1
|
Tian X, Zhu Z, Li W, Zhang J, Han B. Identification and characterization of a novel upstream promoter of zebrafish p53 gene. Mol Biol Rep 2024; 52:15. [PMID: 39589571 DOI: 10.1007/s11033-024-10112-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Accepted: 11/13/2024] [Indexed: 11/27/2024]
Abstract
BACKGROUND It is widely acknowledged that the p53 gene can be expressed as multiple isoforms with different functions, however the transcriptional mechanism of p53 still needs further investigation. Here we identified an elevated transcription signal about 3.6 kb upstream of the p53 promoter in cold acclimated zebrafish ZF4 cells. METHODS AND RESULTS Through rapid amplification of cDNA ends (RACE), an unreported p53 transcript was cloned, which is transcribed from a novel upstream promoter about 3.6 kb from the canonical p53 promoter. This Novel p53 transcript includes a novel 5'untranslated region (5'UTR) transcribed from the - 3.6 kb region, which is followed by the coding sequences (CDS) encoding wild type (WT) p53 protein. This Novel p53 transcript showed remarkably enhanced stability than WT p53 and Δ113p53 mRNAs, when its novel 5'UTR showed the lowest translation efficiency in luciferase assay. Novel p53 transcript is differentially expressed in various tissues and during different stages of embryonic development of zebrafish. Novel p53 transcript also showed different responses to different stimuli. CONCLUSIONS A novel upstream promoter about 3.6 kb from the canonical P1 promoter of zebrafish p53 gene was found, which transcribes a novel p53 transcript that contains a new 5'UTR and the CDS encoding WT p53 protein. The findings of our study will enhance the current knowledge on the regulation and functionality of the p53 gene in fish.
Collapse
Affiliation(s)
- Xiaoying Tian
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, 201306, China
- National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, 201306, China
| | - Zhongqiu Zhu
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, 201306, China
- National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, 201306, China
| | - Wenjuan Li
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, 201306, China
- National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, 201306, China
| | - Junfang Zhang
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, 201306, China.
- National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, 201306, China.
- Marine Biomedical Science and Technology Innovation Platform of Lin-gang Special Area, Shanghai, 201306, China.
| | - Bingshe Han
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, 201306, China.
- National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, 201306, China.
- Marine Biomedical Science and Technology Innovation Platform of Lin-gang Special Area, Shanghai, 201306, China.
| |
Collapse
|
2
|
Dasgupta A, Prensner JR. Upstream open reading frames: new players in the landscape of cancer gene regulation. NAR Cancer 2024; 6:zcae023. [PMID: 38774471 PMCID: PMC11106035 DOI: 10.1093/narcan/zcae023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 04/29/2024] [Accepted: 05/07/2024] [Indexed: 05/24/2024] Open
Abstract
The translation of RNA by ribosomes represents a central biological process and one of the most dysregulated processes in cancer. While translation is traditionally thought to occur exclusively in the protein-coding regions of messenger RNAs (mRNAs), recent transcriptome-wide approaches have shown abundant ribosome activity across diverse stretches of RNA transcripts. The most common type of this kind of ribosome activity occurs in gene leader sequences, also known as 5' untranslated regions (UTRs) of the mRNA, that precede the main coding sequence. Translation of these upstream open reading frames (uORFs) is now known to occur in upwards of 25% of all protein-coding genes. With diverse functions from RNA regulation to microprotein generation, uORFs are rapidly igniting a new arena of cancer biology, where they are linked to cancer genetics, cancer signaling, and tumor-immune interactions. This review focuses on the contributions of uORFs and their associated 5'UTR sequences to cancer biology.
