1
|
Wang B, Rocca JR, Hoshika S, Chen C, Yang Z, Esmaeeli R, Wang J, Pan X, Lu J, Wang KK, Cao YC, Tan W, Benner SA. A folding motif formed with an expanded genetic alphabet. Nat Chem 2024; 16:1715-1722. [PMID: 38858518 PMCID: PMC11446821 DOI: 10.1038/s41557-024-01552-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Accepted: 05/07/2024] [Indexed: 06/12/2024]
Abstract
Adding synthetic nucleotides to DNA increases the linear information density of DNA molecules. Here we report that it also can increase the diversity of their three-dimensional folds. Specifically, an additional nucleotide (dZ, with a 5-nitro-6-aminopyridone nucleobase), placed at twelve sites in a 23-nucleotides-long DNA strand, creates a fairly stable unimolecular structure (that is, the folded Z-motif, or fZ-motif) that melts at 66.5 °C at pH 8.5. Spectroscopic, gel and two-dimensional NMR analyses show that the folded Z-motif is held together by six reverse skinny dZ-:dZ base pairs, analogous to the crystal structure of the free heterocycle. Fluorescence tagging shows that the dZ-:dZ pairs join parallel strands in a four-stranded compact down-up-down-up fold. These have two possible structures: one with intercalated dZ-:dZ base pairs, the second without intercalation. The intercalated structure would resemble the i-motif formed by dC:dC+-reversed pairing at pH ≤ 6.5. This fZ-motif may therefore help DNA form compact structures needed for binding and catalysis.
Collapse
Affiliation(s)
- Bang Wang
- Zhejiang Cancer Hospital, The Key Laboratory of Zhejiang Province for Aptamers and Theranostics, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, China
- Center for Research at Bio/Nano Interface, Department of Chemistry, Department of Physiology and Functional Genomics, Health Cancer Center, University of Florida, Gainesville, FL, USA
| | - James R Rocca
- AMRIS, McKnight Brain Institute, University of Florida, Gainesville, FL, USA
| | - Shuichi Hoshika
- Foundation for Applied Molecular Evolution, Alachua, FL, USA
- Firebird Biomolecular Sciences LLC, Alachua, FL, USA
| | - Cen Chen
- Foundation for Applied Molecular Evolution, Alachua, FL, USA
- Firebird Biomolecular Sciences LLC, Alachua, FL, USA
| | - Zunyi Yang
- Foundation for Applied Molecular Evolution, Alachua, FL, USA.
- Firebird Biomolecular Sciences LLC, Alachua, FL, USA.
| | - Reza Esmaeeli
- Center for Research at Bio/Nano Interface, Department of Chemistry, Department of Physiology and Functional Genomics, Health Cancer Center, University of Florida, Gainesville, FL, USA
| | - Jianguo Wang
- College of Chemistry and Chemical Engineering, Inner Mongolia Key Laboratory of Fine Organic Synthesis, Inner Mongolia University, Hohhot, China
| | - Xiaoshu Pan
- Center for Research at Bio/Nano Interface, Department of Chemistry, Department of Physiology and Functional Genomics, Health Cancer Center, University of Florida, Gainesville, FL, USA
| | - Jianrong Lu
- Department of Biochemistry and Molecular Biology, College of Medicine, University of Florida, Gainesville, FL, USA
| | - Kevin K Wang
- Department of Emergency Medicine, University of Florida, Gainesville, FL, USA
| | - Y Charles Cao
- Center for Research at Bio/Nano Interface, Department of Chemistry, Department of Physiology and Functional Genomics, Health Cancer Center, University of Florida, Gainesville, FL, USA
| | - Weihong Tan
- Zhejiang Cancer Hospital, The Key Laboratory of Zhejiang Province for Aptamers and Theranostics, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, China.
- Center for Research at Bio/Nano Interface, Department of Chemistry, Department of Physiology and Functional Genomics, Health Cancer Center, University of Florida, Gainesville, FL, USA.
- Institute of Molecular Medicine (IMM), Renji Hospital, Shanghai Jiao Tong University School of Medicine, College of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai, China.
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Biology, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, China.
| | - Steven A Benner
- Foundation for Applied Molecular Evolution, Alachua, FL, USA.
- Firebird Biomolecular Sciences LLC, Alachua, FL, USA.
| |
Collapse
|
2
|
Thayer KM, Stetson S, Caballero F, Chiu C, Han ISM. Navigating the complexity of p53-DNA binding: implications for cancer therapy. Biophys Rev 2024; 16:479-496. [PMID: 39309126 PMCID: PMC11415564 DOI: 10.1007/s12551-024-01207-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Accepted: 06/21/2024] [Indexed: 09/25/2024] Open
Abstract
Abstract The tumor suppressor protein p53, a transcription factor playing a key role in cancer prevention, interacts with DNA as its primary means of determining cell fate in the event of DNA damage. When it becomes mutated, it opens damaged cells to the possibility of reproducing unchecked, which can lead to formation of cancerous tumors. Despite its critical role, therapies at the molecular level to restore p53 native function remain elusive, due to its complex nature. Nevertheless, considerable information has been amassed, and new means of investigating the problem have become available. Objectives We consider structural, biophysical, and bioinformatic insights and their implications for the role of direct and indirect readout and how they contribute to binding site recognition, particularly those of low consensus. We then pivot to consider advances in computational approaches to drug discovery. Materials and methods We have conducted a review of recent literature pertinent to the p53 protein. Results Considerable literature corroborates the idea that p53 is a complex allosteric protein that discriminates its binding sites not only via consensus sequence through direct H-bond contacts, but also a complex combination of factors involving the flexibility of the binding site. New computational methods have emerged capable of capturing such information, which can then be utilized as input to machine learning algorithms towards the goal of more intelligent and efficient de novo allosteric drug design. Conclusions Recent improvements in machine learning coupled with graph theory and sector analysis hold promise for advances to more intelligently design allosteric effectors that may be able to restore native p53-DNA binding activity to mutant proteins. Clinical relevance The ideas brought to light by this review constitute a significant advance that can be applied to ongoing biophysical studies of drugs for p53, paving the way for the continued development of new methodologies for allosteric drugs. Our discoveries hold promise to provide molecular therapeutics which restore p53 native activity, thereby offering new insights for cancer therapies. Graphical Abstract Structural representation of the p53 DBD (PDBID 1TUP). DNA consensus sequence is shown in gray, and the protein is shown in blue. Red beads indicate hotspot residue mutations, green beads represent DNA interacting residues, and yellow beads represent both.
Collapse
Affiliation(s)
- Kelly M. Thayer
- College of Integrative Sciences, Wesleyan University, Middletown, CT 06457 USA
- Department of Chemistry, Wesleyan University, Middletown, CT 06457 USA
- Department of Mathematics and Computer Science, Wesleyan University, Middletown, CT 06457 USA
- Molecular Biophysics Program, Wesleyan University, Middletown, CT 06457 USA
| | - Sean Stetson
- Department of Chemistry, Wesleyan University, Middletown, CT 06457 USA
- Department of Mathematics and Computer Science, Wesleyan University, Middletown, CT 06457 USA
| | - Fernando Caballero
- College of Integrative Sciences, Wesleyan University, Middletown, CT 06457 USA
- Department of Mathematics and Computer Science, Wesleyan University, Middletown, CT 06457 USA
| | - Christopher Chiu
- Department of Mathematics and Computer Science, Wesleyan University, Middletown, CT 06457 USA
| | - In Sub Mark Han
- Molecular Biophysics Program, Wesleyan University, Middletown, CT 06457 USA
| |
Collapse
|
3
|
Lerma-Treviño C, Hernández-Cadena L, Acosta-Montes JO, Hernández-Montes G, Alvarado-Cruz I, Romieu I, Barraza-Villarreal A. Prenatal Arsenic Exposure on DNA Methylation of C18ORF8 and ADAMTS9 Genes of Newborns from the POSGRAD Birth Cohort Study. TOXICS 2024; 12:476. [PMID: 39058128 PMCID: PMC11280544 DOI: 10.3390/toxics12070476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 06/08/2024] [Accepted: 06/27/2024] [Indexed: 07/28/2024]
Abstract
Exposure to arsenic (As) is a public health problem associated with cancer (skin and colon) and it has been reported that epigenetic changes may be a potential mechanism of As carcinogenesis. It is pertinent to evaluate this process in genes that have been associated with cancer, such as ADAMTS9 and C18ORF8. Gestation and delivery data were obtained from the POSGRAD study. Exposure to As was measured in urine during pregnancy. Gene methylation was performed by sodium bisulfite sequencing; 26 CpG sites for the C18ORF8 gene and 21 for ADAMTS9 were analyzed. These sites are located on the CpG islands near the start of transcription. Sociodemographic characteristics were obtained by a questionnaire. The statistical analysis was performed using multiple linear regression models adjusted for potential confounders. Newborns with an As exposure above 49.4 μg g-1 showed a decrease of 0.21% on the methylation rate in the sites CpG15, CpG19, and CpG21 of the C18ORF8 gene (adjusted ß = -0.21, p-value = 0.02). No statistically significant association was found between prenatal exposure to As and methylation of the ADAMTS9 gene. Prenatal exposure to As was associated with decreased DNA methylation at the CpG15, CpG19, and CpG21 sites of the C18ORF8 gene. These sites can provide information to elucidate epigenetic mechanisms associated with prenatal exposure to As and cancer.
