1
|
Guo S, Chen Q, Liang J, Wu H, Li L, Wang Y. Correlation of Glycolysis-immune-related Genes in the Follicular Microenvironment of Endometriosis Patients with ART Outcomes. Reprod Sci 2024; 31:3357-3367. [PMID: 38561472 DOI: 10.1007/s43032-024-01518-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Accepted: 03/11/2024] [Indexed: 04/04/2024]
Abstract
Endometriosis (EMT) -related infertility has been a challenge for clinical research. Many studies have confirmed that abnormal alterations in the immune microenvironment and glycolysis are instrumental in causing EMT-related infertility. Recently, our research team identified several key glycolysis-immune-related genes in the endometrial cells of EMT patients. This study aimed to further investigate the expression patterns of pyruvate dehydrogenase kinase 3 (PDK3), glypican-3 (GPC3), and alcohol dehydrogenase 6 (ADH6), which are related to glycolysis and immunity, in the follicular microenvironment of infertile patients with EMT using enzyme-linked immunosorbent assay (ELISA) and quantitative real-time polymerase chain reaction (qRT-PCR) assays. According to the results, compared to the patients with tubal factor infertility, the concentrations of PDK3 and GPC3 were considerably increased in the follicular environment of EMT patients, while ADH6 expression was significantly reduced. The number of oocytes retrieved, the transferable embryo rate, and the cumulative clinical pregnancy rate of EMT patients were significantly reduced, and there was a correlation with the level of PDK3, GPC3, and ADH6 in Follicular Fluid (FF). The area under the receiver operating characteristic (ROC) curve for predicting clinical pregnancy in infertile patients with EMT for PDK3, GPC3, ADH6, and their combination was 0.732, 0.705, 0.855, and 0.879, respectively (P < 0.05). In conclusion, our research indicates that glycolysis-immune-related genes may contribute to infertility in EMT patients through immune infiltration, and disruption of mitochondrial and oocyte functions. The combined detection of PDK3, GPC3, and ADH6 in FF helps to predict clinical pregnancy outcomes in infertile patients with EMT.
Collapse
Affiliation(s)
- Shana Guo
- Department of Reproductive Medicine, Tongji Hospital, Tongji University School of Medicine, Shanghai, 200065, China
| | - Qizhen Chen
- Department of Reproductive Medicine, Tongji Hospital, Tongji University School of Medicine, Shanghai, 200065, China
| | - Jiaqi Liang
- Department of Reproductive Medicine, Tongji Hospital, Tongji University School of Medicine, Shanghai, 200065, China
| | - Huanmei Wu
- Department of Health Services Administration, Temple University College of Public Health, Philadelphia, PA, 19122, USA
| | - Li Li
- Department of Gynecology and Obstetrics, Tongji Hospital, Tongji University School of Medicine, Shanghai, 200065, China.
| | - Yanqiu Wang
- Department of Reproductive Medicine, Tongji Hospital, Tongji University School of Medicine, Shanghai, 200065, China.
| |
Collapse
|
2
|
Adler H, Lewis M, Ng CHM, Brooks C, Leonardi M, Mikocka-Walus A, Bush D, Semprini A, Wilkinson-Tomey J, Condous G, Patravali N, Abbott J, Armour M. Social Media, Endometriosis, and Evidence-Based Information: An Analysis of Instagram Content. Healthcare (Basel) 2024; 12:121. [PMID: 38201027 PMCID: PMC10778603 DOI: 10.3390/healthcare12010121] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 12/20/2023] [Accepted: 12/25/2023] [Indexed: 01/12/2024] Open
Abstract
Social media platforms are used for support and as resources by people from the endometriosis community who are seeking advice about diagnosis, education, and disease management. However, little is known about the scientific accuracy of information circulated on Instagram about the disease. To fill this gap, this study analysed the evidence-based nature of content on Instagram about endometriosis. A total of 515 Instagram posts published between February 2022 and April 2022 were gathered and analysed using a content analysis method, resulting in sixteen main content categories, including "educational", which comprised eleven subcategories. Claims within educational posts were further analysed for their evidence-based accuracy, guided by a process which included fact-checking all claims against the current scientific evidence and research. Of the eleven educational subcategories, only four categories (cure, scientific article, symptoms, and fertility) comprised claims that were at least 50% or greater evidence-based. More commonly, claims comprised varying degrees of evidence-based, mixed, and non-evidence-based information, and some categories, such as surgery, were dominated by non-evidence-based information about the disease. This is concerning as social media can impact real-life decision-making and management for individuals with endometriosis. Therefore, this study suggests that health communicators, clinicians, scientists, educators, and community groups trying to engage with the endometriosis online community need to be aware of social media discourses about endometriosis, while also ensuring that accurate and translatable information is provided.