Collapse
Affiliation(s)
- Anwesha Dasgupta
- Chad Carr Pediatric Brain Tumor Center, University of Michigan Medical School, Ann Arbor, MI 48109, USA
- Department of Pediatrics, Division of Pediatric Hematology/Oncology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
- Department of Biological Chemistry, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - John R Prensner
- Chad Carr Pediatric Brain Tumor Center, University of Michigan Medical School, Ann Arbor, MI 48109, USA
- Department of Pediatrics, Division of Pediatric Hematology/Oncology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
- Department of Biological Chemistry, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| |
Collapse
|
3
|
Kiliszek A, Rypniewski W, Błaszczyk L. Exploring structural determinants and the role of nucleolin in formation of the long-range interactions between untranslated regions of p53 mRNA. RNA (NEW YORK, N.Y.) 2023; 29:630-643. [PMID: 36653114 PMCID: PMC10158990 DOI: 10.1261/rna.079378.122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2022] [Accepted: 01/02/2023] [Indexed: 05/06/2023]
Abstract
p53 protein is a key regulator of cellular homeostasis by coordinating the framework of antiproliferative pathways as a response to various stress factors. Although the main mechanism of stress-dependent induction of p53 protein relies on post-translational modifications influencing its stability and activity, a growing amount of evidence suggests that complex regulation of p53 expression occurs also at the mRNA level. This study explores structural determinants of long-range RNA-RNA interactions in p53 mRNA, crucial for stress-dependent regulation of p53 protein translation. We demonstrate that the 8-nt bulge motif plays a key structural role in base-pairing of complementary sequences from the 5' and 3' untranslated regions of p53 mRNA. We also show that one of the p53 translation regulators, nucleolin, displays an RNA chaperone activity and facilitates the association of sequences involved in the formation of long-range interactions in p53 mRNA. Nucleolin promotes base-pairing of complementary sequences through the bulge motif, because mutations of this region reduce or inhibit pairing while compensatory mutations restore this interaction. Mutational analysis of nucleolin reveals that all four RNA recognition motifs are indispensable for optimal RNA chaperone activity of nucleolin. These observations help to decipher the unique mechanism of p53 protein translation regulation pointing to bulge motif and nucleolin as the critical factors during intramolecular RNA-RNA recognition in p53 mRNA.
Collapse
Affiliation(s)
- Agnieszka Kiliszek
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, 61-704 Poznań, Poland
| | - Wojciech Rypniewski
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, 61-704 Poznań, Poland
| | - Leszek Błaszczyk
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, 61-704 Poznań, Poland
| |
Collapse
|
4
|
Steffens Reinhardt L, Groen K, Newton C, Avery-Kiejda KA. The role of truncated p53 isoforms in the DNA damage response. Biochim Biophys Acta Rev Cancer 2023; 1878:188882. [PMID: 36977456 DOI: 10.1016/j.bbcan.2023.188882] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Revised: 02/23/2023] [Accepted: 02/25/2023] [Indexed: 03/28/2023]
Abstract
The tumour suppressor p53 is activated following genotoxic stress and regulates the expression of target genes involved in the DNA damage response (DDR). The discovery that p53 isoforms alter the transcription of p53 target genes or p53 protein interactions unveiled an alternative DDR. This review will focus on the role p53 isoforms play in response to DNA damage. The expression of the C-terminally truncated p53 isoforms may be modulated via DNA damage-induced alternative splicing, whereas alternative translation plays an important role in modulating the expression of N-terminally truncated isoforms. The DDR induced by p53 isoforms may enhance the canonical p53 DDR or block cell death mechanisms in a DNA damage- and cell-specific manner, which could contribute to chemoresistance in a cancer context. Thus, a better understanding of the involvement of p53 isoforms in the cell fate decisions could uncover potential therapeutic targets in cancer and other diseases.
Collapse
Affiliation(s)
- Luiza Steffens Reinhardt
- School of Biomedical Sciences and Pharmacy, College of Health, Medicine and Wellbeing, The University of Newcastle, Newcastle, NSW, Australia; Hunter Medical Research Institute, Newcastle, NSW, Australia
| | - Kira Groen
- School of Biomedical Sciences and Pharmacy, College of Health, Medicine and Wellbeing, The University of Newcastle, Newcastle, NSW, Australia; Hunter Medical Research Institute, Newcastle, NSW, Australia
| | - Cheryl Newton
- School of Biomedical Sciences and Pharmacy, College of Health, Medicine and Wellbeing, The University of Newcastle, Newcastle, NSW, Australia; Hunter Medical Research Institute, Newcastle, NSW, Australia
| | - Kelly A Avery-Kiejda
- School of Biomedical Sciences and Pharmacy, College of Health, Medicine and Wellbeing, The University of Newcastle, Newcastle, NSW, Australia; Hunter Medical Research Institute, Newcastle, NSW, Australia.
