1
|
Berner AM, Murugaesu N. The Evolving Role of Genomics in Colorectal Cancer. Clin Oncol (R Coll Radiol) 2024; 37:103661. [PMID: 39536702 DOI: 10.1016/j.clon.2024.10.033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 08/08/2024] [Accepted: 10/16/2024] [Indexed: 11/16/2024]
Abstract
Approximately 75% of colorectal cancers (CRCs) harbour an identifiable driver mutation, 5% of which are heritable. These drivers have recognised implications for prognosis and therapy selection. In addition, potential germline mutations require investigations to inform testing of relatives, as well as surveillance for other malignancies. With increasing numbers of targeted drugs being approved, judicious testing is required to ensure sufficient tumour sample is available for testing and at the right point in the cancer pathway. Liquid biopsy with circulating tumour DNA (ctDNA) in the blood presents an exciting adjunct to tumour tissue testing for molecular drivers, as well as escalation and de-escalation of therapy. Here, we review the most frequent molecular alterations in CRC, how genomic testing should be integrated into the treatment pathway for CRC, and sources of further education.
Collapse
Affiliation(s)
- A M Berner
- Barts Cancer Institute, Queen Mary University of London, John Vane Science Centre, Charterhouse Square, London EC1M 6AU, UK
| | - N Murugaesu
- Guy's & St Thomas' NHS Foundation Trust, Great Maze Pond, London, SE1 9RT, UK; Genomics England, 1 Canada Square, London E14 5AB, UK.
| |
Collapse
|
2
|
Kou FR, Li J, Wang ZH, Xu T, Qian JJ, Zhang EL, Zhang LJ, Shen L, Wang XC. Analysis of actionable gene fusions in a large cohort of Chinese patients with colorectal cancer. Gastroenterol Rep (Oxf) 2024; 12:goae092. [PMID: 39391592 PMCID: PMC11464618 DOI: 10.1093/gastro/goae092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 04/17/2024] [Accepted: 09/18/2024] [Indexed: 10/12/2024] Open
Abstract
Background The prevalence of gene fusion is extremely low in unselected patients with colorectal cancer (CRC). Published data on gene fusions are limited by relatively small sample sizes, with a primary focus on Western populations. This study aimed to analyse actionable gene fusions in a large consecutive Chinese CRC population. Methods This study included 5,534 consecutive CRC patients from the Genecast database. Genomic profiling was performed using a panel of 769 cancer-related genes. Data for 34 CRC patients with actionable gene fusions were also collected from cBioPortal and ChimerSeq. Results Among 5,534 CRC patients, 54 (0.98%) had actionable gene fusions, with NTRK1/2/3 being the most common fusion (0.38%), accounting for 38.9% (21/54) of those with fusions. Actionable gene fusion enrichment was higher in patients with microsatellite instability-high (MSI-H) (6.7% vs. 0.5%, P < 0.001), RAS/BRAF wildtype (2.0% vs. 0.2%, P < 0.001) and RNF43 mutation (7.7% vs. 0.4%, P < 0.001) than in patients with microsatellite stability/MSI-low, RAS/BRAF mutation and RNF43 wildtype, respectively. When these markers were combined, the fusion detection rate increased. Among patients with RAS/BRAF wildtype and MSI-H, fusions were detected in 20.3% of patients. The fusion detection rate further increased to 37.5% when RNF43 mutation was added. The fusion detection rate was also higher in colon cancer than in rectal cancer. No significant differences in clinical or molecular features were found in patients with actionable gene fusions between the Genecast, cBioPortal, and ChimerSeq databases. Conclusions Approximately 1% of the unselected Chinese CRC population carries actionable gene fusions, mostly involving NTRK. Actionable gene fusions are more prevalent in MSI-H, RAS/BRAF wildtype, or RNF43-mutated CRC, as well as in colon cancer. Mapping of these molecular markers can markedly increase the fusion detection rate, which can help clinicians select candidates for fusion testing and targeted therapy.
Collapse
Affiliation(s)
- Fu-Rong Kou
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Gastrointestinal Oncology, Peking University Cancer Hospital & Institute, Beijing, P. R. China
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Comprehensive Clinical Trial Ward, Peking University Cancer Hospital & Institute, Beijing, P. R. China
| | - Jian Li
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Gastrointestinal Oncology, Peking University Cancer Hospital & Institute, Beijing, P. R. China
| | - Zheng-Hang Wang
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Gastrointestinal Oncology, Peking University Cancer Hospital & Institute, Beijing, P. R. China
| | - Ting Xu
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Gastrointestinal Oncology, Peking University Cancer Hospital & Institute, Beijing, P. R. China
| | - Juan-Juan Qian
- Department of Medicine, Genecast Biotechnology Co., Ltd., Wuxi, Jiangsu, P. R. China
| | - En-Li Zhang
- Department of Medicine, Genecast Biotechnology Co., Ltd., Wuxi, Jiangsu, P. R. China
| | - Li-Jun Zhang
- Department of Medicine, Genecast Biotechnology Co., Ltd., Wuxi, Jiangsu, P. R. China
| | - Lin Shen
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Gastrointestinal Oncology, Peking University Cancer Hospital & Institute, Beijing, P. R. China
| | - Xi-Cheng Wang
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Gastrointestinal Oncology, Peking University Cancer Hospital & Institute, Beijing, P. R. China
| |
Collapse
|
3
|
Nunes L, Li F, Wu M, Luo T, Hammarström K, Torell E, Ljuslinder I, Mezheyeuski A, Edqvist PH, Löfgren-Burström A, Zingmark C, Edin S, Larsson C, Mathot L, Osterman E, Osterlund E, Ljungström V, Neves I, Yacoub N, Guðnadóttir U, Birgisson H, Enblad M, Ponten F, Palmqvist R, Xu X, Uhlén M, Wu K, Glimelius B, Lin C, Sjöblom T. Prognostic genome and transcriptome signatures in colorectal cancers. Nature 2024; 633:137-146. [PMID: 39112715 PMCID: PMC11374687 DOI: 10.1038/s41586-024-07769-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Accepted: 07/01/2024] [Indexed: 08/17/2024]
Abstract
Colorectal cancer is caused by a sequence of somatic genomic alterations affecting driver genes in core cancer pathways1. Here, to understand the functional and prognostic impact of cancer-causing somatic mutations, we analysed the whole genomes and transcriptomes of 1,063 primary colorectal cancers in a population-based cohort with long-term follow-up. From the 96 mutated driver genes, 9 were not previously implicated in colorectal cancer and 24 had not been linked to any cancer. Two distinct patterns of pathway co-mutations were observed, timing analyses identified nine early and three late driver gene mutations, and several signatures of colorectal-cancer-specific mutational processes were identified. Mutations in WNT, EGFR and TGFβ pathway genes, the mitochondrial CYB gene and 3 regulatory elements along with 21 copy-number variations and the COSMIC SBS44 signature correlated with survival. Gene expression classification yielded five prognostic subtypes with distinct molecular features, in part explained by underlying genomic alterations. Microsatellite-instable tumours divided into two classes with different levels of hypoxia and infiltration of immune and stromal cells. To our knowledge, this study constitutes the largest integrated genome and transcriptome analysis of colorectal cancer, and interlinks mutations, gene expression and patient outcomes. The identification of prognostic mutations and expression subtypes can guide future efforts to individualize colorectal cancer therapy.
Collapse
Affiliation(s)
- Luís Nunes
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
- Department of Molecular Oncology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
| | - Fuqiang Li
- HIM-BGI Omics Center, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences (CAS), BGI Research, Hangzhou, China
- Guangdong Provincial Key Laboratory of Human Disease Genomics, Shenzhen Key Laboratory of Genomics, BGI Research, Shenzhen, China
- Institute of Intelligent Medical Research (IIMR), BGI Genomics, Shenzhen, China
| | - Meizhen Wu
- HIM-BGI Omics Center, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences (CAS), BGI Research, Hangzhou, China
- Guangdong Provincial Key Laboratory of Human Disease Genomics, Shenzhen Key Laboratory of Genomics, BGI Research, Shenzhen, China
- Institute of Intelligent Medical Research (IIMR), BGI Genomics, Shenzhen, China
| | - Tian Luo
- HIM-BGI Omics Center, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences (CAS), BGI Research, Hangzhou, China
- Guangdong Provincial Key Laboratory of Human Disease Genomics, Shenzhen Key Laboratory of Genomics, BGI Research, Shenzhen, China
- Institute of Intelligent Medical Research (IIMR), BGI Genomics, Shenzhen, China
| | - Klara Hammarström
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Emma Torell
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Ingrid Ljuslinder
- Department of Radiation Sciences, Oncology, Umeå University, Umeå, Sweden
| | - Artur Mezheyeuski
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Per-Henrik Edqvist
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | | | - Carl Zingmark
- Department of Medical Biosciences, Pathology, Umeå University, Umeå, Sweden
| | - Sofia Edin
- Department of Medical Biosciences, Pathology, Umeå University, Umeå, Sweden
| | - Chatarina Larsson
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Lucy Mathot
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Erik Osterman
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Emerik Osterlund
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Viktor Ljungström
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Inês Neves
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Nicole Yacoub
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Unnur Guðnadóttir
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Helgi Birgisson
- Department of Surgical Sciences, Uppsala University, Akademiska sjukhuset, Uppsala, Sweden
| | - Malin Enblad
- Department of Surgical Sciences, Uppsala University, Akademiska sjukhuset, Uppsala, Sweden
| | - Fredrik Ponten
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Richard Palmqvist
- Department of Medical Biosciences, Pathology, Umeå University, Umeå, Sweden
| | - Xun Xu
- HIM-BGI Omics Center, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences (CAS), BGI Research, Hangzhou, China
| | - Mathias Uhlén
- Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden
- Science for Life Laboratory, Department of Protein Science, KTH-Royal Institute of Technology, Stockholm, Sweden
| | - Kui Wu
- HIM-BGI Omics Center, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences (CAS), BGI Research, Hangzhou, China.
