanisms prevents researchers from identifying a reliable approach to effectively and safely treat or prevent CIPN. Understanding of novel pathophysiologic processes is leading the way to novel therapies, which, through targeting the sphingosine 1-phosphate receptor or pharmacologically inhibiting axonal degeneration might achieve in the future both treatment and prevention of CIPN. Toward this end, a multi-targeting approach, combining drugs to target different CIPN pathomechanisms seems to be a rational approach that warrants testing.
Collapse
Affiliation(s)
- Andreas A Argyriou
- Department of Neurology, Saint Andrew's State General Hospital of Patras , Patras, Greece
| | - Jordi Bruna
- Unit of Neuro-Oncology, Hospital Universitari de Bellvitge-ICO L'Hospitalet-IDIBELL , Barcelona, Spain
| | - Susanna B Park
- Brain and Mind Centre, Faculty of Medicine and Health, The University of Sydney , Sydney, Australia
| | - Guido Cavaletti
- Experimental Neurology Unit and Milan Center for Neuroscience, University of Milano-Bicocca , Monza, Italy
| |
Collapse
|
40
|
Synthetic approaches, anticancer potential, HSP90 inhibition, multitarget evaluation, molecular modeling and apoptosis mechanistic study of thioquinazolinone skeleton: Promising antibreast cancer agent. Bioorg Chem 2020; 101:103987. [DOI: 10.1016/j.bioorg.2020.103987] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Revised: 05/23/2020] [Accepted: 05/29/2020] [Indexed: 11/18/2022]
|
41
|
Sanchez-Martin C, Serapian SA, Colombo G, Rasola A. Dynamically Shaping Chaperones. Allosteric Modulators of HSP90 Family as Regulatory Tools of Cell Metabolism in Neoplastic Progression. Front Oncol 2020; 10:1177. [PMID: 32766157 PMCID: PMC7378685 DOI: 10.3389/fonc.2020.01177] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Accepted: 06/10/2020] [Indexed: 12/31/2022] Open
Abstract
Molecular chaperones have recently emerged as fundamental regulators of salient biological routines, including metabolic adaptations to environmental changes. Yet, many of the molecular mechanisms at the basis of their functions are still unknown or at least uncertain. This is in part due to the lack of chemical tools that can interact with the chaperones to induce measurable functional perturbations. In this context, the use of small molecules as modulators of protein functions has proven relevant for the investigation of a number of biomolecular systems. Herein, we focus on the functions, interactions and signaling pathways of the HSP90 family of molecular chaperones as possible targets for the discovery of new molecular entities aimed at tuning their activity and interactions. HSP90 and its mitochondrial paralog, TRAP1, regulate the activity of crucial metabolic circuitries, making cells capable of efficiently using available energy sources, with relevant implications both in healthy conditions and in a variety of disease states and especially cancer. The design of small-molecules targeting the chaperone cycle of HSP90 and able to inhibit or stimulate the activity of the protein can provide opportunities to finely dissect their biochemical activities and to obtain lead compounds to develop novel, mechanism-based drugs.
Collapse
Affiliation(s)
| | | | - Giorgio Colombo
- Dipartimento di Chimica, Università di Pavia, Pavia, Italy.,Istituto di Chimica del Riconoscimento Molecolare, CNR, Milan, Italy
| | - Andrea Rasola
- Dipartimento di Scienze Biomediche, Università di Padova, Padua, Italy
| |
Collapse
|
42
|
Mittal S, Rajala MS. Heat shock proteins as biomarkers of lung cancer. Cancer Biol Ther 2020; 21:477-485. [PMID: 32228356 PMCID: PMC7515496 DOI: 10.1080/15384047.2020.1736482] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Revised: 12/18/2019] [Accepted: 02/18/2020] [Indexed: 12/31/2022] Open
Abstract
Heat shock proteins are known to be associated with a wide variety of human cancers including lung cancer. Overexpression of these molecular chaperones is linked with tumor survival, metastasis and anticancer drug resistance. In recent years, heat shock proteins are gaining much importance in the field of cancer research owing to their potential to be key determinants of cell survival and apoptosis. Lung cancer is one of the most common cancers diagnosed worldwide and the association of heat shock proteins in lung cancer diagnosis, prognosis and as drug targets remains unresolved. The aim of this review is to draw the importance of heat shock protein members; Hsp27, Hsp70, Hsp90, Hsp60 and their diagnostic and prognostic implications in lung cancer. Based on the available literature heat shock proteins can serve as biomarkers and anticancer drug targets in the management of lung cancer patients.