Collapse
Affiliation(s)
- Carolina Lerma-Treviño
- Centro de Investigación en Nutrición y Salud, Instituto Nacional de Salud Pública, Cuernavaca 62100, Mexico;
| | - Leticia Hernández-Cadena
- Dirección de Salud Ambiental, Instituto Nacional de Salud Pública, Cuernavaca 62100, Mexico; (L.H.-C.); (I.R.)
| | | | - Georgina Hernández-Montes
- CIC-UNAM-Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City 14080, Mexico;
| | - Isabel Alvarado-Cruz
- Department of Cellular and Molecular Medicine, University of Arizona, Tucson, AZ 85724, USA;
| | - Isabelle Romieu
- Dirección de Salud Ambiental, Instituto Nacional de Salud Pública, Cuernavaca 62100, Mexico; (L.H.-C.); (I.R.)
| | - Albino Barraza-Villarreal
- Dirección de Salud Ambiental, Instituto Nacional de Salud Pública, Cuernavaca 62100, Mexico; (L.H.-C.); (I.R.)
| |
Collapse
|
4
|
Romashin D, Rusanov A, Tolstova T, Varshaver A, Netrusov A, Kozhin P, Luzgina N. Loss of mutant p53 in HaCaT keratinocytes promotes cadmium-induced keratin 17 expression and cell death. Biochem Biophys Res Commun 2024; 709:149834. [PMID: 38547608 DOI: 10.1016/j.bbrc.2024.149834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 03/18/2024] [Accepted: 03/25/2024] [Indexed: 04/13/2024]
Abstract
BACKGROUND Cadmium exposure induces dermatotoxicity and epidermal barrier disruption and leads to the development of various pathologies. HaCaT cells are immortalized human keratinocytes that are widely used as alternatives to primary human keratinocytes, particularly for evaluating cadmium toxicity. HaCaT cells bear two gain-of-function (GOF) mutations in the TP53 gene, which strongly affect p53 function. Mutant forms of p53 are known to correlate with increased resistance to various stimuli, including exposure to cytotoxic substances. In addition, keratin 17 (KRT17) was recently shown to be highly expressed in HaCaT cells in response to genotoxic stress. Moreover, p53 is a direct transcriptional repressor of KRT17. However, the impact of TP53 mutations in HaCaT cells on the regulation of cell death and keratin 17 expression is unclear. In this study, we aimed to evaluate the impact of p53 on the response to Cd-induced cytotoxicity. METHODS AND RESULTS Employing the MTT assay and Annexin V/propidium iodide staining, we demonstrated that knockout of TP53 leads to a decrease in the sensitivity of HaCaT cells to the cytotoxic effects of cadmium. Specifically, HaCaT cells with TP53 knockout (TP53 KO HaCaT) exhibited cell death at a cadmium concentration of 10 μM or higher, whereas wild-type cells displayed cell death at a concentration of 30 μM. Furthermore, apoptotic cells were consistently detected in TP53 KO HaCaT cells upon exposure to low concentrations of cadmium (10 and 20 μM) but not in wild-type cells. Our findings also indicate that cadmium cytotoxicity is mediated by reactive oxygen species (ROS), which were significantly increased only in TP53 knockout cells treated with 30 μM cadmium. An examination of proteomic data revealed that TP53 knockout in HaCaT cells resulted in the upregulation of proteins involved in the regulation of apoptosis, redox systems, and DNA repair. Moreover, RT‒qPCR and immunoblotting showed that cadmium toxicity leads to dose-dependent induction of keratin 17 in p53-deficient cells but not in wild-type cells. CONCLUSIONS The connection between mutant p53 in HaCaT keratinocytes and increased resistance to cadmium toxicity was demonstrated for the first time. Proteomic profiling revealed that TP53 knockout in HaCaT cells led to the activation of apoptosis regulatory circuits, redox systems, and DNA repair. In addition, our data support the involvement of keratin 17 in the regulation of DNA repair and cell death. Apparently, the induction of keratin 17 is p53-independent but may be inhibited by mutant p53.
Collapse
Affiliation(s)
- Daniil Romashin
- Institute of Biomedical Chemistry, 10 Pogodinskaya St., Moscow, 119121, Russia
| | - Alexander Rusanov
- Institute of Biomedical Chemistry, 10 Pogodinskaya St., Moscow, 119121, Russia.
| | - Tatiana Tolstova
- Institute of Biomedical Chemistry, 10 Pogodinskaya St., Moscow, 119121, Russia
| | - Alexandra Varshaver
- Institute of Biomedical Chemistry, 10 Pogodinskaya St., Moscow, 119121, Russia
| | - Alexander Netrusov
- Lomonosov Moscow State University, GSP-1, Leninskie Gory, Moscow, 119991, Russia
| | - Peter Kozhin
- Institute of Biomedical Chemistry, 10 Pogodinskaya St., Moscow, 119121, Russia
| | - Nataliya Luzgina
- Institute of Biomedical Chemistry, 10 Pogodinskaya St., Moscow, 119121, Russia
| |
Collapse
|
5
|
Vojsovič M, Kratochvilová L, Valková N, Šislerová L, El Rashed Z, Menichini P, Inga A, Monti P, Brázda V. Transactivation by partial function P53 family mutants is increased by the presence of G-quadruplexes at a promoter site. Biochimie 2024; 216:14-23. [PMID: 37838351 DOI: 10.1016/j.biochi.2023.09.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 09/04/2023] [Accepted: 09/27/2023] [Indexed: 10/16/2023]
Abstract
The effect of mutations in the P53 family of transcription factors on their biological functions, including partial or complete loss of transcriptional activity, has been confirmed several times. At present, P53 family proteins showing partial loss of activity appear to be promising potential candidates for the development of novel therapeutic strategies which could restore their transcriptional activity. In this context, it is important to employ tools to precisely monitor their activity; in relation to this, non-canonical DNA secondary structures in promoters including G-quadruplexes (G4s) were shown to influence the activity of transcription factors. Here, we used a defined yeast assay to evaluate the impact of differently modeled G4 forming sequences on a panel of partial function P53 family mutant proteins. Specifically, a 22-mer G4 prone sequence (derived from the KSHV virus) and five derivatives that progressively mutate characteristic guanine stretches were placed upstream of a minimal promoter, adjacent to a P53 response element in otherwise isogenic yeast luciferase reporter strains. The transactivation ability of cancer-associated P53 (TA-P53α: A161T, R213L, N235S, V272L, R282W, R283C, R337C, R337H, and G360V) or Ectodermal Dyplasia syndromes-related P63 mutant proteins (ΔN-P63α: G134D, G134V and inR155) were tested. Our results show that the presence of G4 forming sequences can increase the transactivation ability of partial function P53 family proteins. These observations are pointing to the importance of DNA structural characteristics for accurate classification of P53 family proteins functionality in the context of the wide variety of TP53 and TP63 germline and somatic mutations.
Collapse
Affiliation(s)
- Matúš Vojsovič
- Institute of Biophysics of the Czech Academy of Sciences, Královopolská 135, 61200, Brno, Czech Republic; Department of Food Chemistry and Biotechnology, Faculty of Chemistry, Brno University of Technology, Purkyňova 118, 61200, Brno, Czech Republic.
| | - Libuše Kratochvilová
- Institute of Biophysics of the Czech Academy of Sciences, Královopolská 135, 61200, Brno, Czech Republic; Department of Food Chemistry and Biotechnology, Faculty of Chemistry, Brno University of Technology, Purkyňova 118, 61200, Brno, Czech Republic.
| | - Natália Valková
- Institute of Biophysics of the Czech Academy of Sciences, Královopolská 135, 61200, Brno, Czech Republic.
| | - Lucie Šislerová
- Institute of Biophysics of the Czech Academy of Sciences, Královopolská 135, 61200, Brno, Czech Republic; Department of Food Chemistry and Biotechnology, Faculty of Chemistry, Brno University of Technology, Purkyňova 118, 61200, Brno, Czech Republic.
| | - Zeinab El Rashed
- Gene Expression Regulation, IRCCS Ospedale Policlinico San Martino, 16132, Genoa, Italy.
| | - Paola Menichini
- Mutagenesis and Cancer Prevention, IRCCS Ospedale Policlinico San Martino, 16132, Genoa, Italy.
| | - Alberto Inga
- Laboratory of Transcriptional Networks, Department of Cellular, Computational and Integrative Biology, CIBIO, University of Trento, Via Sommarive 9, 38123, Trento, Italy.
| | - Paola Monti
- Mutagenesis and Cancer Prevention, IRCCS Ospedale Policlinico San Martino, 16132, Genoa, Italy.
| | - Václav Brázda
- Institute of Biophysics of the Czech Academy of Sciences, Královopolská 135, 61200, Brno, Czech Republic; Department of Food Chemistry and Biotechnology, Faculty of Chemistry, Brno University of Technology, Purkyňova 118, 61200, Brno, Czech Republic.
| |
Collapse
|
6
|
Grasso N, Graziano R, Marzano S, D'Aria F, Merlino F, Grieco P, Randazzo A, Pagano B, Amato J. Unveiling the interaction between DNA G-quadruplexes and RG-rich peptides. Int J Biol Macromol 2023; 253:126749. [PMID: 37689293 DOI: 10.1016/j.ijbiomac.2023.126749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Revised: 08/28/2023] [Accepted: 08/31/2023] [Indexed: 09/11/2023]
Abstract
G-quadruplexes are non-canonical DNA secondary structures formed within guanine-rich strands that play important roles in various biological processes, including gene regulation, telomere maintenance and DNA replication. The biological functions and formation of these DNA structures are strictly controlled by several proteins that bind and stabilize or resolve them. Many G-quadruplex-binding proteins feature an arginine and glycine-rich motif known as the RGG or RG-rich motif. Although this motif plays a crucial role in the recognition of such non-canonical structures, their interaction is still poorly understood. Here, we employed a combination of several biophysical techniques to provide valuable insights into the interaction between a peptide containing an RGG motif shared by numerous human G-quadruplex-binding proteins (NIQI) and various biologically relevant G-quadruplex DNA structures with different topologies. We also shed light on the key amino acids involved in the binding process. Our findings contribute to lay the basis for the development of a new class of peptide-based G-quadruplex ligands as an alternative to small molecules. These ligands may serve as valid tools for interfering in DNA-protein interactions, with potential therapeutic applications.