- Guangdong Provincial Key Laboratory of Human Disease Genomics, Shenzhen Key Laboratory of Genomics, BGI Research, Shenzhen, China.
- Institute of Intelligent Medical Research (IIMR), BGI Genomics, Shenzhen, China.
| | - Bengt Glimelius
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden.
| | - Cong Lin
- HIM-BGI Omics Center, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences (CAS), BGI Research, Hangzhou, China.
- Guangdong Provincial Key Laboratory of Human Disease Genomics, Shenzhen Key Laboratory of Genomics, BGI Research, Shenzhen, China.
- Institute of Intelligent Medical Research (IIMR), BGI Genomics, Shenzhen, China.
| | - Tobias Sjöblom
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden.
| |
Collapse
|
4
|
Gupta A, Avadhanula S, Bashyam MD. Evaluation of the gene fusion landscape in early onset sporadic rectal cancer reveals association with chromatin architecture and genome stability. Oncogene 2024; 43:2449-2462. [PMID: 38937601 DOI: 10.1038/s41388-024-03088-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 06/10/2024] [Accepted: 06/13/2024] [Indexed: 06/29/2024]
Abstract
Gene fusions represent a distinct class of structural variants identified frequently in cancer genomes across cancer types. Several gene fusions exhibit gain of oncogenic function and thus have been the focus of development of efficient targeted therapies. However, investigation of fusion landscape in early-onset sporadic rectal cancer, a poorly studied colorectal cancer subtype prevalent in developing countries, has not been performed. Here, we present a comprehensive landscape of gene fusions in EOSRC and CRC using patient derived tumor samples and data from The Cancer Genome Atlas, respectively. Gene Ontology analysis revealed enrichment of unique biological process terms associated with 5'- and 3'- fusion partner genes. Extensive network analysis highlighted genes exhibiting significant promiscuity in fusion formation and their association with chromosome fragile sites. Investigation of fusion formation in the context of global chromatin architecture unraveled a novel mode of gene activation that arose from fusion between genes located in orthogonal chromatin compartments. The study provides novel evidence linking fusions to genome stability and architecture and unearthed a hitherto unidentified mode of gene activation in cancer.
Collapse
Affiliation(s)
- Asmita Gupta
- Laboratory of Molecular Oncology, Centre for DNA Fingerprinting and Diagnostics, Hyderabad, India
| | - Sumedha Avadhanula
- Laboratory of Molecular Oncology, Centre for DNA Fingerprinting and Diagnostics, Hyderabad, India
| | - Murali Dharan Bashyam
- Laboratory of Molecular Oncology, Centre for DNA Fingerprinting and Diagnostics, Hyderabad, India.
| |
Collapse
|
5
|
Zhu M, Benson AB. An update on pharmacotherapies for colorectal cancer: 2023 and beyond. Expert Opin Pharmacother 2024; 25:91-99. [PMID: 38224000 DOI: 10.1080/14656566.2024.2304654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Accepted: 01/09/2024] [Indexed: 01/16/2024]
Abstract
INTRODUCTION Colorectal cancer (CRC) is one of the most prevalent and lethal cancers worldwide. The treatment of metastatic colorectal cancer (mCRC) is difficult, and mCRC has a survival rate of only 13-17% compared with 70-90% in locoregional CRC. There is ongoing research effort on pharmacotherapy for CRC to improve the treatment outcome. AREAS COVERED We reviewed the current literature and ongoing clinical trials on CRC pharmacotherapy, with a focus on targeted therapy based on the results of genetic testing. The pharmacotherapies covered in this article include novel agents targeting EGFR and EGFR-related pathways, agents targeting the VEGF pathway, immunotherapy options depending on the MMR/MSI status, and new therapies targeting genetic fusions such as NTRK. We also briefly discuss the value of next-generation sequencing (NGS) in treatment selection and response monitoring. EXPERT OPINION We advocate for the early and routine use of NGS to genetically characterize CRC to assist with pharmacotherapy selection. Targeted therapy is a promising field of ongoing research and improves CRC treatment outcome.
Collapse
Affiliation(s)
- Mengou Zhu
- Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Al B Benson
- Department of Medicine, Division of Hematology and Oncology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
- Robert H. Lurie Comprehensive Cancer Center, Chicago, IL, USA
| |
Collapse
|
6
|
Kusumaningrum AE, Makaba S, Ali E, Singh M, Fenjan MN, Rasulova I, Misra N, Al-Musawi SG, Alsalamy A. A perspective on emerging therapies in metastatic colorectal cancer: Focusing on molecular medicine and drug resistance. Cell Biochem Funct 2024; 42:e3906. [PMID: 38269502 DOI: 10.1002/cbf.3906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 11/23/2023] [Accepted: 12/01/2023] [Indexed: 01/26/2024]
Abstract
The majority of cancer cases are colorectal cancer, which is also the second largest cause of cancer-related deaths worldwide. Metastasis is the leading cause of death for patients with colorectal cancer. Metastatic colorectal cancer incidence are on the rise due to a tiny percentage of tumors developing resistant to medicines despite advances in treatment tactics. Cutting-edge targeted medications are now the go-to option for customized and all-encompassing CRC care. Specifically, multitarget kinase inhibitors, antivascular endothelial growth factors, and epidermal growth factor receptors are widely used in clinical practice for CRC-targeted treatments. Rare targets in metastatic colorectal cancer are becoming more well-known due to developments in precision diagnostics and the extensive use of second-generation sequencing technology. These targets include the KRAS mutation, the BRAF V600E mutation, the HER2 overexpression/amplification, and the MSI-H/dMMR. Incorporating certain medications into clinical trials has significantly increased patient survival rates, opening new avenues and bringing fresh viewpoints for treating metastatic colorectal cancer. These focused therapies change how cancer is treated, giving patients new hope and better results. These markers can significantly transform and individualize therapy regimens. They could open the door to precisely customized and more effective medicines, improving patient outcomes and quality of life. The fast-growing body of knowledge regarding the molecular biology of colorectal cancer and the latest developments in gene sequencing and molecular diagnostics are directly responsible for this advancement.
Collapse
Affiliation(s)
| | - Sarce Makaba
- Researcher and lecturer, Universitas Cenderawasih Jayapura, Jayapura, Indonesia
| | - Eyhab Ali
- College of Pharmacy, Al-Zahraa University for Women, Karbala, Iraq
| | - Mandeep Singh
- Directorate of Sports and Physical Education, University of Jammu, Jammu, India
| | - Mohammed N Fenjan
- College of Health and Medical Technology, Al-Ayen University, Thi-Qar, Iraq
| | - Irodakhon Rasulova
- School of Humanities, Natural & Social Sciences, New Uzbekistan University, Tashkent, Uzbekistan
- Department of Public Health, Samarkand State Medical University, Samarkand, Uzbekistan
| | - Neeti Misra
- Department of Management, Uttaranchal Institute of Management, Uttaranchal University, Dehradun, India
| | - Sada G Al-Musawi
- College of Pharmacy, National University of Science and Technology, Dhi Qar, Iraq
| | - Ali Alsalamy
- College of Technical Engineering, Imam Ja'afar Al-Sadiq University, Al-Muthanna, Iraq
| |
Collapse
|
7
|
Rai S, Singh MP, Srivastava S. Integrated Analysis Identifies Novel Fusion Transcripts in Laterally Spreading Tumors Suggestive of Distinct Etiology Than Colorectal Cancers. J Gastrointest Cancer 2023; 54:913-926. [PMID: 36480069 DOI: 10.1007/s12029-022-00881-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/26/2022] [Indexed: 12/13/2022]
Abstract
BACKGROUND Laterally spreading tumors (LSTs) of the colon and rectum are a class of abnormality which spreads laterally and appears ulcerated. They are a subclass of colorectal cancer (CRCs) with higher invasive potential than CRCs. Moreover, the etiology of LST still remains obscure. METHODS This study aimed to identify unique fusion transcript(s) in LSTs and evaluate their role in LST development and progression. RNA-Seq data for LST samples from the EMBL-EBI database were used to identify fusion transcripts. An integrated approach using Gene Ontology, pathway analysis, hub gene, and co-expression network analysis functionally characterized fusion transcripts to shed light upon the etiology of LSTs. RESULT We identified 48 unique fusion genes in LSTs. GO terms were enriched in mRNA metabolic (p ≤ 2.06E-06), mRNA stabilization (p ≤ 1.60E-05), in cytosol (1.20E-05), RBP (p ≤ 2.30E-04), and RNA binding activity (p ≤ 3.51E-08) processes. Pathway analysis revealed an inflammatory phenotype of LSTs suggesting a distinct etiology than CRCs as pathways were enriched in salmonella infection (p ≤ 4.41 e-03), proteoglycans in cancer (p ≤ 1.18 e-02), and insulin signaling (p ≤ 2.13 e-02). Our exclusion and inclusion criteria and hub gene analysis finally identified 9 hub genes. Co-expression analysis of hub genes identified the most significant transcription factors (NELFE, MYC, TAF1, MAX) and kinases (MAPK14, CSNK2A1, CDK1, MAPK1) which were implicated in various cancer pathways. Furthermore, an overall survival analysis of hub genes was performed. Our predefined criterion resulted in the enrichment of NPM1-PTMA (NPM1: p ≤ 0.005) and HIST1H2BO-YBX1 (YBX1: p ≤ 0.02) fusion transcripts, significantly associated with the patient's overall survival. CONCLUSION Our systematic analysis resulted in novel fusion genes in LSTs suggesting a different etiology than CRCs. Fusion transcripts were observed more frequently in non-granular LSTs suggestive of genetically more unstable than granular LST. We hypothesize that NPM1-PTMA and HIST1H2BO-YBX1 could be implicated in LST development and progression and may also serve as a prognostic or diagnostic biomarker in future for better management of LSTs.