Collapse
Affiliation(s)
- Hannah Adler
- Centre for Social and Cultural Research, Griffith University, Gold Coast, QLD 4215, Australia;
| | - Monique Lewis
- Centre for Social and Cultural Research, Griffith University, Gold Coast, QLD 4215, Australia;
| | - Cecilia Hoi Man Ng
- Division of Obstetrics and Gynaecology, School of Clinical Medicine, Faculty of Medicine and Health, University of New South Wales, Sydney, NSW 2052, Australia; (C.H.M.N.); (J.A.)
- Gynaecological Research and Clinical Evaluation (GRACE) Unit, Royal Hospital for Women, Sydney, NSW 2031, Australia
- National Endometriosis Clinical and Scientific Trials (NECST) Network, University of New South Wales, Sydney, NSW 2052, Australia
| | - Cristy Brooks
- School of Health Sciences, Western Sydney University, Sydney, NSW 2751, Australia
- Translational Health Research Institute, Western Sydney University, Sydney, NSW 2751, Australia;
| | - Mathew Leonardi
- Department of Obstetrics and Gynecology, McMaster University, Hamilton, ON L8S 4LB, Canada
- Robinson Research Institute, University of Adelaide, Adelaide, SA 5006, Australia
| | | | - Deborah Bush
- World Endometriosis Organisations (WEO), Christchurch 8013, New Zealand
| | - Alex Semprini
- Medical Research Institute of New Zealand, Wellington 6021, New Zealand
- School of Biological Sciences, Victoria University of Wellington, Wellington 6021, New Zealand
- NICM Health Research Institute, Western Sydney University, Sydney, NSW 2145, Australia
| | | | - George Condous
- Endometriosis Ultrasound and Advanced Endosurgery Unit, Sydney Medical School Nepean, Sydney, NSW 2747, Australia
- Nepean Hospital, University of Sydney, Sydney, NSW 2747, Australia
| | - Nikhil Patravali
- Nepean Hospital, University of Sydney, Sydney, NSW 2747, Australia
- School of Medicine, University of Sydney, Sydney, NSW 2747, Australia
- Monash IVF, Sydney, NSW 2747, Australia
- Mildura Private Hospital, Mildura, VIC 3500, Australia
| | - Jason Abbott
- Division of Obstetrics and Gynaecology, School of Clinical Medicine, Faculty of Medicine and Health, University of New South Wales, Sydney, NSW 2052, Australia; (C.H.M.N.); (J.A.)