Collapse
Affiliation(s)
- Nicola Grasso
- Department of Pharmacy, University of Naples Federico II, 80131 Naples, Italy
| | - Raffaele Graziano
- Department of Pharmacy, University of Naples Federico II, 80131 Naples, Italy
| | - Simona Marzano
- Department of Pharmacy, University of Naples Federico II, 80131 Naples, Italy
| | - Federica D'Aria
- Department of Pharmacy, University of Naples Federico II, 80131 Naples, Italy
| | - Francesco Merlino
- Department of Pharmacy, University of Naples Federico II, 80131 Naples, Italy
| | - Paolo Grieco
- Department of Pharmacy, University of Naples Federico II, 80131 Naples, Italy
| | - Antonio Randazzo
- Department of Pharmacy, University of Naples Federico II, 80131 Naples, Italy
| | - Bruno Pagano
- Department of Pharmacy, University of Naples Federico II, 80131 Naples, Italy.
| | - Jussara Amato
- Department of Pharmacy, University of Naples Federico II, 80131 Naples, Italy.
| |
Collapse
|
7
|
Suwita JP, Voong CK, Ly E, Goodrich JA, Kugel JF. Single molecule studies characterize the kinetic mechanism of tetrameric p53 binding to different native response elements. PLoS One 2023; 18:e0286193. [PMID: 37582100 PMCID: PMC10426914 DOI: 10.1371/journal.pone.0286193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Accepted: 05/10/2023] [Indexed: 08/17/2023] Open
Abstract
The transcriptional activator p53 is a tumor suppressor protein that controls cellular pathways important for cell fate decisions, including cell cycle arrest, senescence, and apoptosis. It functions as a tetramer by binding to specific DNA sequences known as response elements (REs) to control transcription via interactions with co-regulatory complexes. Despite its biological importance, the mechanism by which p53 binds REs remains unclear. To address this, we have used an in vitro single molecule fluorescence approach to quantify the dynamic binding of full-length human p53 to five native REs in real time under equilibrium conditions. Our approach enabled us to quantify the oligomeric state of DNA-bound p53. We found little evidence that dimer/DNA complexes form as intermediates en route to binding or dissociation of p53 tetramer/DNA complexes. Interestingly, however, at some REs dimers can rapidly exchange from tetramer/DNA complexes. Real time kinetic measurements enabled us to determine rate constants for association and dissociation at all five REs, which revealed two kinetically distinct populations of tetrameric p53/RE complexes. For the less stable population, the rate constants for dissociation were larger at REs closest to consensus, showing that the more favorable binding sequences form the least kinetically stable complexes. Together our single molecule measurements provide new insight into mechanisms by which tetrameric p53 forms complexes on different native REs.
Collapse
Affiliation(s)
- Johannes P. Suwita
- Department of Biochemistry, University of Colorado Boulder, Boulder, CO, United States of America
| | - Calvin K. Voong
- Department of Biochemistry, University of Colorado Boulder, Boulder, CO, United States of America
| | - Elina Ly
- Department of Biochemistry, University of Colorado Boulder, Boulder, CO, United States of America
| | - James A. Goodrich
- Department of Biochemistry, University of Colorado Boulder, Boulder, CO, United States of America
| | - Jennifer F. Kugel
- Department of Biochemistry, University of Colorado Boulder, Boulder, CO, United States of America
| |
Collapse
|
8
|
Wang H, Guo M, Wei H, Chen Y. Targeting p53 pathways: mechanisms, structures, and advances in therapy. Signal Transduct Target Ther 2023; 8:92. [PMID: 36859359 PMCID: PMC9977964 DOI: 10.1038/s41392-023-01347-1] [Citation(s) in RCA: 154] [Impact Index Per Article: 154.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 12/19/2022] [Accepted: 02/07/2023] [Indexed: 03/03/2023] Open
Abstract
The TP53 tumor suppressor is the most frequently altered gene in human cancers, and has been a major focus of oncology research. The p53 protein is a transcription factor that can activate the expression of multiple target genes and plays critical roles in regulating cell cycle, apoptosis, and genomic stability, and is widely regarded as the "guardian of the genome". Accumulating evidence has shown that p53 also regulates cell metabolism, ferroptosis, tumor microenvironment, autophagy and so on, all of which contribute to tumor suppression. Mutations in TP53 not only impair its tumor suppressor function, but also confer oncogenic properties to p53 mutants. Since p53 is mutated and inactivated in most malignant tumors, it has been a very attractive target for developing new anti-cancer drugs. However, until recently, p53 was considered an "undruggable" target and little progress has been made with p53-targeted therapies. Here, we provide a systematic review of the diverse molecular mechanisms of the p53 signaling pathway and how TP53 mutations impact tumor progression. We also discuss key structural features of the p53 protein and its inactivation by oncogenic mutations. In addition, we review the efforts that have been made in p53-targeted therapies, and discuss the challenges that have been encountered in clinical development.
Collapse
Affiliation(s)
- Haolan Wang
- Department of Oncology, NHC Key Laboratory of Cancer Proteomics, Laboratory of Structural Biology, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
| | - Ming Guo
- Department of Oncology, NHC Key Laboratory of Cancer Proteomics, Laboratory of Structural Biology, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
| | - Hudie Wei
- Department of Oncology, NHC Key Laboratory of Cancer Proteomics, Laboratory of Structural Biology, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China.
| | - Yongheng Chen
- Department of Oncology, NHC Key Laboratory of Cancer Proteomics, Laboratory of Structural Biology, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China.
| |
Collapse
|
9
|
Goswami P, Šislerová L, Dobrovolná M, Havlík J, Šťastný J, Brázda V. Interaction of C-terminal p53 isoforms depends strongly upon DNA sequence and topology. Biochimie 2022; 208:93-99. [PMID: 36549455 DOI: 10.1016/j.biochi.2022.12.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 12/14/2022] [Accepted: 12/16/2022] [Indexed: 12/24/2022]
Abstract
The p53 protein is a key tumor suppressor and the most commonly mutated and down-regulated protein in human tumors. It functions mainly through interaction with DNA, and p53 acts as a transcription factor that recognizes the so-called p53 target sites on the promoters of various genes. P53 has been shown to exist as many isoforms, including three C-terminal isoforms that are produced by alternative splicing. Because the C-terminal domain is responsible for sequence-nonspecific binding and regulation of p53 binding, we have analyzed DNA recognition by these C-terminal isoforms. Using atomic force microscopy, we show for the first time that all C-terminal isoforms recognize superhelical DNA. It is particularly noteworthy that a sequence-specific p53 consensus binding site is bound by p53α and β isoforms with similar affinities, whilst p53α shows higher binding to a quadruplex sequence than both p53β and p53γ, and p53γ loses preferential binding to both the consensus binding sequence and the quadruplex-forming sequence. These results show the important role of the variable p53 C-terminal amino acid sequences for DNA recognition.
Collapse
Affiliation(s)
- Pratik Goswami
- Institute of Biophysics of the Czech Academy of Sciences, Královopolská 135, 612 00, Brno, Czech Republic
| | - Lucie Šislerová
- Institute of Biophysics of the Czech Academy of Sciences, Královopolská 135, 612 00, Brno, Czech Republic; Faculty of Chemistry, Brno University of Technology, Purkyňova 118, 612 00, Brno, Czech Republic
| | - Michaela Dobrovolná
- Institute of Biophysics of the Czech Academy of Sciences, Královopolská 135, 612 00, Brno, Czech Republic; Faculty of Chemistry, Brno University of Technology, Purkyňova 118, 612 00, Brno, Czech Republic
| | - Jan Havlík
- Department of Informatics, Mendel University in Brno, Zemědělská 1, 613 00, Brno, Czech Republic
| | - Jiří Šťastný
- Department of Informatics, Mendel University in Brno, Zemědělská 1, 613 00, Brno, Czech Republic; Faculty of Mechanical Engineering, Brno University of Technology, Technická 2, 616 69, Brno, Czech Republic
| | - Václav Brázda
- Institute of Biophysics of the Czech Academy of Sciences, Královopolská 135, 612 00, Brno, Czech Republic; Faculty of Chemistry, Brno University of Technology, Purkyňova 118, 612 00, Brno, Czech Republic.
| |
Collapse
|
10
|
Zhai LY, Su AM, Liu JF, Zhao JJ, Xi XG, Hou XM. Recent advances in applying G-quadruplex for SARS-CoV-2 targeting and diagnosis: A review. Int J Biol Macromol 2022; 221:1476-1490. [PMID: 36130641 PMCID: PMC9482720 DOI: 10.1016/j.ijbiomac.2022.09.152] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 08/31/2022] [Accepted: 09/15/2022] [Indexed: 12/05/2022]
Abstract
The coronavirus SARS-CoV-2 has caused a health care crisis all over the world since the end of 2019. Although vaccines and neutralizing antibodies have been developed, rapidly emerging variants usually display stronger immune escape ability and can better surpass vaccine protection. Therefore, it is still vital to find proper treatment strategies. To date, antiviral drugs against SARS-CoV-2 have mainly focused on proteases or polymerases. Notably, noncanonical nucleic acid structures called G-quadruplexes (G4s) have been identified in many viruses in recent years, and numerous G4 ligands have been developed. During this pandemic, literature on SARS-CoV-2 G4s is rapidly accumulating. Here, we first summarize the recent progress in the identification of SARS-CoV-2 G4s and their intervention by ligands. We then introduce the potential interacting proteins of SARS-CoV-2 G4s from both the virus and the host that may regulate G4 functions. The innovative strategy to use G4s as a diagnostic tool in SARS-CoV-2 detection is also reviewed. Finally, we discuss some key questions to be addressed in the future.