Collapse
Affiliation(s)
- Sandhya Rai
- Department of Biotechnology, Motilal Nehru National Institute of Technology Allahabad, Uttar Pradesh, 211004, Prayagraj, India
| | - Manish Pratap Singh
- Department of Biotechnology, Motilal Nehru National Institute of Technology Allahabad, Uttar Pradesh, 211004, Prayagraj, India
- CSIR-Central Drug Research Institute, Jankipuram Extension, Sitapur Road, Uttar Pradesh, 226031, Lucknow, India
| | - Sameer Srivastava
- Department of Biotechnology, Motilal Nehru National Institute of Technology Allahabad, Uttar Pradesh, 211004, Prayagraj, India.
| |
Collapse
|
8
|
Salokas K, Dashi G, Varjosalo M. Decoding Oncofusions: Unveiling Mechanisms, Clinical Impact, and Prospects for Personalized Cancer Therapies. Cancers (Basel) 2023; 15:3678. [PMID: 37509339 PMCID: PMC10377698 DOI: 10.3390/cancers15143678] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 07/13/2023] [Accepted: 07/14/2023] [Indexed: 07/30/2023] Open
Abstract
Cancer-associated gene fusions, also known as oncofusions, have emerged as influential drivers of oncogenesis across a diverse range of cancer types. These genetic events occur via chromosomal translocations, deletions, and inversions, leading to the fusion of previously separate genes. Due to the drastic nature of these mutations, they often result in profound alterations of cellular behavior. The identification of oncofusions has revolutionized cancer research, with advancements in sequencing technologies facilitating the discovery of novel fusion events at an accelerated pace. Oncofusions exert their effects through the manipulation of critical cellular signaling pathways that regulate processes such as proliferation, differentiation, and survival. Extensive investigations have been conducted to understand the roles of oncofusions in solid tumors, leukemias, and lymphomas. Large-scale initiatives, including the Cancer Genome Atlas, have played a pivotal role in unraveling the landscape of oncofusions by characterizing a vast number of cancer samples across different tumor types. While validating the functional relevance of oncofusions remains a challenge, even non-driver mutations can hold significance in cancer treatment. Oncofusions have demonstrated potential value in the context of immunotherapy through the production of neoantigens. Their clinical importance has been observed in both treatment and diagnostic settings, with specific fusion events serving as therapeutic targets or diagnostic markers. However, despite the progress made, there is still considerable untapped potential within the field of oncofusions. Further research and validation efforts are necessary to understand their effects on a functional basis and to exploit the new targeted treatment avenues offered by oncofusions. Through further functional and clinical studies, oncofusions will enable the advancement of precision medicine and the drive towards more effective and specific treatments for cancer patients.
Collapse
Affiliation(s)
- Kari Salokas
- Institute of Biotechnology, HiLIFE, University of Helsinki, 00790 Helsinki, Finland
| | - Giovanna Dashi
- Institute of Biotechnology, HiLIFE, University of Helsinki, 00790 Helsinki, Finland
| | - Markku Varjosalo
- Institute of Biotechnology, HiLIFE, University of Helsinki, 00790 Helsinki, Finland
| |
Collapse
|
9
|
Heinrich K, Fischer LE, De Toni EN, Markwardt D, Roessler D, Beyer G, Günther M, Ormanns S, Klauschen F, Kunz WG, Fröhling S, Brummer T, Heinemann V, Westphalen CB. Case of a Patient With Pancreatic Cancer With Sporadic Microsatellite Instability Associated With a BRAF Fusion Achieving Excellent Response to Immunotherapy. JCO Precis Oncol 2023; 7:e2200650. [PMID: 37364232 PMCID: PMC10309529 DOI: 10.1200/po.22.00650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 03/04/2023] [Accepted: 05/22/2023] [Indexed: 06/28/2023] Open
Abstract
In this case report, we discuss a case of pancreatic cancer bearing a BRAF fusion, leading to MAPK activation, MLHph, and finally MSI.
Collapse
Affiliation(s)
- Kathrin Heinrich
- Department of Medicine III and Comprehensive Cancer Centre (CCC), LMU University Hospital Munich, Munich, Germany
- German Cancer Consortium (DKTK), Partner Site Munich, Munich, Germany
| | - Laura E. Fischer
- Department of Medicine III and Comprehensive Cancer Centre (CCC), LMU University Hospital Munich, Munich, Germany
| | - Enrico N. De Toni
- Department of Medicine II and Comprehensive Cancer Centre (CCC), LMU University Hospital Munich, Munich, Germany
| | - Daniel Markwardt
- Department of Medicine II and Comprehensive Cancer Centre (CCC), LMU University Hospital Munich, Munich, Germany
| | - Daniel Roessler
- Department of Medicine II and Comprehensive Cancer Centre (CCC), LMU University Hospital Munich, Munich, Germany
| | - Georg Beyer
- Department of Medicine II and Comprehensive Cancer Centre (CCC), LMU University Hospital Munich, Munich, Germany
| | - Michael Günther
- Institute of Pathology, Ludwig Maximilians University (LMU), Munich, Germany
| | - Steffen Ormanns
- Institute of Pathology, Ludwig Maximilians University (LMU), Munich, Germany
| | - Frederick Klauschen
- German Cancer Consortium (DKTK), Partner Site Munich, Munich, Germany
- Institute of Pathology, Ludwig Maximilians University (LMU), Munich, Germany
| | - Wolfgang G. Kunz
- Department of Radiology and Comprehensive Cancer Center (CCC Munich LMU), University Hospital, LMU Munich, Munich, Germany
| | - Stefan Fröhling
- Department of Translational Medical Oncology, National Center for Tumor Diseases (NCT) and German Cancer Research Center (DKTZ), Heidelberg, Germany
- DKTK, Heidelberg, Germany
| | - Tilman Brummer
- Institute of Molecular Medicine, ZBMZ, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Comprehensive Cancer Center Freiburg (CCCF), Medical Center, University of Freiburg, Freiburg, Germany
- German Cancer Consortium (DKTK), Partner Site Freiburg and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Volker Heinemann
- Department of Medicine III and Comprehensive Cancer Centre (CCC), LMU University Hospital Munich, Munich, Germany
- German Cancer Consortium (DKTK), Partner Site Munich, Munich, Germany
| | - C. Benedikt Westphalen
- Department of Medicine III and Comprehensive Cancer Centre (CCC), LMU University Hospital Munich, Munich, Germany
- German Cancer Consortium (DKTK), Partner Site Munich, Munich, Germany
| |
Collapse
|
10
|
Nguyen MA, Colebatch AJ, Van Beek D, Tierney G, Gupta R, Cooper WA. NTRK fusions in solid tumours: what every pathologist needs to know. Pathology 2023:S0031-3025(23)00128-9. [PMID: 37330338 DOI: 10.1016/j.pathol.2023.05.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 04/30/2023] [Accepted: 05/03/2023] [Indexed: 06/19/2023]
Abstract
Fusions involving the Neurotrophic tropomyosin receptor kinase (NTRK) gene family (NTRK1, NTRK2 and NTRK3) are targetable oncogenic alterations that are found in a diverse range of tumours. There is an increasing demand to identify tumours which harbour these fusions to enable treatment with selective tyrosine kinase inhibitors such as larotrectinib and entrectinib. NTRK fusions occur in a wide range of tumours including rare tumours such as infantile fibrosarcoma and secretory carcinomas of the salivary gland and breast, as well as at low frequencies in more common tumours including melanoma, colorectal, thyroid and lung carcinomas. Identifying NTRK fusions is a challenging task given the different genetic mechanisms underlying NTRK fusions, their varying frequency across different tumour types, complicated by other factors such as tissue availability, optimal detection methods, accessibility and costs of testing methods. Pathologists play a key role in navigating through these complexities by determining optimal approaches to NTRK testing which has important therapeutic and prognostic implications. This review provides an overview of tumours harbouring NTRK fusions, the importance of identifying these fusions, available testing methods including advantages and limitations, and generalised and tumour-specific approaches to testing.