- Gynaecological Research and Clinical Evaluation (GRACE) Unit, Royal Hospital for Women, Sydney, NSW 2031, Australia
- National Endometriosis Clinical and Scientific Trials (NECST) Network, University of New South Wales, Sydney, NSW 2052, Australia
| | - Mike Armour
- Translational Health Research Institute, Western Sydney University, Sydney, NSW 2751, Australia;
- NICM Health Research Institute, Western Sydney University, Sydney, NSW 2145, Australia
| |
Collapse
|
3
|
Qin Y, Li Y, Hao Y, Li Y, Kang S. Hypomethylation of the ENPP3 promoter region contributes to the occurrence and development of ovarian endometriosis via the AKT/mTOR/4EBP1 signaling pathway. BIOMOLECULES & BIOMEDICINE 2023; 24:848-856. [PMID: 38149831 PMCID: PMC11293237 DOI: 10.17305/bb.2023.9989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 11/16/2023] [Accepted: 12/27/2023] [Indexed: 12/28/2023]
Abstract
Growing evidence indicates that aberrant methylation is pivotal in the development and progression of endometriosis (EMs). This study explores the relationship between abnormal methylation of the ENPP3 promoter and the pathogenesis of ovarian EMs, focusing on its regulatory effect on ENPP3 expression. We analyzed the methylation levels of ENPP3 in ectopic endometrial tissues from ovarian EMs patients and in normal endometrial tissues from women without EMs. The expression and distribution of ENPP3 were evaluated using RT-qPCR and immunohistochemistry. Transwell assays were conducted to examine the impact of ENPP3 overexpression on the migratory and invasive capabilities of endometrial stromal cells. Our results demonstrated significantly reduced methylation levels at the CpG sites of the ENPP3 promoter region in ectopic endometrial tissues compared to normal endometrial tissues. RT-qPCR findings revealed a marked increase in ENPP3 expression in ovarian EMs tissues relative to endometrial tissues from patients without EMs, and this upregulation was negatively correlated with the methylation levels of the ENPP3 promoter region. Immunohistochemical analyses confirmed elevated ENPP3 expression in the glandular epithelial cells and stroma of ovarian EMs tissues. Furthermore, in vitro experiments showed that overexpressed ENPP3 notably intensified the invasion and migration of endometrial stromal cells. Transcriptome sequencing and functional analyses indicated that the increased ENPP3 expression activated the AKT/mTOR/4EBP1 signaling pathway. In summary, the study suggests that hypomethylation in the ENPP3 promoter region may contribute to the initiation and advancement of ovarian EMs by activating the AKT/mTOR/4EBP1 pathway, supporting the theory that EMs might be an epigenetically regulated disorder.
Collapse
Affiliation(s)
- Yuzhen Qin
- Department of Obstetrics, The Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| | - Yishuai Li
- Department of Thoracic Surgery, Hebei Chest Hospital, Shijiazhuang, China
| | - Yali Hao
- Department of Reproductive Medicine, The Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| | - Yan Li
- Department of Molecular Biology, The Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| | - Shan Kang
- Department of Gynecology, The Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| |
Collapse
|
4
|
Unveil the pain of endometriosis: from the perspective of the nervous system. Expert Rev Mol Med 2022; 24:e36. [PMID: 36059111 DOI: 10.1017/erm.2022.26] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Endometriosis is a chronic inflammatory disease with pelvic pain and uncharacteristic accompanying symptoms. Endometriosis-associated pain often persists despite treatment of the disease, thus it brings a deleterious impact on their personal lives as well as imposing a substantial economic burden on them. At present, mechanisms underlie endometriosis-associated pain including inflammatory reaction, injury, aberrant blood vessels and the morphological and functional anomaly of the peripheral and central nervous systems. The nerve endings are influenced by the physical and chemical factors surrounding the lesion, via afferent nerve to the posterior root of the spinal nerve, then to the specific cerebral cortex involved in nociception. However, our understanding of the aetiology and mechanism of this complex pain process caused by endometriosis remains incomplete. Identifying the pathogenesis of endometriosis is crucial to disease management, offering proper treatment, and helping patients to seek novel targets for the maintenance and contributors of chronic pain. The main aim of this review is to focus on every possible mechanism of pain related to endometriosis in both peripheral and central nervous systems, and to present related mechanisms of action from the interaction between peripheral lesions and nerves to the changes in transmission of pain, resulting in hyperalgesia and the corresponding alterations in cerebral cortex and brain metabolism.