Collapse
Affiliation(s)
- Li-Yan Zhai
- College of Life Sciences, Northwest A&F University, Yangling 712100, China
| | - Ai-Min Su
- College of Life Sciences, Northwest A&F University, Yangling 712100, China
| | - Jing-Fan Liu
- College of Life Sciences, Northwest A&F University, Yangling 712100, China
| | - Jian-Jin Zhao
- College of Life Sciences, Northwest A&F University, Yangling 712100, China
| | - Xu-Guang Xi
- College of Life Sciences, Northwest A&F University, Yangling 712100, China; ENS Paris-Saclay, Université Paris-Saclay, CNRS UMR8113, IDA FR3242, Laboratory of Biology and Applied Pharmacology (LBPA), 91190 Gif-sur-Yvette, France
| | - Xi-Miao Hou
- College of Life Sciences, Northwest A&F University, Yangling 712100, China.
| |
Collapse
|
11
|
Vadakekolathu J, Boocock DJ, Pandey K, Guinn BA, Legrand A, Miles AK, Coveney C, Ayala R, Purcell AW, McArdle SE. Multi-Omic Analysis of Two Common P53 Mutations: Proteins Regulated by Mutated P53 as Potential Targets for Immunotherapy. Cancers (Basel) 2022; 14:cancers14163975. [PMID: 36010968 PMCID: PMC9406384 DOI: 10.3390/cancers14163975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 08/12/2022] [Accepted: 08/13/2022] [Indexed: 12/05/2022] Open
Abstract
Simple Summary TP53 is the most frequently mutated gene in many cancers, but it has failed to be a very effective target for treatment to date. To overcome this, we have examined what else changes in cells when the TP53 gene is mutated. We modified cells that had no TP53 expression to have one of the two most common mutations, either R175H or R273H. We examined how the presence of these TP53 mutations caused cellular changes including microscopic, gene expression and peptide presentation to the immune system. This has allowed us to identify new (secondary) targets that could be used to facilitate the treatment of tumors that harbor p53 mutations. Abstract The p53 protein is mutated in more than 50% of human cancers. Mutated p53 proteins not only lose their normal function but often acquire novel oncogenic functions, a phenomenon termed mutant p53 gain-of-function. Mutant p53 has been shown to affect the transcription of a range of genes, as well as protein–protein interactions with transcription factors and other effectors; however, no one has intensively investigated and identified these proteins, or their MHC presented epitopes, from the viewpoint of their ability to act as targets for immunotherapeutic interventions. We investigated the molecular changes that occurred after the TP53 null osteosarcoma cells, SaOS-2, were transfected with one of two conformational p53-mutants, either R175H or R273H. We then examined the phenotypic and functional changes using macroscopic observations, proliferation, gene expression and proteomics alongside immunopeptidome profiling of peptide antigen presentation in the context of major histocompatibility complex (MHC) class I molecules. We identified several candidate proteins in both TP53 mutant cell lines with differential expression when compared to the TP53 null vector control, SaOS-V. Quantitative SWATH proteomics combined with immune-peptidome analysis of the class-I eluted peptides identified several epitopes presented on pMHC and in silico analysis shortlisted which antigens were expressed in a range of cancerous but not adjacent healthy tissues. Out of all the candidates, KLC1 and TOP2A showed high levels of expression in every tumor type examined. From these proteins, three A2 and four pan HLA-A epitopes were identified in both R175H and R273H from TOP2A. We have now provided a short list of future immunotherapy targets for the treatment of cancers harboring mutated TP53.
Collapse
Affiliation(s)
- Jayakumar Vadakekolathu
- John van Geest Cancer Research Centre, Nottingham Trent University, Nottingham NG11 8NS, UK or
| | - David J. Boocock
- Centre for Health, Ageing and Understanding Disease, School of Science and Technology, Nottingham Trent University, Nottingham NG1 4FQ, UK
| | - Kirti Pandey
- Infection and Immunology Program, Biomedicine Discovery Institute, Melbourne, VIC 3800, Australia
- Department of Biochemistry and Molecular Biology, Monash University, Melbourne, VIC 3800, Australia
| | - Barbara-ann Guinn
- Department of Biomedical Sciences, University of Hull, Hull HU6 7RX, UK
| | - Antoine Legrand
- John van Geest Cancer Research Centre, Nottingham Trent University, Nottingham NG11 8NS, UK or
| | - Amanda K. Miles
- John van Geest Cancer Research Centre, Nottingham Trent University, Nottingham NG11 8NS, UK or
- Centre for Health, Ageing and Understanding Disease, School of Science and Technology, Nottingham Trent University, Nottingham NG1 4FQ, UK
| | - Clare Coveney
- John van Geest Cancer Research Centre, Nottingham Trent University, Nottingham NG11 8NS, UK or
| | - Rochelle Ayala
- Infection and Immunology Program, Biomedicine Discovery Institute, Melbourne, VIC 3800, Australia
- Department of Biochemistry and Molecular Biology, Monash University, Melbourne, VIC 3800, Australia
| | - Anthony W. Purcell
- Infection and Immunology Program, Biomedicine Discovery Institute, Melbourne, VIC 3800, Australia
- Department of Biochemistry and Molecular Biology, Monash University, Melbourne, VIC 3800, Australia
| | - Stephanie E. McArdle
- John van Geest Cancer Research Centre, Nottingham Trent University, Nottingham NG11 8NS, UK or
- Centre for Health, Ageing and Understanding Disease, School of Science and Technology, Nottingham Trent University, Nottingham NG1 4FQ, UK
- Correspondence:
| |
Collapse
|
12
|
Toma I, Porfire AS, Tefas LR, Berindan-Neagoe I, Tomuță I. A Quality by Design Approach in Pharmaceutical Development of Non-Viral Vectors with a Focus on miRNA. Pharmaceutics 2022; 14:1482. [PMID: 35890377 PMCID: PMC9322860 DOI: 10.3390/pharmaceutics14071482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 06/28/2022] [Accepted: 07/14/2022] [Indexed: 12/10/2022] Open
Abstract
Cancer is the leading cause of death worldwide. Tumors consist of heterogeneous cell populations that have different biological properties. While conventional cancer therapy such as chemotherapy, radiotherapy, and surgery does not target cancer cells specifically, gene therapy is attracting increasing attention as an alternative capable of overcoming these limitations. With the advent of gene therapy, there is increasing interest in developing non-viral vectors for genetic material delivery in cancer therapy. Nanosystems, both organic and inorganic, are the most common non-viral vectors used in gene therapy. The most used organic vectors are polymeric and lipid-based delivery systems. These nanostructures are designed to bind and protect the genetic material, leading to high efficiency, prolonged gene expression, and low toxicity. Quality by Design (QbD) is a step-by-step approach that investigates all the factors that may affect the quality of the final product, leading to efficient pharmaceutical development. This paper aims to provide a new perspective regarding the use of the QbD approach for improving the quality of non-viral vectors for genetic material delivery and their application in cancer therapy.
Collapse
Affiliation(s)
- Ioana Toma
- Department of Pharmaceutical Technology and Biopharmacy, Iuliu Hatieganu University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania; (I.T.); (L.R.T.); (I.T.)
| | - Alina Silvia Porfire
- Department of Pharmaceutical Technology and Biopharmacy, Iuliu Hatieganu University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania; (I.T.); (L.R.T.); (I.T.)
| | - Lucia Ruxandra Tefas
- Department of Pharmaceutical Technology and Biopharmacy, Iuliu Hatieganu University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania; (I.T.); (L.R.T.); (I.T.)
| | - Ioana Berindan-Neagoe
- Research Center for Functional Genomics Biomedicine and Translational Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, 400337 Cluj-Napoca, Romania;
| | - Ioan Tomuță
- Department of Pharmaceutical Technology and Biopharmacy, Iuliu Hatieganu University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania; (I.T.); (L.R.T.); (I.T.)
| |
Collapse
|
13
|
Bowater RP, Bohálová N, Brázda V. Interaction of Proteins with Inverted Repeats and Cruciform Structures in Nucleic Acids. Int J Mol Sci 2022; 23:ijms23116171. [PMID: 35682854 PMCID: PMC9180970 DOI: 10.3390/ijms23116171] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 05/26/2022] [Accepted: 05/30/2022] [Indexed: 01/27/2023] Open
Abstract
Cruciforms occur when inverted repeat sequences in double-stranded DNA adopt intra-strand hairpins on opposing strands. Biophysical and molecular studies of these structures confirm their characterization as four-way junctions and have demonstrated that several factors influence their stability, including overall chromatin structure and DNA supercoiling. Here, we review our understanding of processes that influence the formation and stability of cruciforms in genomes, covering the range of sequences shown to have biological significance. It is challenging to accurately sequence repetitive DNA sequences, but recent advances in sequencing methods have deepened understanding about the amounts of inverted repeats in genomes from all forms of life. We highlight that, in the majority of genomes, inverted repeats are present in higher numbers than is expected from a random occurrence. It is, therefore, becoming clear that inverted repeats play important roles in regulating many aspects of DNA metabolism, including replication, gene expression, and recombination. Cruciforms are targets for many architectural and regulatory proteins, including topoisomerases, p53, Rif1, and others. Notably, some of these proteins can induce the formation of cruciform structures when they bind to DNA. Inverted repeat sequences also influence the evolution of genomes, and growing evidence highlights their significance in several human diseases, suggesting that the inverted repeat sequences and/or DNA cruciforms could be useful therapeutic targets in some cases.