Collapse
Affiliation(s)
- Minh Anh Nguyen
- Department of Tissue Pathology and Diagnostic Oncology, NSW Health Pathology, Royal Prince Alfred Hospital, Camperdown, NSW, Australia
| | - Andrew J Colebatch
- Department of Tissue Pathology and Diagnostic Oncology, NSW Health Pathology, Royal Prince Alfred Hospital, Camperdown, NSW, Australia; Faculty of Medicine and Health, University of Sydney, Sydney, NSW, Australia
| | - Diana Van Beek
- Department of Tissue Pathology and Diagnostic Oncology, NSW Health Pathology, Royal Prince Alfred Hospital, Camperdown, NSW, Australia
| | - Geraldine Tierney
- Department of Tissue Pathology and Diagnostic Oncology, NSW Health Pathology, Royal Prince Alfred Hospital, Camperdown, NSW, Australia
| | - Ruta Gupta
- Department of Tissue Pathology and Diagnostic Oncology, NSW Health Pathology, Royal Prince Alfred Hospital, Camperdown, NSW, Australia; Faculty of Medicine and Health, University of Sydney, Sydney, NSW, Australia
| | - Wendy A Cooper
- Department of Tissue Pathology and Diagnostic Oncology, NSW Health Pathology, Royal Prince Alfred Hospital, Camperdown, NSW, Australia; Faculty of Medicine and Health, University of Sydney, Sydney, NSW, Australia; School of Medicine, Western Sydney University, Sydney, NSW, Australia.
| |
Collapse
|
11
|
Recent and Future Strategies to Overcome Resistance to Targeted Therapies and Immunotherapies in Metastatic Colorectal Cancer. J Clin Med 2022; 11:jcm11247523. [PMID: 36556139 PMCID: PMC9783354 DOI: 10.3390/jcm11247523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 12/06/2022] [Accepted: 12/13/2022] [Indexed: 12/23/2022] Open
Abstract
Colorectal cancer (CRC) is the third most common cause of cancer-related deaths worldwide, and 20% of patients with CRC present at diagnosis with metastases. The treatment of metastatic CRC is based on a fluoropyrimidine-based chemotherapy plus additional agents such as oxaliplatin and irinotecan. To date, on the basis of the molecular background, targeted therapies (e.g., monoclonal antibodies against epidermal growth factor receptor or inhibiting angiogenesis) are administered to improve the treatment of metastatic CRC. In addition, more recently, immunological agents emerged as effective in patients with a defective mismatch repair system. The administration of targeted therapies and immunotherapy lead to a significant increase in the survival of patients; however these drugs do not always prove effective. In most cases the lack of effectiveness is due to the development of primary resistance, either a resistance-inducing factor is already present before treatment or resistance is acquired when it occurs after treatment initiation. In this review we describe the most relevant targeted therapies and immunotherapies and expand on the reasons for resistance to the different approved or under development targeted drugs. Then we showed the possible mechanisms and drugs that may lead to overcoming the primary or acquired resistance in metastatic CRC.
Collapse
|
12
|
Kasi PM, Afghan MK, Bellizzi AM, Chan CHF. Larotrectinib in Mismatch-Repair-Deficient TRK Fusion-Positive Metastatic Colon Cancer After Progression on Immunotherapy. Cureus 2022; 14:e26648. [PMID: 35815302 PMCID: PMC9270193 DOI: 10.7759/cureus.26648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/07/2022] [Indexed: 12/05/2022] Open
Abstract
A 43-year-old woman presented with recurrent metastatic colon cancer with metastases to the peritoneum after having initially been diagnosed with stage IIB colon cancer and deferring adjuvant chemotherapy. Circulating tumor DNA (ctDNA)-based liquid biopsy testing revealed microsatellite instability-high (MSI-H) status, which was also confirmed on tissue testing. This patient then underwent four cycles of pembrolizumab and two cycles of ipilimumab and nivolumab (CTLA-4 rescue) with, unfortunately, progression of the disease. The patient was subsequently treated with larotrectinib, given the findings of TRK fusion-positive cancer on next-generation sequencing (NGS), and she was able to undergo curative surgery two months later that showed complete pathologic response. She continues to have no evidence of disease years later as well as no detectable ctDNA on NGS as well as tumor-informed minimal residual disease platforms. This case represents a marked and durable response to larotrectinib in a patient with deficiency in mismatch repair/MSI-H metastatic colorectal cancer harboring an NTRK fusion, bringing to light the potential for use of larotrectinib in earlier treatment lines in patients, and/or choice of targeted therapy versus immunotherapy in this patient subset.
Collapse
|
13
|
Talebi A, Shahidsales S, Aliakbarian M, Pezeshki Rad M, Kerachian MA. Oncogenic fusion transcript analysis identified ADAP1-NOC4L, potentially associated with metastatic colorectal cancer. Cancer Med 2022; 12:525-540. [PMID: 35702822 PMCID: PMC9844608 DOI: 10.1002/cam4.4943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 05/29/2022] [Accepted: 06/03/2022] [Indexed: 01/27/2023] Open
Abstract
PURPOSE Fusion transcripts are transcriptome-mediated alterations involved in tumorigenesis and are considered as diagnostic, prognostic, and therapeutic biomarkers. In metastatic colorectal carcinoma (mCRC), fusion transcripts are rarely reported. The main challenge is to identify driver chimeras with a significant role in cancer progression. METHODS In the present study, 86 RNA sequencing data samples were analyzed to discover driver fusion transcripts. Functional assays included clonogenic cell survival, wound-healing, and transwell cell invasion. Quantitative expression analysis of epithelial-mesenchymal transition (EMT), apoptotic regulators, and metastatic markers were examined for the candidate fusion genes. Kaplan-Meier survival analysis was performed using patient overall survival (OS). RESULTS A variety of driver fusions were identified. Fourteen fusion genes (51% of mCRC), each at least found in two mCRC samples, were determined as oncogenic fusion transcripts by in silico analysis of their functions. Among them, two recurrent chimeric transcripts confirmed by Sanger sequencing were selected. Positive expression of ADAP1-NOC4L was significantly associated with an increased risk of poor OS in mCRC patients. In vitro transforming potential for the chimera, resulting from the fusion of ADAP1 and NOC4L was assessed. Overexpression of this fusion gene increased cell proliferation and enhanced migration and invasion of CRC cells. In addition, it significantly upregulated EMT and anti-apoptotic markers. CONCLUSIONS ADAP1-NOC4L transcript chimera, a driver chimera identified in this study, provides new insight into the underlying mechanisms involved in the development and spread of mCRC. It suggests the potential of RNA-based alterations as novel targets for personalized medicine in clinical practice.
Collapse
Affiliation(s)
- Amin Talebi
- Medical Genetics Research CenterMashhad University of Medical SciencesMashhadIran,Faculty of Medicine, Department of Medical GeneticsMashhad University of Medical SciencesMashhadIran
| | | | - Mohsen Aliakbarian
- Faculty of Medicine, Surgical Oncology Research CenterMashhad University of Medical SciencesMashhadIran
| | - Masoud Pezeshki Rad
- Faculty of Medicine, Department of RadiologyMashhad University of Medical SciencesMashhadIran
| | - Mohammad Amin Kerachian
- Medical Genetics Research CenterMashhad University of Medical SciencesMashhadIran,Faculty of Medicine, Department of Medical GeneticsMashhad University of Medical SciencesMashhadIran,Cancer Genetics Research UnitReza Radiotherapy and Oncology CenterMashhadIran
| |
Collapse
|
14
|
Ginghina O, Hudita A, Zamfir M, Spanu A, Mardare M, Bondoc I, Buburuzan L, Georgescu SE, Costache M, Negrei C, Nitipir C, Galateanu B. Liquid Biopsy and Artificial Intelligence as Tools to Detect Signatures of Colorectal Malignancies: A Modern Approach in Patient's Stratification. Front Oncol 2022; 12:856575. [PMID: 35356214 PMCID: PMC8959149 DOI: 10.3389/fonc.2022.856575] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Accepted: 02/16/2022] [Indexed: 01/19/2023] Open
Abstract
Colorectal cancer (CRC) is the second most frequently diagnosed type of cancer and a major worldwide public health concern. Despite the global efforts in the development of modern therapeutic strategies, CRC prognosis is strongly correlated with the stage of the disease at diagnosis. Early detection of CRC has a huge impact in decreasing mortality while pre-lesion detection significantly reduces the incidence of the pathology. Even though the management of CRC patients is based on robust diagnostic methods such as serum tumor markers analysis, colonoscopy, histopathological analysis of tumor tissue, and imaging methods (computer tomography or magnetic resonance), these strategies still have many limitations and do not fully satisfy clinical needs due to their lack of sensitivity and/or specificity. Therefore, improvements of the current practice would substantially impact the management of CRC patients. In this view, liquid biopsy is a promising approach that could help clinicians screen for disease, stratify patients to the best treatment, and monitor treatment response and resistance mechanisms in the tumor in a regular and minimally invasive manner. Liquid biopsies allow the detection and analysis of different tumor-derived circulating markers such as cell-free nucleic acids (cfNA), circulating tumor cells (CTCs), and extracellular vesicles (EVs) in the bloodstream. The major advantage of this approach is its ability to trace and monitor the molecular profile of the patient's tumor and to predict personalized treatment in real-time. On the other hand, the prospective use of artificial intelligence (AI) in medicine holds great promise in oncology, for the diagnosis, treatment, and prognosis prediction of disease. AI has two main branches in the medical field: (i) a virtual branch that includes medical imaging, clinical assisted diagnosis, and treatment, as well as drug research, and (ii) a physical branch that includes surgical robots. This review summarizes findings relevant to liquid biopsy and AI in CRC for better management and stratification of CRC patients.