Collapse
|
5
|
Zhou X, Dai W, Qin Y, Qi S, Zhang Y, Tian W, Gu X, Zheng B, Xiao J, Yu W, Chen X, Su D. Electroacupuncture relieves neuropathic pain by inhibiting degradation of the ecto-nucleotidase PAP in the dorsal root ganglions of CCI mice. Eur J Pain 2022; 26:991-1005. [PMID: 35138669 DOI: 10.1002/ejp.1923] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2021] [Revised: 01/31/2022] [Accepted: 02/05/2022] [Indexed: 11/11/2022]
Abstract
BACKGROUND Although electroacupuncture is widely used in chronic pain management, it is quite controversial due to its unclear mechanism. We hypothesised that EA alleviates pain by inhibiting degradation of the ecto-nucleotidase prostatic acid phosphatase (PAP) and facilitating ATP dephosphorylation in dorsal root ganglions (DRGs). METHODS We applied EA in male C57 mice subjected to chronic constriction injury (CCI) and assessed extracellular ATP and 5'-nucleotidease expression in DRGs. Specifically, we used a luminescence assay, quantitative reverse transcriptase-polymerase chain reaction, western blotting, immunohistochemistry and nociceptive-related behavioural changes to gather data, and we tested for effects after PAP expression was inhibited with an adeno-associated virus (AAV). Moreover, membrane PAP degradation was investigated in cultured DRG neurons and the inhibitory effects of EA on this degradation were assessed using immunoprecipitation. RESULTS EA treatment alleviated CCI surgery induced mechanical pain hypersensitivity. Furthermore, extracellular ATP decreased significantly in both the DRGs and dorsal horn of EA-treated mice. PAP protein but not mRNA increased in L4-L5 DRGs, and inhibition of PAP expression via AAV microinjection reversed the analgesic effect of EA. Membrane PAP degradation occurred through a clathrin-mediated endocytosis pathway in cultured DRG neurons; EA treatment inhibited the phosphorylation of adaptor protein complex 2, which subsequently reduced the endocytosis of membrane PAP. CONCLUSIONS EA treatment alleviated peripheral nerve injury-induced mechanical pain hypersensitivity in mice by inhibiting membrane PAP degradation via reduced endocytosis and subsequently promote ATP dephosphorylation in DRGs.
Collapse
Affiliation(s)
- Xiaoxin Zhou
- Department of Anaesthesiology, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China, Postal Code: 200127
| | - Wanbing Dai
- Department of Anaesthesiology, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China, Postal Code: 200127
| | - Yi Qin
- Department of Anaesthesiology, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China, Postal Code: 200127
| | - Siyi Qi
- Department of Anaesthesiology, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China, Postal Code: 200127
| | - Yizhe Zhang
- Department of Anaesthesiology, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China, Postal Code: 200127
| | - Weitian Tian
- Department of Anaesthesiology, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China, Postal Code: 200127
| | - Xiyao Gu
- Department of Anaesthesiology, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China, Postal Code: 200127
| | - Beijie Zheng
- Department of Anaesthesiology, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China, Postal Code: 200127
| | - Jie Xiao
- Department of Anaesthesiology, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China, Postal Code: 200127
| | - Weifeng Yu
- Department of Anaesthesiology, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China, Postal Code: 200127
| | - Xuemei Chen
- Department of Anaesthesiology, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China, Postal Code: 200127
| | - Diansan Su
- Department of Anaesthesiology, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China, Postal Code: 200127
| |
Collapse
|
6
|
Cousins FL, Filby CE, Gargett CE. Endometrial Stem/Progenitor Cells–Their Role in Endometrial Repair and Regeneration. FRONTIERS IN REPRODUCTIVE HEALTH 2022; 3:811537. [PMID: 36304009 PMCID: PMC9580754 DOI: 10.3389/frph.2021.811537] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Accepted: 12/23/2021] [Indexed: 12/12/2022] Open
Abstract
The human endometrium is a remarkable tissue, undergoing ~450 cycles of proliferation, differentiation, shedding (menstruation), repair, and regeneration over a woman's reproductive lifespan. Post-menstrual repair is an extremely rapid and scar-free process, with re-epithelialization of the luminal epithelium completed within 48 h of initiation of shedding. Following menstruation, the functionalis grows from the residual basalis layer during the proliferative phase under the influence of rising circulating estrogen levels. The regenerative capacity of the endometrium is attributed to stem/progenitor cells which reside in both the epithelial and stromal cell compartments of the basalis layer. Finding a definitive marker for endometrial epithelial progenitors (eEPCs) has proven difficult. A number of different markers have been suggested as putative progenitor markers including, N-cadherin, SSEA-1, AXIN2, SOX-9 and ALDH1A1, some of which show functional stem cell activity in in vitro assays. Each marker has a unique location(s) in the glandular epithelium, which has led to the suggestion that a differentiation hierarchy exists, from the base of epithelial glands in the basalis to the luminal epithelium lining the functionalis, where epithelial cells express different combinations of markers as they differentiate and move up the gland into the functionalis away from the basalis niche. Perivascular endometrial mesenchymal stem cells (eMSCs) can be identified by co-expression of PDGFRβ and CD146 or by a single marker, SUSD2. This review will detail the known endometrial stem/progenitor markers; their identity, location and known interactions and hierarchy across the menstrual cycle, in particular post-menstrual repair and estrogen-driven regeneration, as well as their possible contributions to menstruation-related disorders such as endometriosis and regeneration-related disorder Asherman's syndrome. We will also highlight new techniques that allow for a greater understanding of stem/progenitor cells' role in repair and regeneration, including 3D organoids, 3D slice cultures and gene sequencing at the single cell level. Since mouse models are commonly used to study menstruation, repair and regeneration we will also detail the mouse stem/progenitor markers that have been investigated in vivo.