| |
Collapse
|
5
|
Zhou H, Zeng C, Liu J, Luo H, Huang W. F-Box Protein 43, Stabilized by N6-Methyladenosine Methylation, Enhances Hepatocellular Carcinoma Cell Growth and Invasion via Promoting p53 Degradation in a Ubiquitin Conjugating Enzyme E2 C-Dependent Manner. Cancers (Basel) 2023; 15:cancers15030957. [PMID: 36765911 PMCID: PMC9913344 DOI: 10.3390/cancers15030957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 01/25/2023] [Accepted: 01/31/2023] [Indexed: 02/05/2023] Open
Abstract
The roles of F-box protein 43 (FBXO43) in carcinogenesis have been rarely revealed. The present study investigates the expression, function, and underlying mechanism of FBXO43 in hepatocellular carcinoma (HCC). Firstly, the expression and clinical significance of FBXO43 in HCC were investigated bioinformatically and experimentally using online omics data and local tissue samples. The role of N6-methyladenosine modification (m6A) of mRNA in regulating FBXO43 expression and the effects of m6A/FBXO43 axis alteration on cell proliferation and invasion were investigated further. Moreover, the underlying mechanism of the oncogenic FBXO43 was also explored. The results demonstrated that FBXO43 was significantly upregulated in HCC and was positively correlated with advanced progression and poor prognosis in patients. METTL3 and IGF2BP2 expressions were positively correlated with FBXO43 expression and served as the writer and reader of FBXO43 m6A, respectively, which stabilized and upregulated FBXO43 mRNA in HCC. FBXO43 silencing significantly reduced cell proliferation and invasion, and ectopic expression of FBXO43 could significantly restore the inhibitory effects caused by METTL3 and IGF2BP2 depletion in HCC cells. Mechanistically, FBXO43 depletion reduced the expression of UBE2C, a p53 ubiquitin-conjugating enzyme, suppressed proteasomal degradation of p53, and thus inhibited cell proliferation and invasion in HCC. In summary, the present study revealed that METTL3/IGF2BP2 mediated m6A contributed to the upregulation of FBXO43 that promoted the malignant progression of HCC by stimulating p53 degradation in a UBE2C-dependent manner, highlighting the promising application of FBXO43 as a target in HCC treatment.
Collapse
Affiliation(s)
- Huijun Zhou
- Department of Gastroenterology and Urology, Hunan Cancer Hospital/The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha 410083, China
| | - Chong Zeng
- Department of Medicine, The Seventh Affiliated Hospital, Hengyang Medical School, University of South China, Changsha 410004, China
| | - Jie Liu
- Department of Pathology, The Affiliated Changsha Central Hospital, Hengyang Medical School, University of South China, Changsha 410004, China
| | - Haijun Luo
- Department of Pathology, The Affiliated Changsha Central Hospital, Hengyang Medical School, University of South China, Changsha 410004, China
| | - Wei Huang
- Department of Oncology, Xiangya Hospital, Central South University, Changsha 410083, China
- Research Center of Carcinogenesis and Targeted Therapy, Xiangya Hospital, Central South University, Changsha 410083, China
- National Clinical Research Center of Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410083, China
- Correspondence: ; Tel.: +86-18773187433
| |
Collapse
|
6
|
Structural Characteristics of the 5′-Terminal Region of Mouse p53 mRNA and Identification of Proteins That Bind to This mRNA Region. Int J Mol Sci 2022; 23:ijms23179709. [PMID: 36077109 PMCID: PMC9456389 DOI: 10.3390/ijms23179709] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 08/19/2022] [Accepted: 08/23/2022] [Indexed: 12/15/2022] Open
Abstract
A mouse model has often been used in studies of p53 gene expression. Detailed interpretation of functional studies is, however, hampered by insufficient knowledge of the impact of mouse p53 mRNA’s structure and its interactions with proteins in the translation process. In particular, the 5′-terminal region of mouse p53 mRNA is an important region which takes part in the regulation of the synthesis of p53 protein and its N-truncated isoform Δ41p53. In this work, the spatial folding of the 5′-terminal region of mouse p53 mRNA and its selected sub-fragments was proposed based on the results of the SAXS method and the RNAComposer program. Subsequently, RNA-assisted affinity chromatography was used to identify proteins present in mouse fibroblast cell lysates that are able to bind the RNA oligomer, which corresponds to the 5′-terminal region of mouse p53 mRNA. Possible sites to which the selected, identified proteins can bind were proposed. Interestingly, most of these binding sites coincide with the sites determined as accessible to hybridization of complementary oligonucleotides. Finally, the high binding affinity of hnRNP K and PCBP2 to the 5′-terminal region of mouse p53 mRNA was confirmed and their possible binding sites were proposed.