Collapse
Affiliation(s)
- Octav Ginghina
- Department II, University of Medicine and Pharmacy “Carol Davila” Bucharest, Bucharest, Romania
- Department of Surgery, “Sf. Ioan” Clinical Emergency Hospital, Bucharest, Romania
| | - Ariana Hudita
- Department of Biochemistry and Molecular Biology, University of Bucharest, Bucharest, Romania
| | - Marius Zamfir
- Department of Surgery, “Sf. Ioan” Clinical Emergency Hospital, Bucharest, Romania
| | - Andrada Spanu
- Department of Surgery, “Sf. Ioan” Clinical Emergency Hospital, Bucharest, Romania
| | - Mara Mardare
- Department of Surgery, “Sf. Ioan” Clinical Emergency Hospital, Bucharest, Romania
| | - Irina Bondoc
- Department of Surgery, “Sf. Ioan” Clinical Emergency Hospital, Bucharest, Romania
| | | | - Sergiu Emil Georgescu
- Department of Biochemistry and Molecular Biology, University of Bucharest, Bucharest, Romania
| | - Marieta Costache
- Department of Biochemistry and Molecular Biology, University of Bucharest, Bucharest, Romania
| | - Carolina Negrei
- Department of Toxicology, University of Medicine and Pharmacy “Carol Davila” Bucharest, Bucharest, Romania
| | - Cornelia Nitipir
- Department II, University of Medicine and Pharmacy “Carol Davila” Bucharest, Bucharest, Romania
- Department of Oncology, Elias University Emergency Hospital, Bucharest, Romania
| | - Bianca Galateanu
- Department of Biochemistry and Molecular Biology, University of Bucharest, Bucharest, Romania
| |
Collapse
|
15
|
Rahi H, Olave MC, Fritchie KJ, Greipp PT, Halling KC, Kipp BR, Graham RP. Gene Fusions in Gastrointestinal Tract cancers. Genes Chromosomes Cancer 2022; 61:285-297. [PMID: 35239225 DOI: 10.1002/gcc.23035] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 02/24/2022] [Accepted: 02/25/2022] [Indexed: 11/10/2022] Open
Abstract
Fusion genes have been identified a wide array of human neoplasms including hematologic and solid tumors, including gastrointestinal tract neoplasia. A fusion gene is the product of parts of two genes which are joined together following a deletion, translocation or chromosomal inversion. Together with single nucleotide variants, insertions, deletions, and amplification, fusion genes represent one of the key genomic mechanisms for tumor development. Detecting fusions in the clinic is accomplished by a variety of techniques including break-apart fluorescence in situ hybridization (FISH), reverse transcription-polymerase chain reaction (RT-PCR), and next-generation sequencing (NGS). Some recurrent gene fusions have been successfully targeted by small molecule or monoclonal antibody therapies (i.e. targeted therapies), while others are used for as biomarkers for diagnostic and prognostic purposes. The purpose of this review article is to discuss the clinical utility of detection of gene fusions in carcinomas and neoplasms arising primarily in the digestive system. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Hamed Rahi
- Division of Laboratory of Genetics and Genomics, Mayo Clinic, Rochester, MN, USA
| | - Maria C Olave
- Division of Anatomic Pathology, Mayo Clinic, Rochester, MN, USA
| | - Karen J Fritchie
- Division of Anatomic Pathology, Cleveland Clinic, Cleveland, OH, USA
| | - Patricia T Greipp
- Division of Laboratory of Genetics and Genomics, Mayo Clinic, Rochester, MN, USA
| | - Kevin C Halling
- Division of Laboratory of Genetics and Genomics, Mayo Clinic, Rochester, MN, USA.,Division of Anatomic Pathology, Mayo Clinic, Rochester, MN, USA
| | - Benjamin R Kipp
- Division of Laboratory of Genetics and Genomics, Mayo Clinic, Rochester, MN, USA.,Division of Anatomic Pathology, Mayo Clinic, Rochester, MN, USA
| | - Rondell P Graham
- Division of Laboratory of Genetics and Genomics, Mayo Clinic, Rochester, MN, USA.,Division of Anatomic Pathology, Mayo Clinic, Rochester, MN, USA
| |
Collapse
|
16
|
Prisciandaro M, Antista M, Raimondi A, Corti F, Morano F, Centonze G, Sabella G, Mangogna A, Randon G, Pagani F, Prinzi N, Niger M, Corallo S, Castiglioni di Caronno E, Massafra M, Bartolomeo MD, de Braud F, Milione M, Pusceddu S. Biomarker Landscape in Neuroendocrine Tumors With High-Grade Features: Current Knowledge and Future Perspective. Front Oncol 2022; 12:780716. [PMID: 35186729 PMCID: PMC8856722 DOI: 10.3389/fonc.2022.780716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Accepted: 01/10/2022] [Indexed: 11/26/2022] Open
Abstract
Neuroendocrine tumors (NETs) are classified based on morphology and are graded based on their proliferation rate as either well-differentiated low-grade (G1) to intermediate (G2–G3) or poorly differentiated high-grade neuroendocrine carcinomas (NEC G3). Recently, in gastroenteropancreatic (GEP) NETs, a new subgroup of well-differentiated high-grade tumors (NET G3) has been divided from NEC by WHO due to its different clinical–pathologic features. Although several mutational analyses have been performed, a molecular classification of NET is an unmet need in particular for G3, which tends to be more aggressive and have less benefit to the available therapies. Specifically, new possible prognostic and, above all, predictive factors are highly awaited, giving the basis for new treatments. Alteration of KRAS, TP53, and RB1 is mainly reported, but also druggable alterations, including BRAF and high microsatellite instability (MSI-H), have been documented in subsets of patients. In addition, PD-L1 demonstrated to be highly expressed in G3 NETs, probably becoming a new biomarker for G3 neuroendocrine neoplasm (NEN) discrimination and a predictive one for immunotherapy response. In this review, we describe the current knowledge available on a high-grade NET molecular landscape with a specific focus on those harboring potentially therapeutic targets in the advanced setting.
Collapse
Affiliation(s)
- Michele Prisciandaro
- Medical Oncology Department, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
- Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy
- *Correspondence: Michele Prisciandaro,
| | - Maria Antista
- Medical Oncology Department, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Alessandra Raimondi
- Medical Oncology Department, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Francesca Corti
- Medical Oncology Department, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Federica Morano
- Medical Oncology Department, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Giovanni Centonze
- First Pathology Division, Department of Pathology and Laboratory Medicine, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Giovanna Sabella
- First Pathology Division, Department of Pathology and Laboratory Medicine, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Alessandro Mangogna
- Institute for Maternal and Child Health, IRCCS Burlo Garofalo, Trieste, Italy
| | - Giovanni Randon
- Medical Oncology Department, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Filippo Pagani
- Medical Oncology Department, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Natalie Prinzi
- Medical Oncology Department, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Monica Niger
- Medical Oncology Department, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Salvatore Corallo
- Medical Oncology Department, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | | | - Marco Massafra
- Medical Oncology Department, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Maria Di Bartolomeo
- Medical Oncology Department, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Filippo de Braud
- Medical Oncology Department, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
- Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy
| | - Massimo Milione
- First Pathology Division, Department of Pathology and Laboratory Medicine, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Sara Pusceddu
- Medical Oncology Department, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| |
Collapse
|
17
|
Current Treatment Landscape for Third- or Later-Line Therapy in Metastatic Colorectal Cancer. CURRENT COLORECTAL CANCER REPORTS 2021. [DOI: 10.1007/s11888-021-00469-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
18
|
Wang J, Li R, Li J, Yi Y, Liu X, Chen J, Zhang H, Lu J, Li C, Wu H, Liang Z. Comprehensive analysis of oncogenic fusions in mismatch repair deficient colorectal carcinomas by sequential DNA and RNA next generation sequencing. J Transl Med 2021; 19:433. [PMID: 34657620 PMCID: PMC8522100 DOI: 10.1186/s12967-021-03108-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2021] [Accepted: 10/06/2021] [Indexed: 11/26/2022] Open
Abstract
Background Colorectal carcinoma (CRC) harboring oncogenic fusions has been reported to be highly enriched in mismatch repair deficient (dMMR) tumors with MLH1 hypermethylation (MLH1me+) and wild-type BRAF and RAS. In this study, dMMR CRCs were screened for oncogene fusions using sequential DNA and RNA next generation sequencing (NGS). Results Comprehensive analysis of fusion variants, genetic profiles and clinicopathological features in fusion-positive dMMR CRCs was performed. Among 193 consecutive dMMR CRCs, 39 cases were identified as MLH1me+BRAF/RAS wild-type. Eighteen fusion-positive cases were detected by DNA NGS, all of which were MLH1me+ and BRAF/RAS wild-type. RNA NGS was sequentially conducted in the remaining 21 MLH1me+BRAF/RAS wild-type cases lacking oncogenic fusions by DNA NGS, and revealed four additional fusions, increasing the proportion of fusion-positive tumors from 46% (18/39) to 56% (22/39) in MLH1me+BRAF/RAS wild-type dMMR cases. All 22 fusions were found to involve RTK-RAS pathway. Most fusions affected targetable receptor tyrosine kinases, including NTRK1(9/22, 41%), NTRK3(5/22, 23%), ALK(3/22, 14%), RET(2/22, 9%) and MET(1/22, 5%), whilst only two fusions affected mitogen-activated protein kinase cascade components BRAF and MAPK1, respectively. RNF43 was identified as the most frequently mutated genes, followed by APC, TGFBR2, ATM, BRCA2 and FBXW7. The vast majority (19/22, 86%) displayed alterations in key WNT pathway components, whereas none harbored additional mutations in RTK-RAS pathway. In addition, fusion-positive tumors were typically diagnosed in elder patients and predominantly right-sided, and showed a significantly higher preponderance of hepatic flexure localization (P < 0.001) and poor differentiation (P = 0.019), compared to fusion-negative MLH1me+ CRCs. Conclusions We proved that sequential DNA and RNA NGS was highly effective for fusion detection in dMMR CRCs, and proposed an optimized practical fusion screening strategy. We further revealed that dMMR CRCs harboring oncogenic fusion was a genetically and clinicopathologically distinctive subgroup, and justified more precise molecular subtyping for personalized therapy. Supplementary Information The online version contains supplementary material available at 10.1186/s12967-021-03108-6.