Collapse
Affiliation(s)
- Fiona L. Cousins
- The Ritchie Centre, Hudson Institute of Medical Research, Clayton, VIC, Australia
- Department of Obstetrics and Gynecology, Monash University, Clayton, VIC, Australia
- *Correspondence: Fiona L. Cousins
| | - Caitlin E. Filby
- The Ritchie Centre, Hudson Institute of Medical Research, Clayton, VIC, Australia
- Department of Obstetrics and Gynecology, Monash University, Clayton, VIC, Australia
| | - Caroline E. Gargett
- The Ritchie Centre, Hudson Institute of Medical Research, Clayton, VIC, Australia
- Department of Obstetrics and Gynecology, Monash University, Clayton, VIC, Australia
| |
Collapse
|
7
|
Lee J, Park H, Moon S, Do JT, Hong K, Choi Y. Expression and Regulation of CD73 during the Estrous Cycle in Mouse Uterus. Int J Mol Sci 2021; 22:ijms22179403. [PMID: 34502315 PMCID: PMC8431015 DOI: 10.3390/ijms22179403] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 08/18/2021] [Accepted: 08/26/2021] [Indexed: 12/31/2022] Open
Abstract
Cluster of differentiation 73 (CD73, also known as ecto-5′-nucleotidase) is an enzyme that converts AMP into adenosine. CD73 is a surface enzyme bound to the outside of the plasma membrane expressed in several cells and regulates immunity and inflammation. In particular, it is known to inhibit T cell-mediated immune responses. However, the regulation of CD73 expression by hormones in the uterus is not yet clearly known. In this study, we investigated the expression of CD73 in ovariectomized mice treated with estrogen or progesterone and its regulation in the mouse uterus during the estrous cycle. The level of CD73 expression was dynamically regulated in the uterus during the estrous cycle. CD73 protein expression was high in proestrus, estrus, and diestrus, whereas it was relatively low in the metestrus stage. Immunofluorescence revealed that CD73 was predominantly expressed in the cytoplasm of the luminal and glandular epithelium and the stroma of the endometrium. The expression of CD73 in ovariectomized mice was gradually increased by progesterone treatment. However, estrogen injection did not affect its expression. Moreover, CD73 expression was increased when estrogen and progesterone were co-administered and was inhibited by the pretreatment of the progesterone receptor antagonist RU486. These findings suggest that the expression of CD73 is dynamically regulated by estrogen and progesterone in the uterine environment, and that there may be a synergistic effect of estrogen and progesterone.
