1
|
Dai H, Xu W, Wang L, Li X, Sheng X, Zhu L, Li Y, Dong X, Zhou W, Han C, Mao Y, Yao L. Loss of SPRY2 contributes to cancer-associated fibroblasts activation and promotes breast cancer development. Breast Cancer Res 2023; 25:90. [PMID: 37507768 PMCID: PMC10375677 DOI: 10.1186/s13058-023-01683-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Accepted: 07/05/2023] [Indexed: 07/30/2023] Open
Abstract
The communication between tumor cells and tumor microenvironment plays a critical role in cancer development. Cancer-associated fibroblasts (CAFs) are the major components of the tumor microenvironment and take part in breast cancer formation and progression. Here, by comparing the gene expression patterns in CAFs and normal fibroblasts, we found SPRY2 expression was significantly decreased in CAFs and decreased SPRY2 expression was correlated with worse prognosis in breast cancer patients. SPRY2 knockdown in fibroblasts promoted tumor growth and distant metastasis of breast cancer in mice. Loss of stromal SPRY2 expression promoted CAF activation dependent on glycolytic metabolism. Mechanically, SPRY2 suppressed Y10 phosphorylation of LDHA and LDHA activity by interfering with the interaction between LDHA and SRC. Functionally, SPRY2 knockdown in fibroblasts enhanced the stemness of tumor cell dependent on glycolysis in fibroblasts. Collectively, this work identified SPRY2 as a negative regulator of CAF activation, and SPRY2 in CAFs may potentially be therapeutically targeted in breast cancer treatment.
Collapse
Affiliation(s)
- Huijuan Dai
- Department of Breast Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, People's Republic of China
| | - Wenting Xu
- Department of Pathology, The International Peace Maternity and Child Health Hospital of China Welfare Institution, School of Medicine, Shanghai Jiao Tong University, 910 Hengshan Road, Shanghai, 200030, People's Republic of China
| | - Lulu Wang
- Department of Human Anatomy, School of Basic Medical Sciences, Capital Medical University, Beijing, People's Republic of China
- Beijing Key Laboratory of Cancer Invasion and Metastasis Research, Beijing, People's Republic of China
| | - Xiao Li
- Department of Obstetrics and Gynecology, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
| | - Xiaonan Sheng
- Department of Breast Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, People's Republic of China
| | - Lei Zhu
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, People's Republic of China
| | - Ye Li
- Department of Breast Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, People's Republic of China
| | - Xinrui Dong
- Department of Breast Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, People's Republic of China
| | - Weihang Zhou
- Department of Breast Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, People's Republic of China
| | - Chenyu Han
- Department of Endocrinology, Qingpu Branch of Zhongshan Hospital Affiliated to Fudan University, 1158 Gongyuan Road, Shanghai, 201700, People's Republic of China.
| | - Yan Mao
- Breast Disease Center, The Affiliated Hospital of Qingdao University, No. 59 Haier Road, Qingdao, 266003, Shandong, People's Republic of China.
| | - Linli Yao
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, People's Republic of China.
| |
Collapse
|
2
|
Single-Cell Sequencing of Malignant Ascites Reveals Transcriptomic Remodeling of the Tumor Microenvironment during the Progression of Epithelial Ovarian Cancer. Genes (Basel) 2022; 13:genes13122276. [PMID: 36553542 PMCID: PMC9778425 DOI: 10.3390/genes13122276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 11/25/2022] [Accepted: 11/30/2022] [Indexed: 12/11/2022] Open
Abstract
Epithelial ovarian cancer (EOC) is the main cause of mortality among gynecological malignancies worldwide. Although patients with EOC undergo aggregate treatment, the prognosis is often poor. Peritoneal malignant ascites is a distinguishable clinical feature in EOC patients and plays a pivotal role in tumor progression and recurrence. The mechanisms of the tumor microenvironment (TME) in ascites in the regulation of tumor progression need to be explored. We comprehensively analyzed the transcriptomes of 4680 single cells from five EOC patients (three diagnostic samples and two recurrent samples) derived from Gene Expression Omnibus (GEO) databases. Batch effects between different samples were removed using an unsupervised deep embedding single-cell cluster algorithm. Subcluster analysis identified the different phenotypes of cells. The transition of a malignant cell state was confirmed using pseudotime analysis. The landscape of TME in malignant ascites was profiled during EOC progression. The transformation of epithelial cancer cells into mesenchymal cells was observed to lead to the emergence of related anti-chemotherapy and immune escape phenotypes. We found the activation of multiple biological pathways with the transition of tumor-associated macrophages and fibroblasts, and we identified the infiltration of CD4+CD25+ T regulatory cells in recurrent samples. The cell adhesion molecules mediated by integrin might be associated with the formation of the tumorsphere. Our study provides novel insights into the remodeling of the TME heterogeneity in malignant ascites during EOC progression, which provides evidence for identifying novel therapeutic targets and promotes the development of ovarian cancer treatment.