Collapse
Affiliation(s)
- Jing Wang
- Department of Pathology, Peking Union Medical College Hospital, and Molecular Pathology Research Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
| | - Ruiyu Li
- Department of Pathology, Peking Union Medical College Hospital, and Molecular Pathology Research Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
| | - Junjie Li
- Department of Pathology, Peking Union Medical College Hospital, and Molecular Pathology Research Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
| | - Yuting Yi
- Geneplus-Beijing Institute, Beijing, China
| | - Xiaoding Liu
- Department of Pathology, Peking Union Medical College Hospital, and Molecular Pathology Research Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
| | - Jingci Chen
- Department of Pathology, Peking Union Medical College Hospital, and Molecular Pathology Research Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
| | - Hui Zhang
- Department of Pathology, Peking Union Medical College Hospital, and Molecular Pathology Research Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
| | - Junliang Lu
- Department of Pathology, Peking Union Medical College Hospital, and Molecular Pathology Research Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
| | - Cami Li
- Department of Pathology, Peking Union Medical College Hospital, and Molecular Pathology Research Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
| | - Huanwen Wu
- Department of Pathology, Peking Union Medical College Hospital, and Molecular Pathology Research Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China.
| | - Zhiyong Liang
- Department of Pathology, Peking Union Medical College Hospital, and Molecular Pathology Research Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China.
| |
Collapse
|
19
|
Imyanitov E, Kuligina E. Molecular testing for colorectal cancer: Clinical applications. World J Gastrointest Oncol 2021; 13:1288-1301. [PMID: 34721767 PMCID: PMC8529925 DOI: 10.4251/wjgo.v13.i10.1288] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2021] [Revised: 06/19/2021] [Accepted: 08/24/2021] [Indexed: 02/06/2023] Open
Abstract
Molecular genetic analysis is an integral part of colorectal cancer (CRC) management. The choice of systemic therapy for CRC is largely based on the results of tumor molecular testing. Evaluation of the KRAS and NRAS gene status is mandatory for consideration of anti-epidermal growth factor receptor (EGFR) therapy. Tumors with the BRAF V600E substitution are characterized by aggressive behaviour, may require intensified cytotoxic regimens and benefit from combined BRAF and EGFR inhibition. The inactivation of DNA mismatch repair (MMR), or MUTYH gene, or DNA polymerase epsilon results in excessive tumor mutational burden; these CRCs are highly antigenic and therefore sensitive to immune checkpoint inhibitors. Some CRCs are characterized by overexpression of the HER2 oncogene and respond to the appropriate targeted therapy. There are CRCs with clinical signs of hereditary predisposition to this disease, which require germline genetic testing. Liquid biopsy is an emerging technology that has the potential to assist CRC screening, control the efficacy of surgical intervention and guide disease monitoring. The landscape of CRC molecular diagnosis is currently undergoing profound changes due to the increasing use of next generation sequencing.
Collapse
Affiliation(s)
- Evgeny Imyanitov
- Department of Tumor Biology, N.N. Petrov Institute of Oncology, St.-Petersburg 197758, Russia
- Department of Medical Genetics, St.-Petersburg Pediatric Medical University, Saint-Petersburg 194100, Russia
- Department of Oncology, I.I. Mechnikov North-Western Medical University, Saint-Petersburg 191015, Russia
| | - Ekaterina Kuligina
- Department of Tumor Biology, N.N. Petrov Institute of Oncology, St.-Petersburg 197758, Russia
| |
Collapse
|
20
|
Ratti M, Grizzi G, Passalacqua R, Lampis A, Cereatti F, Grassia R, Hahne JC. NTRK fusions in colorectal cancer: clinical meaning and future perspective. Expert Opin Ther Targets 2021; 25:677-683. [PMID: 34488530 DOI: 10.1080/14728222.2021.1978070] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
INTRODUCTION Despite the efforts of the scientific community, the prognosis of metastatic colorectal cancer (mCRC) remains poor. Actionable gene fusions such as Neurotrophic Tropomyosin Receptor Kinases (NTRK) rearrangements are rare but might represent a new target to improve outcomes in this setting. The first-generation TRK inhibitors, larotrectinib and entrectinib, have demonstrated efficacy and safety in mCRC cancer patients exhibiting NTRK pathogenic fusions. Moreover, second-generation molecules are emerging, able to overcome the acquired resistance to NTRK blocking. AREAS COVERED This review aims to report the current knowledge and the available evidence on NTRK fusion in mCRC, with a focus on molecular bases, clinical characteristics, prognostic meaning, and new therapeutic approaches, from the perspective of the clinical oncologist. EXPERT OPINION Considering the limited options associated with the treatment of mCRC patients, the possibility of identifying new molecular biomarkers is an urgent clinical need. The availability of new molecular targets and the combinations of different agents might represent the true breakthrough point, allowing for change in the clinical course of colorectal cancer patients.
Collapse
Affiliation(s)
- Margherita Ratti
- Department of Medical Oncology, Azienda Socio Sanitaria Territoriale of Cremona, Cremona, Italy
| | - Giulia Grizzi
- Department of Medical Oncology, Azienda Socio Sanitaria Territoriale of Cremona, Cremona, Italy
| | - Rodolfo Passalacqua
- Department of Medical Oncology, Azienda Socio Sanitaria Territoriale of Cremona, Cremona, Italy
| | - Andrea Lampis
- Division of Molecular Pathology, The Institute of Cancer Research, London, UK
| | - Fabrizio Cereatti
- Department of Medical Oncology, Azienda Socio Sanitaria Territoriale of Cremona, Cremona, Italy
| | - Roberto Grassia
- Department of Medical Oncology, Azienda Socio Sanitaria Territoriale of Cremona, Cremona, Italy
| | - Jens Claus Hahne
- Division of Molecular Pathology, The Institute of Cancer Research, London, UK
| |
Collapse
|
21
|
Precision oncology in metastatic colorectal cancer - from biology to medicine. Nat Rev Clin Oncol 2021; 18:506-525. [PMID: 33864051 DOI: 10.1038/s41571-021-00495-z] [Citation(s) in RCA: 117] [Impact Index Per Article: 39.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/01/2021] [Indexed: 02/06/2023]
Abstract
Remarkable progress has been made in the development of biomarker-driven targeted therapies for patients with multiple cancer types, including melanoma, breast and lung tumours, although precision oncology for patients with colorectal cancer (CRC) continues to lag behind. Nonetheless, the availability of patient-derived CRC models coupled with in vitro and in vivo pharmacological and functional analyses over the past decade has finally led to advances in the field. Gene-specific alterations are not the only determinants that can successfully direct the use of targeted therapy. Indeed, successful inhibition of BRAF or KRAS in metastatic CRCs driven by activating mutations in these genes requires combinations of drugs that inhibit the mutant protein while at the same time restraining adaptive resistance via CRC-specific EGFR-mediated feedback loops. The emerging paradigm is, therefore, that the intrinsic biology of CRC cells must be considered alongside the molecular profiles of individual tumours in order to successfully personalize treatment. In this Review, we outline how preclinical studies based on patient-derived models have informed the design of practice-changing clinical trials. The integration of these experiences into a common framework will reshape the future design of biology-informed clinical trials in this field.
Collapse
|
22
|
Precision Medicine for the Treatment of Colorectal Cancer: the Evolution and Status of Molecular Profiling and Biomarkers. CURRENT COLORECTAL CANCER REPORTS 2021. [DOI: 10.1007/s11888-021-00466-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
23
|
Wang HW, Yan XL, Wang LJ, Zhang MH, Yang CH, Wei-Liu, Jin KM, Bao Q, Li J, Wang K, Xing BC. Characterization of genomic alterations in Chinese colorectal cancer patients with liver metastases. J Transl Med 2021; 19:313. [PMID: 34281583 PMCID: PMC8287676 DOI: 10.1186/s12967-021-02986-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Accepted: 07/10/2021] [Indexed: 12/13/2022] Open
Abstract
Background The exploration of genomic alterations in Chinese colorectal liver metastasis (CRLM) is limited, and corresponding genetic biomarkers for patient’s perioperative management are still lacking. This study aims to understand genome diversification and complexity that developed in CRLM. Methods A custom-designed IDT capture panel including 620 genes was performed in the Chinese CRLM cohort, which included 396 tumor samples from metastatic liver lesions together with 133 available paired primary tumors. Results In this Chinese CRLM cohort, the top-ranked recurrent mutated genes were TP53 (324/396, 82%), APC (302/396, 76%), KRAS (166/396, 42%), SMAD4 (54/396, 14%), FLG (52/396, 13%) and FBXW7 (43/396, 11%). A comparison of CRLM samples derived from left- and right-sided primary lesions confirmed that the difference in survival for patients with different primary tumor sites could be driven by variations in the transforming growth factor β (TGF-β), phosphatidylinositol 3-kinase (PI3K) and RAS signaling pathways. Certain genes had a higher variant rate in samples with metachronous CRLM than in samples with simultaneous metastasis. Overall, the metastasis and primary tumor samples displayed highly consistent genomic alterations, but there were some differences between individually paired metastases and primary tumors, which were mainly caused by copy number variations. Conclusion We provide a comprehensive depiction of the genomic alterations in Chinese patients with CRLM, providing a fundamental basis for further personalized therapy applications. Supplementary Information The online version contains supplementary material available at 10.1186/s12967-021-02986-0.