Collapse
|
8
|
Characterization of the Endometrial MSC Marker Ectonucleoside Triphosphate Diphosphohydrolase-2 (NTPDase2/CD39L1) in Low- and High-Grade Endometrial Carcinomas: Loss of Stromal Expression in the Invasive Phenotypes. J Pers Med 2021; 11:jpm11050331. [PMID: 33922226 PMCID: PMC8146812 DOI: 10.3390/jpm11050331] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 04/12/2021] [Accepted: 04/15/2021] [Indexed: 02/06/2023] Open
Abstract
Ectonucleoside triphosphate diphosphohydrolase-2 (NTPDase2/CD39L1) has been described in human non-pathological endometrium in both epithelial and stromal components without changes along the cycle. It was identified as a stromal marker of basalis. In the present study, we aimed to evaluate NTPDase2 distribution, using immunolabeling and in situ enzyme activity approaches, in endometrial carcinoma (EC) at different tumor grades. NTPDase2 was present in tumor epithelial EC cells, as in the non-pathological endometria, but the expression underwent changes in subcellular distribution and also tended to decrease with the tumor grade. In stroma, NTPDase2 was identified exclusively at the tumor-myometrial junction but this expression was lost in tumors of invasive phenotype. We have also identified in EC samples the presence of the perivascular population of endometrial mesenchymal stem cells (eMSCs) positive for sushi domain containing 2 (SUSD2) and for NTPDase2, already described in non-tumoral endometrium. Our results point to NTPDase2 as a histopathological marker of tumor invasion in EC, with diagnostic relevance especially in cases of EC coexisting with other endometrial disorders, such as adenomyosis, which occasionally hampers the assessment of tumor invasion parameters.
Collapse
|
9
|
Methods for Studying Endometrial Pathology and the Potential of Atomic Force Microscopy in the Research of Endometrium. Cells 2021; 10:cells10020219. [PMID: 33499261 PMCID: PMC7911798 DOI: 10.3390/cells10020219] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Revised: 01/12/2021] [Accepted: 01/14/2021] [Indexed: 01/21/2023] Open
Abstract
The endometrium lines the uterine cavity, enables implantation of the embryo, and provides an environment for its development and growth. Numerous methods, including microscopic and immunoenzymatic techniques, have been used to study the properties of the cells and tissue of the endometrium to understand changes during, e.g., the menstrual cycle or implantation. Taking into account the existing state of knowledge on the endometrium and the research carried out using other tissues, it can be concluded that the mechanical properties of the tissue and its cells are crucial for their proper functioning. This review intends to emphasize the potential of atomic force microscopy (AFM) in the research of endometrium properties. AFM enables imaging of tissues or single cells, roughness analysis, and determination of the mechanical properties (Young’s modulus) of single cells or tissues, or their adhesion. AFM has been previously shown to be useful to derive force maps. Combining the information regarding cell mechanics with the alternations of cell morphology or gene/protein expression provides deeper insight into the uterine pathology. The determination of the elastic modulus of cells in pathological states, such as cancer, has been proved to be useful in diagnostics.
Collapse
|
10
|
Altay AY, Yavuz E, Bayram A, Yasa C, Akhan SE, Topuz S, Onder S. Loss of stromal CD73 expression plays a role in pathogenesis of polypoid endometriosis. Arch Gynecol Obstet 2021; 303:1523-1530. [PMID: 33433704 DOI: 10.1007/s00404-020-05942-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2020] [Accepted: 12/15/2020] [Indexed: 11/26/2022]
Abstract
PURPOSE To investigate whether CD73 had a role in the pathogenesis of polypoid endometriosis. METHODS Our study included 15 cases of polypoid endometriosis, which were diagnosed between 2005 and 2019. Clinical findings were gathered from archive files of relevant clinics and pathology reports. All glass slides were re-examined for confirmation of the diagnosis and the detection of additional microscopic findings. An immunohistochemical examination was performed using anti CD73 antibodies in 15 cases of polypoid endometriosis, and also in a control group that contained 9 cases of endometrial polyps and 9 cases of ovarian conventional endometriosis. RESULTS In addition to standard gynecologic operations, major non-gynecologic procedures had to be performed in 7 cases. In two cases, the surgical team comprised only general surgeons, and a misdiagnosis of carcinoma was made during the frozen section in one case. The majority of the cases displayed gross polypoid lesions that measured 0.7-13 cm. The most common sites were the ovary and rectosigmoid colon. Microscopically, all lesions exhibited a fibrovascular stroma reminiscent of endometrial stroma, whereas glandular features varied. Immunohistochemical examinations revealed a significant loss of CD73 expression in the stroma of polypoid endometriosis in contrast to the control cases, which retained stromal CD73 expression (p < 0.0001). CONCLUSION Both pathologists and surgeons performing abdominal surgeries should be aware of polypoid endometriosis because it mimics malignancy with its clinical, gross, and microscopic features. We also conclude that loss of stromal CD73 expression, due to its effect on the extracellular ATP/adenosine balance, may contribute to the pathogenesis of this rare form of endometriosis.