Collapse
|
7
|
Cytoplasmic p53β Isoforms Are Associated with Worse Disease-Free Survival in Breast Cancer. Int J Mol Sci 2022; 23:ijms23126670. [PMID: 35743117 PMCID: PMC9223648 DOI: 10.3390/ijms23126670] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 06/10/2022] [Accepted: 06/12/2022] [Indexed: 12/02/2022] Open
Abstract
TP53 mutations are associated with tumour progression, resistance to therapy and poor prognosis. However, in breast cancer, TP53′s overall mutation frequency is lower than expected (~25%), suggesting that other mechanisms may be responsible for the disruption of this critical tumour suppressor. p53 isoforms are known to enhance or disrupt p53 pathway activity in cell- and context-specific manners. Our previous study revealed that p53 isoform mRNA expression correlates with clinicopathological features and survival in breast cancer and may account for the dysregulation of the p53 pathway in the absence of TP53 mutations. Hence, in this study, the protein expression of p53 isoforms, transactivation domain p53 (TAp53), p53β, Δ40p53, Δ133p53 and Δ160p53 was analysed using immunohistochemistry in a cohort of invasive ductal carcinomas (n = 108). p53 isoforms presented distinct cellular localisation, with some isoforms being expressed in tumour cells and others in infiltrating immune cells. Moreover, high levels of p53β, most likely to be N-terminally truncated β variants, were significantly associated with worse disease-free survival, especially in tumours with wild-type TP53. To the best of our knowledge, this is the first study that analysed the endogenous protein levels of p53 isoforms in a breast cancer cohort. Our findings suggest that p53β may be a useful prognostic marker.
Collapse
|
8
|
p53 and Its Isoforms in Renal Cell Carcinoma—Do They Matter? Biomedicines 2022; 10:biomedicines10061330. [PMID: 35740352 PMCID: PMC9219959 DOI: 10.3390/biomedicines10061330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 05/25/2022] [Accepted: 05/28/2022] [Indexed: 11/17/2022] Open
Abstract
p53 is a transcription al factor responsible for the maintenance of cellular homeostasis. It has been shown that more than 50% of tumors are connected with mutations in the Tp53 gene. These mutations cause a disturbance in cellular response to stress, and eventually, cancer development. Apart from the full-length p53, at least twelve isoforms of p53 have been characterized. They are able to modulate p53 activity under stress conditions. In 2020, almost a half of million people around the world were diagnosed with renal cancer. One genetic disturbance which is linked to the most common type of kidney cancer, renal cell carcinoma, RCC, occurs from mutations in the VHL gene. Recent data has revealed that the VHL protein is needed to fully activate p53. Disturbance of the interplay between p53 and VHL seems to explain the lack of efficient response to chemotherapy in RCC. Moreover, it has been observed that changes in the expression of p53 isoforms are associated with different stages of RCC and overall survival. Thus, herein, an attempt was made to answer the question whether p53 and its isoforms are important factors in the development of RCC on the one hand, and in positive response to anti-RCC therapy on the other hand.
Collapse
|
9
|
Janecki DM, Swiatkowska A, Szpotkowska J, Urbanowicz A, Kabacińska M, Szpotkowski K, Ciesiołka J. Poly(C)-binding Protein 2 Regulates the p53 Expression via Interactions with the 5'-Terminal Region of p53 mRNA. Int J Mol Sci 2021; 22:ijms222413306. [PMID: 34948101 PMCID: PMC8708005 DOI: 10.3390/ijms222413306] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 12/03/2021] [Accepted: 12/07/2021] [Indexed: 11/16/2022] Open
Abstract
The p53 protein is one of the major transcriptional factors which guards cell homeostasis. Here, we showed that poly(C)-binding protein 2 (PCBP2) can bind directly to the 5′ terminus of p53 mRNA by means of electrophoretic mobility shift assay. Binding sites of PCBP2 within this region of p53 mRNA were mapped using Pb2+-induced cleavage and SAXS methods. Strikingly, the downregulation of PCBP2 in HCT116 cells resulted in a lower level of p53 protein under normal and stress conditions. Quantitative analysis of p53 mRNA in PCBP2-downregulated cells revealed a lower level of p53 mRNA under normal conditions suggesting the involvement of PCBP2 in p53 mRNA stabilisation. However, no significant change in p53 mRNA level was observed upon PCBP2 depletion under genotoxic stress. Moreover, a higher level of p53 protein in the presence of rapamycin or doxorubicin and the combination of both antibiotics was noticed in PCBP2-overexpressed cells compared to control cells. These observations indicate the potential involvement of PCBP2 in cap-independent translation of p53 mRNA especially occurring under stress conditions. It has been postulated that the PCBP2 protein is engaged in the enhancement of p53 mRNA stability, probably via interacting with its 3′ end. Our data show that under stress conditions PCBP2 also modulates p53 translation through binding to the 5′ terminus of p53 mRNA. Thus PCBP2 emerges as a double-function factor in the p53 expression.