Collapse
Affiliation(s)
- Hong-Wei Wang
- Hepatopancreatobiliary Surgery Department I, Key Laboratory of Carcinogenesis and Translational Research, Ministry of Education, Peking University School of Oncology, Beijing Cancer Hospital and Institute, Haidian District, Beijing, China
| | - Xiao-Luan Yan
- Hepatopancreatobiliary Surgery Department I, Key Laboratory of Carcinogenesis and Translational Research, Ministry of Education, Peking University School of Oncology, Beijing Cancer Hospital and Institute, Haidian District, Beijing, China
| | - Li-Jun Wang
- Hepatopancreatobiliary Surgery Department I, Key Laboratory of Carcinogenesis and Translational Research, Ministry of Education, Peking University School of Oncology, Beijing Cancer Hospital and Institute, Haidian District, Beijing, China
| | - Meng-Huan Zhang
- GloriousMed Clinical Laboratory (Shanghai) Co., Ltd, Shanghai, China
| | - Chun-He Yang
- GloriousMed Clinical Laboratory (Shanghai) Co., Ltd, Shanghai, China
| | - Wei-Liu
- Hepatopancreatobiliary Surgery Department I, Key Laboratory of Carcinogenesis and Translational Research, Ministry of Education, Peking University School of Oncology, Beijing Cancer Hospital and Institute, Haidian District, Beijing, China
| | - Ke-Min Jin
- Hepatopancreatobiliary Surgery Department I, Key Laboratory of Carcinogenesis and Translational Research, Ministry of Education, Peking University School of Oncology, Beijing Cancer Hospital and Institute, Haidian District, Beijing, China
| | - Quan Bao
- Hepatopancreatobiliary Surgery Department I, Key Laboratory of Carcinogenesis and Translational Research, Ministry of Education, Peking University School of Oncology, Beijing Cancer Hospital and Institute, Haidian District, Beijing, China
| | - Juan Li
- Hepatopancreatobiliary Surgery Department I, Key Laboratory of Carcinogenesis and Translational Research, Ministry of Education, Peking University School of Oncology, Beijing Cancer Hospital and Institute, Haidian District, Beijing, China
| | - Kun Wang
- Hepatopancreatobiliary Surgery Department I, Key Laboratory of Carcinogenesis and Translational Research, Ministry of Education, Peking University School of Oncology, Beijing Cancer Hospital and Institute, Haidian District, Beijing, China
| | - Bao-Cai Xing
- Hepatopancreatobiliary Surgery Department I, Key Laboratory of Carcinogenesis and Translational Research, Ministry of Education, Peking University School of Oncology, Beijing Cancer Hospital and Institute, Haidian District, Beijing, China.
| |
Collapse
|
24
|
McDermott FD, Newton K, Beggs AD, Clark SK. Implications for the colorectal surgeon following the 100 000 Genomes Project. Colorectal Dis 2021; 23:1049-1058. [PMID: 33471415 DOI: 10.1111/codi.15539] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2021] [Revised: 01/24/2021] [Accepted: 01/11/2021] [Indexed: 12/19/2022]
Abstract
AIM The 100 000 Genomes Project was completed in 2019 with the objective of integrating genomic medicine into routine National Health Service (NHS) clinical pathways. This project and genomic research will revolutionize the way we practice colorectal surgery in the 21st century. This paper aims to provide an overview of genomic medicine and its implications for the colorectal surgeon. RESULTS Within NHS England, consolidation has created seven regional Genomic Laboratory Hubs. DNA from solid tumours, including colorectal cancers, will be assessed using 500-gene panels, results will be fed back to Genome Tumour Advisory Boards. Identifying variants from biopsies earlier in the clinical pathway may alter surgical and other treatment options for patients. However, there is an important distinction between somatic variants within a tumour biopsy and germline variants that may suggest a heritable condition such as Lynch syndrome. Novel drugs, for example immunotherapy, will increase treatment options including downstaging cancers and changing the surgical approach. The use of circulating tumour DNA (liquid biopsies) will have applications in diagnosis, treatment and surveillance of cancer. There are many exciting potential future applications of this technology for offering personalized medicine that will require multidisciplinary working and the colorectal community. CONCLUSION There are many challenges but also exciting opportunities to embed new 'omic' technologies and innovation into 21st century colorectal surgery. The next phase for the colorectal community is how we engage with this change, with questions around training, identification of genomic multidisciplinary team (MDT) champions and how we collaborate with the core members of the MDT, clinical geneticists and national genomic testing.
Collapse
Affiliation(s)
- Frank D McDermott
- Royal Devon and Exeter Foundation Trust, University of Exeter, Exeter, UK
| | - Katy Newton
- Department of Surgery and Cancer, LNWUH NHS Trust, St Mark's Hospital, Imperial College, London, UK
| | - Andrew D Beggs
- Institute of Cancer and Genomic Sciences, University of Birmingham and Queen Elizabeth Hospital, Birmingham, UK
| | - Susan K Clark
- Department of Surgery and Cancer, LNWUH NHS Trust, St Mark's Hospital, Imperial College, London, UK
| |
Collapse
|
25
|
Comprehensive Analysis of Prognostic and Genetic Signatures for General Transcription Factor III (GTF3) in Clinical Colorectal Cancer Patients Using Bioinformatics Approaches. Curr Issues Mol Biol 2021; 43:cimb43010002. [PMID: 33925358 PMCID: PMC8935981 DOI: 10.3390/cimb43010002] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Revised: 04/19/2021] [Accepted: 04/22/2021] [Indexed: 02/07/2023] Open
Abstract
Colorectal cancer (CRC) has the fourth-highest incidence of all cancer types, and its incidence has steadily increased in the last decade. The general transcription factor III (GTF3) family, comprising GTF3A, GTF3B, GTF3C1, and GTFC2, were stated to be linked with the expansion of different types of cancers; however, their messenger (m)RNA expressions and prognostic values in colorectal cancer need to be further investigated. To study the transcriptomic expression levels of GTF3 gene members in colorectal cancer in both cancerous tissues and cell lines, we first performed high-throughput screening using the Oncomine, GEPIA, and CCLE databases. We then applied the Prognoscan database to query correlations of their mRNA expressions with the disease-specific survival (DSS), overall survival (OS), and disease-free survival (DFS) status of the colorectal cancer patient. Furthermore, proteomics expressions of GTF3 family members in clinical colorectal cancer specimens were also examined using the Human Protein Atlas. Finally, genomic alterations of GTF3 family gene expressions in colorectal cancer and their signal transduction pathways were studied using cBioPortal, ClueGO, CluePedia, and MetaCore platform. Our findings revealed that GTF3 family members' expressions were significantly correlated with the cell cycle, oxidative stress, WNT/β-catenin signaling, Rho GTPases, and G-protein-coupled receptors (GPCRs). Clinically, high GTF3A and GTF3B expressions were significantly correlated with poor prognoses in colorectal cancer patients. Collectively, our study declares that GTF3A was overexpressed in cancer tissues and cell lines, particularly colorectal cancer, and it could possibly step in as a potential prognostic biomarker.
Collapse
|
26
|
Schmitt ML. Molecular Biomarkers: A Review of Multiple Applications in Clinical Care of Colorectal Cancer. Clin J Oncol Nurs 2020; 24:635-643. [PMID: 33216064 DOI: 10.1188/20.cjon.635-643] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
BACKGROUND Advancements in tumor profiling have identified multiple molecular biomarkers that influence tumor growth and behavior. Molecular biomarkers provide clinical prognostic and predictive information, which guides treatment decisions and forms the backbone of precision oncology. OBJECTIVES This article identifies key predictive and prognostic molecular biomarkers used in the treatment of colorectal cancer and provides greater understanding of their biologic significance and usefulness in guiding treatment decisions. METHODS A review of the literature and professional guidelines was performed to evaluate approved molecular biomarkers, targeted agents, and tumor testing modalities used for the management and treatment of colorectal cancer, with an emphasis on treatment decision making. FINDINGS Genomic biomarkers are increasingly used for the prevention, diagnosis, prognostication, and management of colorectal cancer. The introduction of targeted agents and advancements in tumor profiling technologies have increased treatment opportunities and improved clinical outcomes for patients with colorectal cancer.