Collapse
Affiliation(s)
- Richard P. Bowater
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich NR4 7TJ, UK;
| | - Natália Bohálová
- Department of Biophysical Chemistry and Molecular Oncology, Institute of Biophysics of the Czech Academy of Sciences, 61265 Brno, Czech Republic;
- Department of Experimental Biology, Faculty of Science, Masaryk University, Kamenice 5, 62500 Brno, Czech Republic
| | - Václav Brázda
- Department of Biophysical Chemistry and Molecular Oncology, Institute of Biophysics of the Czech Academy of Sciences, 61265 Brno, Czech Republic;
- Correspondence:
| |
Collapse
|
14
|
Zavileyskiy L, Bunik V. Regulation of p53 Function by Formation of Non-Nuclear Heterologous Protein Complexes. Biomolecules 2022; 12:biom12020327. [PMID: 35204825 PMCID: PMC8869670 DOI: 10.3390/biom12020327] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Revised: 02/10/2022] [Accepted: 02/16/2022] [Indexed: 01/10/2023] Open
Abstract
A transcription factor p53 is activated upon cellular exposure to endogenous and exogenous stresses, triggering either homeostatic correction or cell death. Depending on the stress level, often measurable as DNA damage, the dual outcome is supported by p53 binding to a number of regulatory and metabolic proteins. Apart from the nucleus, p53 localizes to mitochondria, endoplasmic reticulum and cytosol. We consider non-nuclear heterologous protein complexes of p53, their structural determinants, regulatory post-translational modifications and the role in intricate p53 functions. The p53 heterologous complexes regulate the folding, trafficking and/or action of interacting partners in cellular compartments. Some of them mainly sequester p53 (HSP proteins, G6PD, LONP1) or its partners (RRM2B, PRKN) in specific locations. Formation of other complexes (with ATP2A2, ATP5PO, BAX, BCL2L1, CHCHD4, PPIF, POLG, SOD2, SSBP1, TFAM) depends on p53 upregulation according to the stress level. The p53 complexes with SIRT2, MUL1, USP7, TXN, PIN1 and PPIF control regulation of p53 function through post-translational modifications, such as lysine acetylation or ubiquitination, cysteine/cystine redox transformation and peptidyl-prolyl cis-trans isomerization. Redox sensitivity of p53 functions is supported by (i) thioredoxin-dependent reduction of p53 disulfides, (ii) inhibition of the thioredoxin-dependent deoxyribonucleotide synthesis by p53 binding to RRM2B and (iii) changed intracellular distribution of p53 through its oxidation by CHCHD4 in the mitochondrial intermembrane space. Increasing knowledge on the structure, function and (patho)physiological significance of the p53 heterologous complexes will enable a fine tuning of the settings-dependent p53 programs, using small molecule regulators of specific protein–protein interactions of p53.
Collapse
Affiliation(s)
- Lev Zavileyskiy
- Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, 119991 Moscow, Russia;
| | - Victoria Bunik
- Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, 119991 Moscow, Russia;
- Department of Biokinetics, Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119991 Moscow, Russia
- Department of Biochemistry, Sechenov University, 119991 Moscow, Russia
- Correspondence:
| |
Collapse
|
15
|
Świerzko AS, Jarych D, Gajek G, Chojnacka K, Kobiela P, Kufelnicka-Babout M, Michalski M, Sobczuk K, Szala-Poździej A, Matsushita M, Mazela J, Domżalska-Popadiuk I, Kilpatrick DC, Kalinka J, Sekine H, Cedzyński M. Polymorphisms of the FCN2 Gene 3'UTR Region and Their Clinical Associations in Preterm Newborns. Front Immunol 2021; 12:741140. [PMID: 34777352 PMCID: PMC8581395 DOI: 10.3389/fimmu.2021.741140] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Accepted: 10/12/2021] [Indexed: 11/24/2022] Open
Abstract
Ficolin-2 is regarded as an important innate immunity factor endowed with both lectin (carbohydrate recognition) qualities and ability to induce complement activation. The aim of this study was to investigate the association of the FCN2 3'-untranslated region (3'UTR) polymorphisms with ficolin-2 expression and perinatal complications in preterm neonates. The sequencing analysis allowed us to identify six 3'UTR polymorphisms with minor allele frequency (MAF) >1%: rs4521835, rs73664188, rs11103564, rs11103565, rs6537958 and rs6537959. Except for rs4521835, all adhered to Hardy-Weinberg expectations. Moreover, rs6537958 and rs6537959 were shown to be in perfect linkage disequilibrium (LD) with nine other genetic polymorphisms: rs7040372, rs7046516, rs747422, rs7847431, rs6537957, rs6537960, rs6537962, rs11462298 and rs7860507 together stretched on a distance of 1242 bp and very high LD with rs11103565. The 3'UTR region was shown to bind nuclear extract proteins. The polymorphisms at rs4521835 and rs73664188 were found to influence serum ficolin-2 concentration significantly. All polymorphisms identified create (together with exon 8 polymorphism, rs7851696) two haplotype blocks. Among 49 diplotypes (D1-D49) created from rs7851696 (G>T), rs4521835 (T>G), rs73664188 (T>C), rs11103564 (T>C), rs11103565 (G>A) and rs6537959 (T>A), twenty two occurred with frequency >1%. Two diplotypes: D13 (GTTTGT/GGTCGT) and D10 (GTTTGT/GGTCGA), were significantly more frequent among preterm neonates with early onset of infection and pneumonia, compared with newborns with no infectious complications (OR 2.69 and 2.81, respectively; both p<0.05). The minor (C) allele at rs73664188 was associated with an increased risk of very low (≤1500 g) birthweight (OR=1.95, p=0.042) but was associated with the opposite effect at rs11103564 (OR=0.11, p=0.005).
Collapse
Affiliation(s)
- Anna S. Świerzko
- Laboratory of Immunobiology of Infections, Institute of Medical Biology, Polish Academy of Sciences, Łódź, Poland
| | - Dariusz Jarych
- Laboratory of Immunobiology of Infections, Institute of Medical Biology, Polish Academy of Sciences, Łódź, Poland
| | - Gabriela Gajek
- Laboratory of Immunobiology of Infections, Institute of Medical Biology, Polish Academy of Sciences, Łódź, Poland
| | - Karolina Chojnacka
- Department of Newborns’ Infectious Diseases, Poznań University of Medical Sciences, Poznań, Poland
| | - Paulina Kobiela
- Department of Neonatology, Medical University of Gdańsk, Gdańsk, Poland
| | - Maja Kufelnicka-Babout
- Department of Perinatology, First Chair of Gynecology and Obstetrics, Medical University of Łódź, Łódź, Poland
| | - Mateusz Michalski
- Laboratory of Immunobiology of Infections, Institute of Medical Biology, Polish Academy of Sciences, Łódź, Poland
| | - Katarzyna Sobczuk
- Department of Perinatology, First Chair of Gynecology and Obstetrics, Medical University of Łódź, Łódź, Poland
| | - Agnieszka Szala-Poździej
- Laboratory of Immunobiology of Infections, Institute of Medical Biology, Polish Academy of Sciences, Łódź, Poland
| | - Misao Matsushita
- Department of Applied Biochemistry, Tokai University, Hiratsuka, Japan
| | - Jan Mazela
- Department of Newborns’ Infectious Diseases, Poznań University of Medical Sciences, Poznań, Poland
| | | | - David C. Kilpatrick
- Scottish National Blood Transfusion Service, National Science Laboratory, Edinburgh, Scotland, United Kingdom
| | - Jarosław Kalinka
- Department of Perinatology, First Chair of Gynecology and Obstetrics, Medical University of Łódź, Łódź, Poland
| | - Hideharu Sekine
- Department of Immunology, Fukushima Medical University, Fukushima, Japan
| | - Maciej Cedzyński
- Laboratory of Immunobiology of Infections, Institute of Medical Biology, Polish Academy of Sciences, Łódź, Poland
| |
Collapse
|
16
|
Synoradzki KJ, Bartnik E, Czarnecka AM, Fiedorowicz M, Firlej W, Brodziak A, Stasinska A, Rutkowski P, Grieb P. TP53 in Biology and Treatment of Osteosarcoma. Cancers (Basel) 2021; 13:4284. [PMID: 34503094 PMCID: PMC8428337 DOI: 10.3390/cancers13174284] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 08/12/2021] [Accepted: 08/13/2021] [Indexed: 12/12/2022] Open
Abstract
The TP53 gene is mutated in 50% of human tumors. Oncogenic functions of mutant TP53 maintain tumor cell proliferation and tumor growth also in osteosarcomas. We collected data on TP53 mutations in patients to indicate which are more common and describe their role in in vitro and animal models. We also describe animal models with TP53 dysfunction, which provide a good platform for testing the potential therapeutic approaches. Finally, we have indicated a whole range of pharmacological compounds that modulate the action of p53, stabilize its mutated versions or lead to its degradation, cause silencing or, on the contrary, induce the expression of its functional version in genetic therapy. Although many of the described therapies are at the preclinical testing stage, they offer hope for a change in the approach to osteosarcoma treatment based on TP53 targeting in the future.
Collapse
Affiliation(s)
- Kamil Jozef Synoradzki
- Small Animal Magnetic Resonance Imaging Laboratory, Mossakowski Medical Research Institute, Polish Academy of Sciences, 02-106 Warsaw, Poland;
- Department of Experimental Pharmacology, Mossakowski Medical Research Institute, Polish Academy of Sciences, 02-106 Warsaw, Poland; (A.M.C.); (A.S.); (P.G.)
| | - Ewa Bartnik
- Institute of Genetics and Biotechnology, Faculty of Biology, University of Warsaw, 02-106 Warsaw, Poland;
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, 02-106 Warsaw, Poland
| | - Anna M. Czarnecka
- Department of Experimental Pharmacology, Mossakowski Medical Research Institute, Polish Academy of Sciences, 02-106 Warsaw, Poland; (A.M.C.); (A.S.); (P.G.)
- Department of Soft Tissue, Bone Sarcoma and Melanoma, Maria Sklodowska-Curie National Research Institute of Oncology, 02-781 Warsaw, Poland; (W.F.); (P.R.)
| | - Michał Fiedorowicz
- Small Animal Magnetic Resonance Imaging Laboratory, Mossakowski Medical Research Institute, Polish Academy of Sciences, 02-106 Warsaw, Poland;
| | - Wiktoria Firlej
- Department of Soft Tissue, Bone Sarcoma and Melanoma, Maria Sklodowska-Curie National Research Institute of Oncology, 02-781 Warsaw, Poland; (W.F.); (P.R.)