Collapse
Affiliation(s)
- Sonam Mittal
- School of Biotechnology, Jawaharlal Nehru University, New Delhi, India
| | | |
Collapse
|
43
|
17-Aminogeldanamycin Inhibits Constitutive Nuclear Factor-Kappa B (NF-κB) Activity in Patient-Derived Melanoma Cell Lines. Int J Mol Sci 2020; 21:ijms21113749. [PMID: 32466509 PMCID: PMC7312877 DOI: 10.3390/ijms21113749] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 05/21/2020] [Accepted: 05/25/2020] [Indexed: 12/12/2022] Open
Abstract
Melanoma remains incurable skin cancer, and targeting heat shock protein 90 (HSP90) is a promising therapeutic approach. In this study, we investigate the effect of 17-aminogeldanamycin, a potent HSP90 inhibitor, on nuclear factor-kappa B (NF-κB) activity in BRAFV600E and NRASQ61R patient-derived melanoma cell lines. We performed time-lapse microscopy and flow cytometry to monitor changes in cell confluence and viability. The NF-κB activity was determined by immunodetection of phospho-p65 and assessment of expression of NF-κB-dependent genes by quantitative real-time polymerase chain reaction (qRT-PCR), Western blotting, and enzyme-linked immunosorbent assay (ELISA). Constitutive activity of p65/NF-κB was evident in all melanoma cell lines. Differences in its level might be associated with genetic alterations in CHUK, IL1B, MAP3K14, NFKBIE, RIPK1, and TLR4, while differences in transcript levels of NF-κB-inducible genes revealed by PCR array might result from the contribution of other regulatory mechanisms. 17-Aminogeldanamycin markedly diminished the level of phospho-p65, but the total p65 protein level was unaltered, indicating that 17-aminogeldanamycin inhibited activation of p65/NF-κB. This conclusion was supported by significantly reduced expression of selected NF-κB-dependent genes: cyclin D1 (CCND1), C-X-C motif chemokine ligand 8 (CXCL8), and vascular endothelial growth factor (VEGF), as shown at transcript and protein levels, as well as secretion of IL-8 and VEGF. Our study indicates that 17-aminogeldanamycin can be used for efficient inhibition of NF-κB activity and the simultaneous diminution of IL-8 and VEGF levels in the extracellular milieu of melanoma.
Collapse
|
44
|
Molecular Chaperones in Cancer Stem Cells: Determinants of Stemness and Potential Targets for Antitumor Therapy. Cells 2020; 9:cells9040892. [PMID: 32268506 PMCID: PMC7226806 DOI: 10.3390/cells9040892] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2020] [Revised: 03/30/2020] [Accepted: 04/03/2020] [Indexed: 12/11/2022] Open
Abstract
Cancer stem cells (CSCs) are a great challenge in the fight against cancer because these self-renewing tumorigenic cell fractions are thought to be responsible for metastasis dissemination and cases of tumor recurrence. In comparison with non-stem cancer cells, CSCs are known to be more resistant to chemotherapy, radiotherapy, and immunotherapy. Elucidation of mechanisms and factors that promote the emergence and existence of CSCs and their high resistance to cytotoxic treatments would help to develop effective CSC-targeting therapeutics. The present review is dedicated to the implication of molecular chaperones (protein regulators of polypeptide chain folding) in both the formation/maintenance of the CSC phenotype and cytoprotective machinery allowing CSCs to survive after drug or radiation exposure and evade immune attack. The major cellular chaperones, namely heat shock proteins (HSP90, HSP70, HSP40, HSP27), glucose-regulated proteins (GRP94, GRP78, GRP75), tumor necrosis factor receptor-associated protein 1 (TRAP1), peptidyl-prolyl isomerases, protein disulfide isomerases, calreticulin, and also a transcription heat shock factor 1 (HSF1) initiating HSP gene expression are here considered as determinants of the cancer cell stemness and potential targets for a therapeutic attack on CSCs. Various approaches and agents are discussed that may be used for inhibiting the chaperone-dependent development/manifestations of cancer cell stemness.
Collapse
|