Collapse
Affiliation(s)
- Ali Yilmaz Altay
- Department of Pathology, Istanbul Faculty of Medicine, Istanbul University, Millet Caddesi-Çapa-Şehremini, 34390, Istanbul, Turkey.
| | - Ekrem Yavuz
- Department of Pathology, Istanbul Faculty of Medicine, Istanbul University, Millet Caddesi-Çapa-Şehremini, 34390, Istanbul, Turkey
| | - Aysel Bayram
- Department of Pathology, Istanbul Faculty of Medicine, Istanbul University, Millet Caddesi-Çapa-Şehremini, 34390, Istanbul, Turkey
| | - Cenk Yasa
- Department of Gynecology and Obstetrics, Istanbul Faculty of Medicine, Istanbul University, Istanbul, Turkey
| | - Suleyman Engin Akhan
- Department of Gynecology and Obstetrics, Istanbul Faculty of Medicine, Istanbul University, Istanbul, Turkey
| | - Samet Topuz
- Department of Gynecology and Obstetrics, Istanbul Faculty of Medicine, Istanbul University, Istanbul, Turkey
| | - Semen Onder
- Department of Pathology, Istanbul Faculty of Medicine, Istanbul University, Millet Caddesi-Çapa-Şehremini, 34390, Istanbul, Turkey
| |
Collapse
|
11
|
Trapero C, Martín-Satué M. Purinergic Signaling in Endometriosis-Associated Pain. Int J Mol Sci 2020; 21:E8512. [PMID: 33198179 PMCID: PMC7697899 DOI: 10.3390/ijms21228512] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 11/09/2020] [Accepted: 11/10/2020] [Indexed: 12/12/2022] Open
Abstract
Endometriosis is an estrogen-dependent gynecological disease, with an associated chronic inflammatory component, characterized by the presence of endometrial tissue outside the uterine cavity. Its predominant symptom is pain, a condition notably altering the quality of life of women with the disease. This review is intended to exhaustively gather current knowledge on purinergic signaling in endometriosis-associated pain. Altered extracellular ATP hydrolysis, due to changes in ectonucleotidase activity, has been reported in endometriosis; the resulting accumulation of ATP in the endometriotic microenvironment points to sustained activation of nucleotide receptors (P2 receptors) capable of generating a persistent pain message. P2X3 receptor, expressed in sensory neurons, mediates nociceptive, neuropathic, and inflammatory pain, and is enrolled in endometriosis-related pain. Pharmacological inhibition of P2X3 receptor is under evaluation as a pain relief treatment for women with endometriosis. The role of other ATP receptors is also discussed here, e.g., P2X4 and P2X7 receptors, which are involved in inflammatory cell-nerve and microglia-nerve crosstalk, and therefore in inflammatory and neuropathic pain. Adenosine receptors (P1 receptors), by contrast, mainly play antinociceptive and anti-inflammatory roles. Purinome-targeted drugs, including nucleotide receptors and metabolizing enzymes, are potential non-hormonal therapeutic tools for the pharmacological management of endometriosis-related pain.
Collapse
Affiliation(s)
- Carla Trapero
- Departament de Patologia i Terapèutica Experimental, Facultat de Medicina i Ciències de la Salut, Campus Bellvitge, Universitat de Barcelona, 08907 Barcelona, Spain;
- Institut d’Investigació Biomèdica de Bellvitge (IDIBELL), Oncobell Program, CIBERONC, 08908 Barcelona, Spain
| | - Mireia Martín-Satué
- Departament de Patologia i Terapèutica Experimental, Facultat de Medicina i Ciències de la Salut, Campus Bellvitge, Universitat de Barcelona, 08907 Barcelona, Spain;
- Institut d’Investigació Biomèdica de Bellvitge (IDIBELL), Oncobell Program, CIBERONC, 08908 Barcelona, Spain
| |
Collapse
|