- Faculty of Medicine, Medical University of Warsaw, 02-091 Warsaw, Poland
| | - Anna Brodziak
- Laboratory of Centre for Preclinical Research, Department of Experimental and Clinical Physiology, Medical University of Warsaw, 02-097 Warsaw, Poland;
- Department of Oncology and Radiotherapy, Maria Sklodowska-Curie National Research Institute of Oncology, 02-781 Warsaw, Poland
| | - Agnieszka Stasinska
- Department of Experimental Pharmacology, Mossakowski Medical Research Institute, Polish Academy of Sciences, 02-106 Warsaw, Poland; (A.M.C.); (A.S.); (P.G.)
| | - Piotr Rutkowski
- Department of Soft Tissue, Bone Sarcoma and Melanoma, Maria Sklodowska-Curie National Research Institute of Oncology, 02-781 Warsaw, Poland; (W.F.); (P.R.)
| | - Paweł Grieb
- Department of Experimental Pharmacology, Mossakowski Medical Research Institute, Polish Academy of Sciences, 02-106 Warsaw, Poland; (A.M.C.); (A.S.); (P.G.)
| |
Collapse
|
17
|
The Changes in the p53 Protein across the Animal Kingdom Point to Its Involvement in Longevity. Int J Mol Sci 2021; 22:ijms22168512. [PMID: 34445220 PMCID: PMC8395165 DOI: 10.3390/ijms22168512] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 07/29/2021] [Accepted: 07/30/2021] [Indexed: 12/14/2022] Open
Abstract
Recently, the quest for the mythical fountain of youth has produced extensive research programs that aim to extend the healthy lifespan of humans. Despite advances in our understanding of the aging process, the surprisingly extended lifespan and cancer resistance of some animal species remain unexplained. The p53 protein plays a crucial role in tumor suppression, tissue homeostasis, and aging. Long-lived, cancer-free African elephants have 20 copies of the TP53 gene, including 19 retrogenes (38 alleles), which are partially active, whereas humans possess only one copy of TP53 and have an estimated cancer mortality rate of 11–25%. The mechanism through which p53 contributes to the resolution of the Peto’s paradox in Animalia remains vague. Thus, in this work, we took advantage of the available datasets and inspected the p53 amino acid sequence of phylogenetically related organisms that show variations in their lifespans. We discovered new correlations between specific amino acid deviations in p53 and the lifespans across different animal species. We found that species with extended lifespans have certain characteristic amino acid substitutions in the p53 DNA-binding domain that alter its function, as depicted from the Phenotypic Annotation of p53 Mutations, using the PROVEAN tool or SWISS-MODEL workflow. In addition, the loop 2 region of the human p53 DNA-binding domain was identified as the longest region that was associated with longevity. The 3D model revealed variations in the loop 2 structure in long-lived species when compared with human p53. Our findings show a direct association between specific amino acid residues in p53 protein, changes in p53 functionality, and the extended animal lifespan, and further highlight the importance of p53 protein in aging.
Collapse
|
18
|
Zhong F, Yang Y, Ren D, Long S, Qin X, Liu J, Zeng Y, Lan W, Ma W, Liu W. Hirsutanol A inhibits T-acute lymphocytic leukemia Jurkat cell viability through cell cycle arrest and p53-dependent induction of apoptosis. Exp Ther Med 2021; 22:741. [PMID: 34055057 PMCID: PMC8138276 DOI: 10.3892/etm.2021.10173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Accepted: 04/21/2021] [Indexed: 11/16/2022] Open
Abstract
Acute lymphocytic leukemia (ALL) is a type of childhood leukemia with the highest incidence; T-acute lymphocytic leukemia (T-ALL) is far more difficult to treat than B-acute lymphocytic leukemia (B-ALL) and has a poor long-term prognosis. Therefore, there is an urgent requirement to develop effective drugs for the treatment of T-ALL. Hirsutanol A is a natural sesquiterpenoid compound. The aim of the present study was to evaluate the in vitro anticancer activity of hirsutanol A against T-acute lymphocytic leukemia Jurkat cells and investigate the mechanism of action. A Cell Counting Kit-8 assay demonstrated that hirsutanol A inhibited the viability of Jurkat cells in a dose- and time-dependent manner. In addition, hirsutanol A induced cell cycle arrest at the G2 phase as determined via flow cytometry. Furthermore, Hoechst staining, Annexin V-FITC/propidium iodide double staining, mitochondrial membrane potential detection using JC-1 and western blot analysis of apoptotic proteins indicated that the inhibitory effect of hirsutanol A on Jurkat cells was associated with the induction of apoptosis. Of note, hirsutanol A induced the expression of the tumor suppressor p53, whereas simultaneous treatment with pifithrin-α, an inhibitor of p53, significantly reduced Jurkat cell apoptosis induced by hirsutanol A. In summary, the present study suggested that hirsutanol A inhibited Jurkat cell viability through induction of cell cycle arrest and p53-dependent initiation of apoptosis, thus hirsutanol may serve as a promising compound for the treatment of T-ALL.
Collapse
Affiliation(s)
- Fangfang Zhong
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau 999078, Macau SAR, P.R. China.,Department of Pediatrics, Affiliated Hospital of Southwest Medical University, Sichuan Clinical Research Center for Birth Defects, Luzhou, Sichuan 646000, P.R. China
| | - You Yang
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau 999078, Macau SAR, P.R. China.,Department of Pediatrics, Affiliated Hospital of Southwest Medical University, Sichuan Clinical Research Center for Birth Defects, Luzhou, Sichuan 646000, P.R. China
| | - Danwei Ren
- Department of Pediatrics, Affiliated Hospital of Southwest Medical University, Sichuan Clinical Research Center for Birth Defects, Luzhou, Sichuan 646000, P.R. China
| | - Sili Long
- Department of Pediatrics, Affiliated Hospital of Southwest Medical University, Sichuan Clinical Research Center for Birth Defects, Luzhou, Sichuan 646000, P.R. China
| | - Xiang Qin
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau 999078, Macau SAR, P.R. China.,Department of Pediatrics, Affiliated Hospital of Southwest Medical University, Sichuan Clinical Research Center for Birth Defects, Luzhou, Sichuan 646000, P.R. China
| | - Jing Liu
- Department of Pediatrics, Affiliated Hospital of Southwest Medical University, Sichuan Clinical Research Center for Birth Defects, Luzhou, Sichuan 646000, P.R. China
| | - Yan Zeng
- Department of Pediatrics, Affiliated Hospital of Southwest Medical University, Sichuan Clinical Research Center for Birth Defects, Luzhou, Sichuan 646000, P.R. China
| | - Wenjian Lan
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, Guangdong 510006, P.R. China
| | - Wenzhe Ma
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau 999078, Macau SAR, P.R. China
| | - Wenjun Liu
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau 999078, Macau SAR, P.R. China.,Department of Pediatrics, Affiliated Hospital of Southwest Medical University, Sichuan Clinical Research Center for Birth Defects, Luzhou, Sichuan 646000, P.R. China
| |
Collapse
|
19
|
Soond SM, Savvateeva LV, Makarov VA, Gorokhovets NV, Townsend PA, Zamyatnin AA. Cathepsin S Cleaves BAX as a Novel and Therapeutically Important Regulatory Mechanism for Apoptosis. Pharmaceutics 2021; 13:pharmaceutics13030339. [PMID: 33807987 PMCID: PMC8035670 DOI: 10.3390/pharmaceutics13030339] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2021] [Revised: 02/08/2021] [Accepted: 03/01/2021] [Indexed: 12/11/2022] Open
Abstract
Certain lysosomal cathepsin proteins have come into focus as being good candidates for therapeutic targeting, based on them being over-expressed in a variety of cancers and based on their regulation of the apoptotic pathway. Here, we report novel findings that highlight the ability of cathepsin S expression to be up-regulated under Paclitaxel-stimulatory conditions in kidney cell lines and it being able to cleave the apoptotic p21 BAX protein in intact cells and in vitro. Consistent with this, we demonstrate that this effect can be abrogated in vitro and in mammalian cells under conditions that utilize dominant-inhibitory cathepsin S expression, cathepsin S expression-knockdown and through the activity of a novel peptide inhibitor, CS-PEP1. Moreover, we report a unique role for cathepsin S in that it can cleave a polyubiquitinated-BAX protein intermediate and is a step that may contribute to down-regulating post-translationally-modified levels of BAX protein. Finally, CS-PEP1 may possess promising activity as a potential anti-cancer therapeutic against chemotherapeutic-resistant Renal Clear Cell Carcinoma kidney cancer cells and for combined uses with therapeutics such as Paclitaxel.
Collapse
Affiliation(s)
- Surinder M. Soond
- Institute of Molecular Medicine, Sechenov First Moscow State Medical University, Trubetskaya Str. 8-2, 119991 Moscow, Russia; (L.V.S.); (V.A.M.); (N.V.G.)
- Correspondence: (S.M.S.); (A.A.Z.J.)
| | - Lyudmila V. Savvateeva
- Institute of Molecular Medicine, Sechenov First Moscow State Medical University, Trubetskaya Str. 8-2, 119991 Moscow, Russia; (L.V.S.); (V.A.M.); (N.V.G.)
| | - Vladimir A. Makarov
- Institute of Molecular Medicine, Sechenov First Moscow State Medical University, Trubetskaya Str. 8-2, 119991 Moscow, Russia; (L.V.S.); (V.A.M.); (N.V.G.)
| | - Neonila V. Gorokhovets
- Institute of Molecular Medicine, Sechenov First Moscow State Medical University, Trubetskaya Str. 8-2, 119991 Moscow, Russia; (L.V.S.); (V.A.M.); (N.V.G.)
| | - Paul A. Townsend
- Division of Cancer Sciences and Manchester Cancer Research Centre, Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9PL, UK;
- Faculty of Health and Medical Sciences, University of Surrey, Guildford, Surrey GU2 7X, UK
| | - Andrey A. Zamyatnin
- Institute of Molecular Medicine, Sechenov First Moscow State Medical University, Trubetskaya Str. 8-2, 119991 Moscow, Russia; (L.V.S.); (V.A.M.); (N.V.G.)