Collapse
|
10
|
Vadivel Gnanasundram S, Bonczek O, Wang L, Chen S, Fahraeus R. p53 mRNA Metabolism Links with the DNA Damage Response. Genes (Basel) 2021; 12:1446. [PMID: 34573428 PMCID: PMC8465283 DOI: 10.3390/genes12091446] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 09/10/2021] [Accepted: 09/13/2021] [Indexed: 12/14/2022] Open
Abstract
Human cells are subjected to continuous challenges by different genotoxic stress attacks. DNA damage leads to erroneous mutations, which can alter the function of oncogenes or tumor suppressors, resulting in cancer development. To circumvent this, cells activate the DNA damage response (DDR), which mainly involves cell cycle regulation and DNA repair processes. The tumor suppressor p53 plays a pivotal role in the DDR by halting the cell cycle and facilitating the DNA repair processes. Various pathways and factors participating in the detection and repair of DNA have been described, including scores of RNA-binding proteins (RBPs) and RNAs. It has become increasingly clear that p53's role is multitasking, and p53 mRNA regulation plays a prominent part in the DDR. This review is aimed at covering the p53 RNA metabolism linked to the DDR and highlights the recent findings.
Collapse
Affiliation(s)
| | - Ondrej Bonczek
- Department of Medical Biosciences, Umeå University, 901-87 Umeå, Sweden; (O.B.); (L.W.); (S.C.)
- RECAMO, Masaryk Memorial Cancer Institute, Zluty Kopec 7, 656-53 Brno, Czech Republic
| | - Lixiao Wang
- Department of Medical Biosciences, Umeå University, 901-87 Umeå, Sweden; (O.B.); (L.W.); (S.C.)
| | - Sa Chen
- Department of Medical Biosciences, Umeå University, 901-87 Umeå, Sweden; (O.B.); (L.W.); (S.C.)
| | - Robin Fahraeus
- Department of Medical Biosciences, Umeå University, 901-87 Umeå, Sweden; (O.B.); (L.W.); (S.C.)
- RECAMO, Masaryk Memorial Cancer Institute, Zluty Kopec 7, 656-53 Brno, Czech Republic
- Inserm UMRS1131, Institut de Genetique Moleculaire, Universite Paris 7, Hopital St Louis, F-75010 Paris, France
- International Centre for Cancer Vaccine Science, University of Gdansk, 80-822 Gdansk, Poland
| |
Collapse
|
11
|
Żydowicz-Machtel P, Dutkiewicz M, Swiatkowska A, Gurda-Woźna D, Ciesiołka J. Translation of human Δ133p53 mRNA and its targeting by antisense oligonucleotides complementary to the 5'-terminal region of this mRNA. PLoS One 2021; 16:e0256938. [PMID: 34492050 PMCID: PMC8423303 DOI: 10.1371/journal.pone.0256938] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Accepted: 08/18/2021] [Indexed: 11/18/2022] Open
Abstract
The p53 protein is expressed as at least twelve protein isoforms. Within intron 4 of the human TP53 gene, a P2 transcription initiation site is located and this transcript encodes two p53 isoforms: Δ133p53 and Δ160p53. Here, the secondary structure of the 5'-terminal region of P2-initiated mRNA was characterized by means of the SHAPE and Pb2+-induced cleavage methods and for the first time, a secondary structure model of this region was proposed. Surprisingly, only Δ133p53 isoform was synthetized in vitro from the P2-initiated p53 mRNA while translation from both initiation codons occurred after the transfection of vector-encoded model mRNA to HCT116 cells. Interestingly, translation performed in the presence of the cap analogue suggested that the cap-independent process contributes to the translation of P2-initiated p53 mRNA. Subsequently, several antisense oligonucleotides targeting the 5'-terminal region of P2-initiated p53 mRNA were designed. The selected oligomers were applied in in vitro translation assays as well as in cell lines and their impact on the Δ133p53 synthesis and on cell viability was investigated. The results show that these oligomers are attractive tools in the modulation of the translation of P2-initiated p53 mRNA through attacking the 5' terminus of the transcript. Since cell proliferation is also reduced by antisense oligomers that lower the level of Δ133p53, this demonstrates an involvement of this isoform in tumorigenesis.
Collapse
Affiliation(s)
| | - Mariola Dutkiewicz
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznan, Poland
| | - Agata Swiatkowska
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznan, Poland
| | - Dorota Gurda-Woźna
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznan, Poland
| | - Jerzy Ciesiołka
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznan, Poland
- * E-mail:
| |
Collapse
|