Collapse
|
3
|
Liu BY, Zhang BL, Gao DY, Li Q, Xu XY, Shum W. Epididymal epithelial degeneration and lipid metabolism impairment account for male infertility in occludin knockout mice. Front Endocrinol (Lausanne) 2022; 13:1069319. [PMID: 36518247 PMCID: PMC9742356 DOI: 10.3389/fendo.2022.1069319] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Accepted: 10/31/2022] [Indexed: 11/29/2022] Open
Abstract
Occludin (OCLN) is a tight junction protein and Ocln deletion mutation causes male infertility in mice. However, the role of OCLN in male reproductive system remains unknown. In this study, we used an interdisciplinary approach to elucidate the underlying mechanism of male infertility in related to OCLN function, including Ocln knockout mice as well as a combined omics analysis and immunofluorescent labelling. Our results showed that the epididymis of Ocln-null mice displayed a phenomenon resembling epididymal sperm granuloma, which occurred especially in the junctional region between caput and corpus epididymidis. Sperm motility and fertilisation capacity were also impaired in these Ocln-null mice, accompanied by enlarged tubules in the proximal regions and degeneration in the distal regions of epididymis. Cellular localization analysis showed that OCLN immunofluorescence was enriched only in the apical junction of epithelial principal cells in the proximal regions of epididymis. Integrative omics analysis revealed the downregulation of gene clusters enriched in acid secretion and fatty acid metabolism in the Ocln-null epididymis, especially the enzymes related to the unsaturated arachidonic acid pathway. The number of proton-pump V-ATPase-expression clear cells, a key player of luminal acidification in the epididymis, declined drastically from prepubertal age before sperm arrival but not in the early postnatal age. This was accompanied by programmed cell death of clear cells and increased pH in the epididymal fluid of OCLN-deficient mice. The lipidomics results showed significantly increased levels of specific DAGs conjugated to unsaturated fatty acids in the Ocln-mutant. Immunofluorescent labelling showed that the arachidonic acid converting enzyme PTGDS and phospholipase PLA2g12a were prominently altered in the principal cells and luminal contents of the Ocln-mutant epididymis. Whereas the carboxylate ester lipase CES1, originally enriched in the WT basal cells, was found upregulated in the Ocln-mutant principal cells. Overall, this study demonstrates that OCLN is essential for maintaining caput-to-corpus epithelial integrity, survival of acid-secreting clear cells, and unsaturated fatty acid catabolism in the mouse epididymis, thereby ensuring sperm maturation and male fertility.
Collapse
Affiliation(s)
- Bao Ying Liu
- School of Life Science and Technology, Shanghai Tech University, Shanghai, China
- Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Bao Li Zhang
- School of Life Science and Technology, Shanghai Tech University, Shanghai, China
- Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, Shanghai, China
- National Health Commission (NHC) Key Lab of Reproduction Regulation, Shanghai Institute for Biomedical and Pharmaceutical Technologies, Fudan University, Shanghai, China
| | - Da Yuan Gao
- School of Life Science and Technology, Shanghai Tech University, Shanghai, China
- Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Qing Li
- Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, Shanghai, China
| | - Xin Yu Xu
- School of Life Science and Technology, Shanghai Tech University, Shanghai, China
- Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Winnie Shum
- School of Life Science and Technology, Shanghai Tech University, Shanghai, China
- Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, Shanghai, China
- *Correspondence: Winnie Shum,
| |
Collapse
|
4
|
Phosphoproteomics Meets Chemical Genetics: Approaches for Global Mapping and Deciphering the Phosphoproteome. Int J Mol Sci 2020; 21:ijms21207637. [PMID: 33076458 PMCID: PMC7588962 DOI: 10.3390/ijms21207637] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Revised: 10/13/2020] [Accepted: 10/14/2020] [Indexed: 12/14/2022] Open
Abstract
Protein kinases are important enzymes involved in the regulation of various cellular processes. To function properly, each protein kinase phosphorylates only a limited number of proteins among the thousands present in the cell. This provides a rapid and dynamic regulatory mechanism that controls biological functions of the proteins. Despite the importance of protein kinases, most of their substrates remain unknown. Recently, the advances in the fields of protein engineering, chemical genetics, and mass spectrometry have boosted studies on identification of bona fide substrates of protein kinases. Among the various methods in protein kinase specific substrate identification, genetically engineered protein kinases and quantitative phosphoproteomics have become promising tools. Herein, we review the current advances in the field of chemical genetics in analog-sensitive protein kinase mutants and highlight selected strategies for identifying protein kinase substrates and studying the dynamic nature of protein phosphorylation.