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119992 Moscow, Russia
- Department of Biotechnology, Sirius University of Science and Technology, 1 Olympic Ave, 354340 Sochi, Russia
- Correspondence: (S.M.S.); (A.A.Z.J.)
| |
Collapse
|
20
|
Almeida A, Sánchez-Morán I, Rodríguez C. Mitochondrial-nuclear p53 trafficking controls neuronal susceptibility in stroke. IUBMB Life 2021; 73:582-591. [PMID: 33615665 PMCID: PMC8248069 DOI: 10.1002/iub.2453] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2020] [Revised: 12/30/2020] [Accepted: 12/31/2020] [Indexed: 12/12/2022]
Abstract
Stroke is a major cause of death and long-term disability in the adult. Neuronal apoptosis plays an essential role in the pathophysiology of ischemic brain damage and impaired functional recovery after stroke. The tumor suppressor protein p53 regulates key cellular processes, including cell cycle arrest, DNA repair, senescence, and apoptosis. Under cellular stress conditions, p53 undergoes post-translational modifications, which control protein localization, stability, and proapoptotic activity. After stroke, p53 rapidly accumulates in the ischemic brain, where it activates neuronal apoptosis through both transcriptional-dependent and -independent programs. Over the last years, subcellular localization of p53 has emerged as an important regulator of ischemia-induced neuronal apoptosis. Upon an ischemic insult, p53 rapidly translocates to the mitochondria and interacts with B-cell lymphoma-2 family proteins, which activate the mitochondrial apoptotic program, with higher efficacy than through its activity as a transcription factor. Moreover, the identification of a human single nucleotide polymorphism at codon 72 of the Tp53 gene that controls p53 mitochondrial localization and cell susceptibility to apoptosis supports the important role of the p53 mitochondrial program in neuronal survival and functional recovery after stroke. In this article, we review the relevance of mitochondrial and nuclear localization of p53 on neuronal susceptibility to cerebral ischemia and its impact on functional outcome of stroke patients.
Collapse
Affiliation(s)
- Angeles Almeida
- Institute of Functional Biology and Genomics, CSIC, University of Salamanca, Salamanca, Spain.,Institute of Biomedical Research of Salamanca, University Hospital of Salamanca, University of Salamanca, CSIC, Salamanca, Spain
| | - Irene Sánchez-Morán
- Institute of Functional Biology and Genomics, CSIC, University of Salamanca, Salamanca, Spain.,Institute of Biomedical Research of Salamanca, University Hospital of Salamanca, University of Salamanca, CSIC, Salamanca, Spain
| | - Cristina Rodríguez
- Institute of Functional Biology and Genomics, CSIC, University of Salamanca, Salamanca, Spain.,Institute of Biomedical Research of Salamanca, University Hospital of Salamanca, University of Salamanca, CSIC, Salamanca, Spain
| |
Collapse
|
21
|
Evaluating the Influence of a G-Quadruplex Prone Sequence on the Transactivation Potential by Wild-Type and/or Mutant P53 Family Proteins through a Yeast-Based Functional Assay. Genes (Basel) 2021; 12:genes12020277. [PMID: 33672023 PMCID: PMC7919268 DOI: 10.3390/genes12020277] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Revised: 02/08/2021] [Accepted: 02/10/2021] [Indexed: 02/06/2023] Open
Abstract
P53, P63, and P73 proteins belong to the P53 family of transcription factors, sharing a common gene organization that, from the P1 and P2 promoters, produces two groups of mRNAs encoding proteins with different N-terminal regions; moreover, alternative splicing events at C-terminus further contribute to the generation of multiple isoforms. P53 family proteins can influence a plethora of cellular pathways mainly through the direct binding to specific DNA sequences known as response elements (REs), and the transactivation of the corresponding target genes. However, the transcriptional activation by P53 family members can be regulated at multiple levels, including the DNA topology at responsive promoters. Here, by using a yeast-based functional assay, we evaluated the influence that a G-quadruplex (G4) prone sequence adjacent to the p53 RE derived from the apoptotic PUMA target gene can exert on the transactivation potential of full-length and N-terminal truncated P53 family α isoforms (wild-type and mutant). Our results show that the presence of a G4 prone sequence upstream or downstream of the P53 RE leads to significant changes in the relative activity of P53 family proteins, emphasizing the potential role of structural DNA features as modifiers of P53 family functions at target promoter sites.
Collapse
|
22
|
Tumor Suppressor Protein p53 and Inhibitor of Apoptosis Proteins in Colorectal Cancer-A Promising Signaling Network for Therapeutic Interventions. Cancers (Basel) 2021; 13:cancers13040624. [PMID: 33557398 PMCID: PMC7916307 DOI: 10.3390/cancers13040624] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 01/30/2021] [Accepted: 02/01/2021] [Indexed: 02/08/2023] Open
Abstract
Simple Summary Tumor suppressor 53 (p53) is a multifunctional protein that regulates cell cycle, DNA repair, apoptosis and metabolic pathways. In colorectal cancer (CRC), mutations of the gene occur in 60% of patients and are associated with a more aggressive tumor phenotype and resistance to anti-cancer therapy. In addition, inhibitor of apoptosis (IAP) proteins are distinguished biomarkers overexpressed in CRC that impact on a diverse set of signaling pathways associated with the regulation of apoptosis/autophagy, cell migration, cell cycle and DNA damage response. As these mechanisms are further firmly controlled by p53, a transcriptional and post-translational regulation of IAPs by p53 is expected to occur in cancer cells. Here, we aim to review the molecular regulatory mechanisms between IAPs and p53 and discuss the therapeutic potential of targeting their interrelationship by multimodal treatment options. Abstract Despite recent advances in the treatment of colorectal cancer (CRC), patient’s individual response and clinical follow-up vary considerably with tumor intrinsic factors to contribute to an enhanced malignancy and therapy resistance. Among these markers, upregulation of members of the inhibitor of apoptosis protein (IAP) family effects on tumorigenesis and radiation- and chemo-resistance by multiple pathways, covering a hampered induction of apoptosis/autophagy, regulation of cell cycle progression and DNA damage response. These mechanisms are tightly controlled by the tumor suppressor p53 and thus transcriptional and post-translational regulation of IAPs by p53 is expected to occur in malignant cells. By this, cellular IAP1/2, X-linked IAP, Survivin, BRUCE and LIVIN expression/activity, as well as their intracellular localization is controlled by p53 in a direct or indirect manner via modulating a multitude of mechanisms. These cover, among others, transcriptional repression and the signal transducer and activator of transcription (STAT)3 pathway. In addition, p53 mutations contribute to deregulated IAP expression and resistance to therapy. This review aims at highlighting the mechanistic and clinical importance of IAP regulation by p53 in CRC and describing potential therapeutic strategies based on this interrelationship.
Collapse
|
23
|
She X, Lin Y, Liang R, Liu Z, Gao X, Ye J. RNA-Binding Motif Protein 38 as a Potential Biomarker and Therapeutic Target in Cancer. Onco Targets Ther 2020; 13:13225-13236. [PMID: 33380811 PMCID: PMC7769143 DOI: 10.2147/ott.s278755] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Accepted: 11/27/2020] [Indexed: 12/13/2022] Open
Abstract
RNA-binding proteins (RBPs) act as a key factor in gene regulation by governing RNA metabolism. They contribute to the expression and functions of most RNAs by binding to them and forming complexes. RNA-binding motif protein 38 (RBM38), a member of the RBP family, alters the stability and translation of targeted mRNAs to affect various biological processes, such as cell proliferation, cell cycle arrest, and myogenic differentiation. RBM38 contains a highly conserved RNA recognition motif (RRM) consisting of two subunits, RNP1 and RNP2, which specifically bind to RNAs. Recent studies have revealed that RBM38 regulates the mRNA stability of several tumor-related genes, such as p53, mdm2, p63, p73, p21, and c-Myc, by binding to their 3′ untranslated regions (3′ UTRs); thus, RBM38 modulates targeted gene expression and affects the biological processes of tumors. In addition, abnormal RBM38 expression in some malignant tumors and its correlation with prognosis have been documented in many studies, indicating its value for potential clinical applications. In this review, we present an overview of RBM38, specifically highlighting its relationship with tumor manifestation and development. A brief overview of the potential use of RBM38 in cancer therapy is also included to provide ideas for further research on RBM38.
Collapse
Affiliation(s)
- Xiaomin She
- Medical Oncology, Guangxi Medical University Cancer Hospital, Nanning, People's Republic of China
| | - Yan Lin
- Medical Oncology, Guangxi Medical University Cancer Hospital, Nanning, People's Republic of China
| | - Rong Liang
- Medical Oncology, Guangxi Medical University Cancer Hospital, Nanning, People's Republic of China
| | - Ziyu Liu
- Medical Oncology, Guangxi Medical University Cancer Hospital, Nanning, People's Republic of China
| | - Xing Gao
- Medical Oncology, Guangxi Medical University Cancer Hospital, Nanning, People's Republic of China
| | - Jiazhou Ye
- Medical Oncology, Guangxi Medical University Cancer Hospital, Nanning, People's Republic of China
| |
Collapse
|
24
|
p53: A Key Protein That Regulates Pulmonary Fibrosis. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:6635794. [PMID: 33312337 PMCID: PMC7721501 DOI: 10.1155/2020/6635794] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/10/2020] [Revised: 11/05/2020] [Accepted: 11/20/2020] [Indexed: 02/06/2023]
Abstract
Pulmonary fibrosis is a progressively aggravating lethal disease that is a serious public health concern. Although the incidence of this disease is increasing, there is a lack of effective therapies. In recent years, the pathogenesis of pulmonary fibrosis has become a research hotspot. p53 is a tumor suppressor gene with crucial roles in cell cycle, apoptosis, tumorigenesis, and malignant transformation. Previous studies on p53 have predominantly focused on its role in neoplastic disease. Following in-depth investigation, several studies have linked it to pulmonary fibrosis. This review covers the association between p53 and pulmonary fibrosis, with the aim of providing novel ideas to improve the clinical diagnosis, treatment, and prognosis of pulmonary fibrosis.