Collapse
|
27
|
Cohen R, Pudlarz T, Delattre JF, Colle R, André T. Molecular Targets for the Treatment of Metastatic Colorectal Cancer. Cancers (Basel) 2020; 12:E2350. [PMID: 32825275 PMCID: PMC7563268 DOI: 10.3390/cancers12092350] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 08/06/2020] [Accepted: 08/10/2020] [Indexed: 12/14/2022] Open
Abstract
Over the past years, colorectal cancer (CRC) was subtyped according to its molecular and genetic characteristics, allowing the development of therapeutic strategies, based on predictive biomarkers. Biomarkers such as microsatellite instability (MSI), RAS and BRAF mutations, HER2 amplification or NTRK fusions represent major tools for personalized therapeutic strategies. Moreover, the routine implementation of molecular predictive tests provides new perspectives and challenges for the therapeutic management of CRC patients, such as liquid biopsies and the reintroduction of anti-EGFR monoclonal antibodies. In this review, we summarize the current landscape of targeted therapies for metastatic CRC patients, with a focus on new developments for EGFR blockade and emerging biomarkers (MSI, HER2, NTRK).
Collapse
Affiliation(s)
- Romain Cohen
- Department of Medical Oncology, Hôpital Saint-Antoine, Sorbonne Université, Assistance Publique-Hôpitaux de Paris (AP-HP), F-75012 Paris, France; (T.P.); (J.-F.D.); (R.C.); (T.A.)
| | | | | | | | | |
Collapse
|
28
|
Vaňková B, Vaněček T, Ptáková N, Hájková V, Dušek M, Michal M, Švajdler P, Daum O, Daumová M, Michal M, Mezencev R, Švajdler M. Targeted next generation sequencing of MLH1-deficient, MLH1 promoter hypermethylated, and BRAF/RAS-wild-type colorectal adenocarcinomas is effective in detecting tumors with actionable oncogenic gene fusions. Genes Chromosomes Cancer 2020; 59:562-568. [PMID: 32427409 DOI: 10.1002/gcc.22861] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Revised: 05/10/2020] [Accepted: 05/15/2020] [Indexed: 12/17/2022] Open
Abstract
Oncogenic gene fusions represent attractive targets for therapy of cancer. However, the frequency of actionable genomic rearrangements in colorectal cancer (CRC) is very low, and universal screening for these alterations seems to be impractical and costly. To address this problem, several large scale studies retrospectivelly showed that CRC with gene fusions are highly enriched in groups of tumors defined by MLH1 DNA mismatch repair protein deficiency (MLH1d), and hypermethylation of MLH1 promoter (MLH1ph), and/or the presence of microsatellite instability, and BRAF/KRAS wild-type status (BRAFwt/KRASwt). In this study, we used targeted next generation sequencing (NGS) to explore the occurence of potentially therapeutically targetable gene fusions in an unselected series of BRAFwt/KRASwt CRC cases that displayed MLH1d/MLH1ph. From the initially identified group of 173 MLH1d CRC cases, 141 cases (81.5%) displayed MLH1ph. BRAFwt/RASwt genotype was confirmed in 23 of 141 (~16%) of MLH1d/MLH1ph cases. Targeted NGS of these 23 cases identified oncogenic gene fusions in nine patients (39.1%; CI95: 20.5%-61.2%). Detected fusions involved NTRK (four cases), ALK (two cases), and BRAF genes (three cases). As a secondary outcome of NGS testing, we identified PIK3K-AKT-mTOR pathway alterations in two CRC cases, which displayed PIK3CA mutation. Altogether, 11 of 23 (~48%) MLH1d/MLH1ph/BRAFwt/RASwt tumors showed genetic alterations that could induce resistance to anti-EGFR therapy. Our study confirms that targeted NGS of MLH1d/MLH1ph and BRAFwt/RASwt CRCs could be a cost-effective strategy in detecting patients with potentially druggable oncogenic kinase fusions.
Collapse
Affiliation(s)
- Bohuslava Vaňková
- Šikl's Department of Pathology, The Faculty of Medicine and Faculty Hospital in Pilsen, Charles University, Pilsen, Czech Republic.,Bioptická Laboratoř, s.r.o, Pilsen, Czech Republic
| | - Tomáš Vaněček
- Šikl's Department of Pathology, The Faculty of Medicine and Faculty Hospital in Pilsen, Charles University, Pilsen, Czech Republic.,Bioptická Laboratoř, s.r.o, Pilsen, Czech Republic
| | - Nikola Ptáková
- Bioptická Laboratoř, s.r.o, Pilsen, Czech Republic.,Second Faculty of Medicine, Charles University, Prague, Czech Republic
| | | | - Martin Dušek
- Šikl's Department of Pathology, The Faculty of Medicine and Faculty Hospital in Pilsen, Charles University, Pilsen, Czech Republic.,Bioptická Laboratoř, s.r.o, Pilsen, Czech Republic
| | - Michael Michal
- Šikl's Department of Pathology, The Faculty of Medicine and Faculty Hospital in Pilsen, Charles University, Pilsen, Czech Republic.,Bioptická Laboratoř, s.r.o, Pilsen, Czech Republic.,Biomedical Center, Faculty of Medicine in Pilsen, Charles University, Pilsen, Czech Republic
| | | | - Ondřej Daum
- Šikl's Department of Pathology, The Faculty of Medicine and Faculty Hospital in Pilsen, Charles University, Pilsen, Czech Republic.,Bioptická Laboratoř, s.r.o, Pilsen, Czech Republic
| | - Magdaléna Daumová
- Šikl's Department of Pathology, The Faculty of Medicine and Faculty Hospital in Pilsen, Charles University, Pilsen, Czech Republic.,Bioptická Laboratoř, s.r.o, Pilsen, Czech Republic
| | - Michal Michal
- Šikl's Department of Pathology, The Faculty of Medicine and Faculty Hospital in Pilsen, Charles University, Pilsen, Czech Republic.,Bioptická Laboratoř, s.r.o, Pilsen, Czech Republic
| | - Roman Mezencev
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, Georgia, USA
| | - Marián Švajdler
- Šikl's Department of Pathology, The Faculty of Medicine and Faculty Hospital in Pilsen, Charles University, Pilsen, Czech Republic.,Bioptická Laboratoř, s.r.o, Pilsen, Czech Republic
| |
Collapse
|
29
|
Liu N, Dou L, Zhang X. LncRNA PTTG3P Sponge Absorbs microRNA-155-5P to Promote Metastasis of Colorectal Cancer. Onco Targets Ther 2020; 13:5283-5291. [PMID: 32606747 PMCID: PMC7293386 DOI: 10.2147/ott.s248457] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Accepted: 04/24/2020] [Indexed: 12/16/2022] Open
Abstract
Objective To study the role of LncRNA PTTG3P in colorectal cancer (CRC) and the underlying mechanism. Patients and Methods The expression level of LncRNA PTTG3P was evaluated by quantitative real-time polymerase chain reaction (qRT-PCR) in CRC cell lines and tumor tissues from 43 CRC patients, and the correlations between LncRNA PTTG3P expression and the clinicopathological indicators and prognosis of CRC patients were analyzed. Then, a PTTG3P knockdown model in CRC cell lines HCT-8 and HCT-116 was constructed. Finally, the relationship between LncRNA PTTG3P and microRNA-155-5p was explored through luciferase reporter experiments and recovery experiments. Results qRT-PCR results showed that LncRNA PTTG3P was markedly up-regulated in CRC tumor tissues than that in adjacent tissues. Meanwhile, patients with high LncRNA PTTG3P expression had higher rates of lymph node metastasis and distant metastasis. In addition, cell functional experiments suggested that knocking down PTTG3P markedly reduced the migration abilities of CRC cells. Subsequently, bioinformatics analysis and luciferase reporter gene experiments suggested that LncRNA PTTG3P could directly bind to microRNA-155-5P. Analysis of CRC tissue samples showed that microRNA-155-5P expression was markedly reduced in CRC and was negatively correlated with LncRNA PTTG3P. Finally, the recovery experiments also suggested that there was a mutual regulation between LncRNA PTTG3P and microRNA-155-5P, and silencing microRNA-155-5P can reverse the inhibitory effect of knocking down PTTG3P on the malignant progression of CRC. Conclusion In summary, LncRNA PTTG3P level was markedly increased in CRC, and was highly correlated to the incidence of lymph node metastasis and distant metastasis in CRC patients. In addition, LncRNA PTTG3P might promote the ability of CRC to invade and migrate by downregulating microRNA-155-5P. Therefore, dissecting the aberrant regulation of LncRNA PTTG3P/microRNA-155-5P may be valuable for early screening, guidance treatment, and recurrence detection of CRC.
Collapse
Affiliation(s)
- Ning Liu
- Department of Pancreatic and Biliary Surgery, The First Affiliated Hospital of China Medical University, Shenyang, People's Republic of China
| | - Lei Dou
- Department of Pancreatic and Biliary Surgery, The First Affiliated Hospital of China Medical University, Shenyang, People's Republic of China
| | - Xinxin Zhang
- Department of Pathology, China Medical University, Shenyang, People's Republic of China
| |
Collapse
|
30
|
Molecular and Translational Research on Colorectal Cancer. Int J Mol Sci 2020; 21:ijms21114105. [PMID: 32526834 PMCID: PMC7312519 DOI: 10.3390/ijms21114105] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Accepted: 06/05/2020] [Indexed: 02/07/2023] Open
|
31
|
|