Collapse
|
5
|
Avagliano A, Fiume G, Ruocco MR, Martucci N, Vecchio E, Insabato L, Russo D, Accurso A, Masone S, Montagnani S, Arcucci A. Influence of Fibroblasts on Mammary Gland Development, Breast Cancer Microenvironment Remodeling, and Cancer Cell Dissemination. Cancers (Basel) 2020; 12:E1697. [PMID: 32604738 PMCID: PMC7352995 DOI: 10.3390/cancers12061697] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 06/20/2020] [Accepted: 06/23/2020] [Indexed: 12/20/2022] Open
Abstract
The stromal microenvironment regulates mammary gland development and tumorigenesis. In normal mammary glands, the stromal microenvironment encompasses the ducts and contains fibroblasts, the main regulators of branching morphogenesis. Understanding the way fibroblast signaling pathways regulate mammary gland development may offer insights into the mechanisms of breast cancer (BC) biology. In fact, the unregulated mammary fibroblast signaling pathways, associated with alterations in extracellular matrix (ECM) remodeling and branching morphogenesis, drive breast cancer microenvironment (BCM) remodeling and cancer growth. The BCM comprises a very heterogeneous tissue containing non-cancer stromal cells, namely, breast cancer-associated fibroblasts (BCAFs), which represent most of the tumor mass. Moreover, the different components of the BCM highly interact with cancer cells, thereby generating a tightly intertwined network. In particular, BC cells activate recruited normal fibroblasts in BCAFs, which, in turn, promote BCM remodeling and metastasis. Thus, comparing the roles of normal fibroblasts and BCAFs in the physiological and metastatic processes, could provide a deeper understanding of the signaling pathways regulating BC dissemination. Here, we review the latest literature describing the structure of the mammary gland and the BCM and summarize the influence of epithelial-mesenchymal transition (EpMT) and autophagy in BC dissemination. Finally, we discuss the roles of fibroblasts and BCAFs in mammary gland development and BCM remodeling, respectively.
Collapse
Affiliation(s)
- Angelica Avagliano
- Department of Public Health, University of Naples Federico II, 80131 Naples, Italy; (N.M.); (S.M.)
| | - Giuseppe Fiume
- Department of Experimental and Clinical Medicine, University “Magna Graecia” of Catanzaro, 88100 Catanzaro, Italy; (G.F.); (E.V.)
| | - Maria Rosaria Ruocco
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, 80131 Naples, Italy;
| | - Nunzia Martucci
- Department of Public Health, University of Naples Federico II, 80131 Naples, Italy; (N.M.); (S.M.)
| | - Eleonora Vecchio
- Department of Experimental and Clinical Medicine, University “Magna Graecia” of Catanzaro, 88100 Catanzaro, Italy; (G.F.); (E.V.)
| | - Luigi Insabato
- Anatomic Pathology Unit, Department of Advanced Biomedical Sciences, School of Medicine, University of Naples Federico II, 80131 Naples, Italy; (L.I.); (D.R.)
| | - Daniela Russo
- Anatomic Pathology Unit, Department of Advanced Biomedical Sciences, School of Medicine, University of Naples Federico II, 80131 Naples, Italy; (L.I.); (D.R.)
| | - Antonello Accurso
- Department of General, Oncological, Bariatric and Endocrine-Metabolic Surgery, University of Naples Federico II, 80131 Naples, Italy;
| | - Stefania Masone
- Department of Clinical Medicine and Surgery, University of Naples Federico II, 80131 Naples, Italy;
| | - Stefania Montagnani
- Department of Public Health, University of Naples Federico II, 80131 Naples, Italy; (N.M.); (S.M.)
| | - Alessandro Arcucci
- Department of Public Health, University of Naples Federico II, 80131 Naples, Italy; (N.M.); (S.M.)
| |
Collapse
|
6
|
Xia J, Sun S, Wu X, Huang Y, Lei C, Nie Z. Enzyme-activated anchoring of peptide probes onto plasma membranes for selectively lighting up target cells. Analyst 2020; 145:3626-3633. [PMID: 32350495 DOI: 10.1039/d0an00487a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In a cellular microenvironment, numerous biomolecules are involved in various physiological and pathological processes. However, for the in-depth and comprehensive understanding of their roles at the molecular level, there is still a lack of detection techniques for the in situ tracking of these biomolecules in a local environment. Herein, we engineered a membrane insertion peptide (MIP) as an enzyme-activated membrane insertion peptide probe (eaMIP) that allowed the in situ tracking of the activity of target enzymes in living cells. In this strategy, the membrane insertion capacity of the MIP motif in each eaMIP was caged by appending a chemical moiety. In the presence of target enzymes, the caging moiety in each eaMIP was removed by enzymatic decaging, leading to the generation of active MIPs. The versatility of this design was demonstrated by lighting up different tumor cells with distinct fluorescence signal patterns, affording an alternative tool for clinical diagnostics, biochemical research and membrane engineering.
Collapse
Affiliation(s)
- Julan Xia
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan Provincial Key Laboratory of Biomacromolecular Chemical Biology, Hunan University, Changsha, 410082, P. R. China.
| | | | | | | | | | | |
Collapse
|