Collapse
|
25
|
Soond SM, Savvateeva LV, Makarov VA, Gorokhovets NV, Townsend PA, Zamyatnin AA. Making Connections: p53 and the Cathepsin Proteases as Co-Regulators of Cancer and Apoptosis. Cancers (Basel) 2020; 12:cancers12113476. [PMID: 33266503 PMCID: PMC7700648 DOI: 10.3390/cancers12113476] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 11/02/2020] [Accepted: 11/19/2020] [Indexed: 12/11/2022] Open
Abstract
Simple Summary This article describes an emerging area of significant interest in cancer and cell death and the relationships shared by these through the p53 and cathepsin proteins. While it has been demonstrated that the p53 protein can directly induce the leakage of cathepsin proteases from the lysosome, directly triggering cell death, little is known about what factors set the threshold at which the lysosome can become permeabilized. It appears that the expression levels of cathepsin proteases may be central to this process, with some of them being transcriptionally regulated by p53. The consequences of such a mechanism have serious implications for lysosomal-mediated apoptosis and have significant input into the design of therapeutics and their strategic use. In this review, we highlight the importance of extending such findings to other cathepsin family members and the need to assess the roles of p53 isoforms and mutants in furthering this mechanism. Abstract While viewed as the “guardian of the genome”, the importance of the tumor suppressor p53 protein has increasingly gained ever more recognition in modulating additional modes of action related to cell death. Slowly but surely, its importance has evolved from a mutated genetic locus heavily implicated in a wide array of cancer types to modulating lysosomal-mediated cell death either directly or indirectly through the transcriptional regulation of the key signal transduction pathway intermediates involved in this. As an important step in determining the fate of cells in response to cytotoxicity or during stress response, lysosomal-mediated cell death has also become strongly interwoven with the key components that give the lysosome functionality in the form of the cathepsin proteases. While a number of articles have been published highlighting the independent input of p53 or cathepsins to cellular homeostasis and disease progression, one key area that warrants further focus is the regulatory relationship that p53 and its isoforms share with such proteases in regulating lysosomal-mediated cell death. Herein, we review recent developments that have shaped this relationship and highlight key areas that need further exploration to aid novel therapeutic design and intervention strategies.
Collapse
Affiliation(s)
- Surinder M. Soond
- Institute of Molecular Medicine, Sechenov First Moscow State Medical University, Trubetskaya Str. 8-2, 119991 Moscow, Russia; (L.V.S.); (V.A.M.); (N.V.G.)
- Correspondence: (S.M.S.); (A.A.Z.J.)
| | - Lyudmila V. Savvateeva
- Institute of Molecular Medicine, Sechenov First Moscow State Medical University, Trubetskaya Str. 8-2, 119991 Moscow, Russia; (L.V.S.); (V.A.M.); (N.V.G.)
| | - Vladimir A. Makarov
- Institute of Molecular Medicine, Sechenov First Moscow State Medical University, Trubetskaya Str. 8-2, 119991 Moscow, Russia; (L.V.S.); (V.A.M.); (N.V.G.)
| | - Neonila V. Gorokhovets
- Institute of Molecular Medicine, Sechenov First Moscow State Medical University, Trubetskaya Str. 8-2, 119991 Moscow, Russia; (L.V.S.); (V.A.M.); (N.V.G.)
| | - Paul A. Townsend
- Division of Cancer Sciences and Manchester Cancer Research Centre, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, and the NIHR Manchester Biomedical Research Centre, Manchester M13 9PL, UK;
| | - Andrey A. Zamyatnin
- Institute of Molecular Medicine, Sechenov First Moscow State Medical University, Trubetskaya Str. 8-2, 119991 Moscow, Russia; (L.V.S.); (V.A.M.); (N.V.G.)
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119992 Moscow, Russia
- Department of Biotechnology, Sirius University of Science and Technology, 1 Olympic Ave, 354340 Sochi, Russia
- Correspondence: (S.M.S.); (A.A.Z.J.)
| |
Collapse
|
26
|
Jin X, An C, Jiao B, Safirstein RL, Wang Y. AMP-activated protein kinase contributes to cisplatin-induced renal epithelial cell apoptosis and acute kidney injury. Am J Physiol Renal Physiol 2020; 319:F1073-F1080. [PMID: 33103444 DOI: 10.1152/ajprenal.00354.2020] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Cisplatin, a commonly used anticancer drug, has been shown to induce acute kidney injury, which limits its clinical use in cancer treatment. Emerging evidence has suggested that AMP-activated protein kinase (AMPK), which functions as a cellular energy sensor, is activated by various cellular stresses that deplete cellular ATP. However, the potential role of AMPK in cisplatin-induced apoptosis of renal tubular epithelial cells has not been studied. In this study, we demonstrated that cisplatin activates AMPK (Thr172 phosphorylation) in cultured renal tubular epithelial cells in a time-dependent manner, which was associated with p53 phosphorylation. Compound C, a selective AMPK inhibitor, suppressed cisplatin-induced AMPK activation, p53 phosphorylation, Bax induction, and caspase 3 activation. Furthermore, silencing AMPK expression by siRNA attenuated cisplatin-induced p53 phosphorylation, Bax induction, and caspase 3 activation. In a mouse model of cisplatin-induced kidney injury, compound C inhibited p53 phosphorylation, Bax expression, caspase 3 activation, and apoptosis, protecting the kidney from injury and dysfunction. Taken together, these results suggest that the AMPK-p53-Bax signaling pathway plays a crucial role in cisplatin-induced tubular epithelial cell apoptosis.
Collapse
Affiliation(s)
- Xiaogao Jin
- Section of Nephrology, Department of Medicine, Baylor College of Medicine, Houston, Texas.,Department of Anesthesiology, The Affiliated Hospital of Guilin Medical University, Guilin, Guangxi, China
| | - Changlong An
- Section of Nephrology, Department of Medicine, Baylor College of Medicine, Houston, Texas.,Division of Nephrology, Department of Medicine, University of Connecticut School of Medicine, Farmington, Connecticut
| | - Baihai Jiao
- Division of Nephrology, Department of Medicine, University of Connecticut School of Medicine, Farmington, Connecticut
| | - Robert L Safirstein
- Renal Section, Veterans Affairs Connecticut Healthcare System, West Haven, Connecticut
| | - Yanlin Wang
- Section of Nephrology, Department of Medicine, Baylor College of Medicine, Houston, Texas.,Division of Nephrology, Department of Medicine, University of Connecticut School of Medicine, Farmington, Connecticut.,Renal Section, Veterans Affairs Connecticut Healthcare System, West Haven, Connecticut.,Department of Cell Biology, University of Connecticut School of Medicine, Farmington, Connecticut.,Institute for Systems Genomics, University of Connecticut School of Medicine, Farmington, Connecticut
| |
Collapse
|
27
|
Human MYC G-quadruplex: From discovery to a cancer therapeutic target. Biochim Biophys Acta Rev Cancer 2020; 1874:188410. [PMID: 32827579 DOI: 10.1016/j.bbcan.2020.188410] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 07/21/2020] [Accepted: 07/21/2020] [Indexed: 02/06/2023]
Abstract
Overexpression of the MYC oncogene is a molecular hallmark of both cancer initiation and progression. Targeting MYC is a logical and effective cancer therapeutic strategy. A special DNA secondary structure, the G-quadruplex (G4), is formed within the nuclease hypersensitivity element III1 (NHE III1) region, located upstream of the MYC gene's P1 promoter that drives the majority of its transcription. Targeting such G4 structures has been a focus of anticancer therapies in recent decades. Thus, a comprehensive review of the MYC G4 structure and its role as a potential therapeutic target is timely. In this review, we first outline the discovery of the MYC G4 structure and evidence of its formation in vitro and in cells. Then, we describe the functional role of G4 in regulating MYC gene expression. We also summarize three types of MYC G4-interacting proteins that can promote, stabilize and unwind G4 structures. Finally, we discuss G4-binding molecules and the anticancer activities of G4-stabilizing ligands, including small molecular compounds and peptides, and assess their potential as novel anticancer therapeutics.
Collapse
|
28
|
Hognon C, Miclot T, García-Iriepa C, Francés-Monerris A, Grandemange S, Terenzi A, Marazzi M, Barone G, Monari A. Role of RNA Guanine Quadruplexes in Favoring the Dimerization of SARS Unique Domain in Coronaviruses. J Phys Chem Lett 2020; 11:5661-5667. [PMID: 32536162 PMCID: PMC7331935 DOI: 10.1021/acs.jpclett.0c01097] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Accepted: 06/14/2020] [Indexed: 05/16/2023]
Abstract
Coronaviruses may produce severe acute respiratory syndrome (SARS). As a matter of fact, a new SARS-type virus, SARS-CoV-2, is responsible for the global pandemic in 2020 with unprecedented sanitary and economic consequences for most countries. In the present contribution we study, by all-atom equilibrium and enhanced sampling molecular dynamics simulations, the interaction between the SARS Unique Domain and RNA guanine quadruplexes, a process involved in eluding the defensive response of the host thus favoring viral infection of human cells. Our results evidence two stable binding modes involving an interaction site spanning either the protein dimer interface or only one monomer. The free energy profile unequivocally points to the dimer mode as the thermodynamically favored one. The effect of these binding modes in stabilizing the protein dimer was also assessed, being related to its biological role in assisting the SARS viruses to bypass the host protective response. This work also constitutes a first step in the possible rational design of efficient therapeutic agents aiming at perturbing the interaction between SARS Unique Domain and guanine quadruplexes, hence enhancing the host defenses against the virus.
Collapse
Affiliation(s)
- Cécilia Hognon
- Université de
Lorraine and CNRS, LPCT UMR 7019, F-54000 Nancy,
France
| | - Tom Miclot
- Université de
Lorraine and CNRS, LPCT UMR 7019, F-54000 Nancy,
France
- Department of Biological, Chemical and
Pharmaceutical Sciences and Technologies,
Università degli Studi di
Palermo, Viale delle Scienze, 90128 Palermo,
Italy
| | - Cristina García-Iriepa
- Department of Analytical Chemistry,
Physical Chemistry and Chemical Engineering, Universidad
de Alcalá, Ctra. Madrid-Barcelona, Km
33,600, 28871 Alcalá de Henares, Madrid,
Spain
- Chemical Research Institute
“Andrés M. del Río” (IQAR),
Universidad de Alcalá, 28871
Alcalá de Henares, Madrid, Spain
| | - Antonio Francés-Monerris
- Université de
Lorraine and CNRS, LPCT UMR 7019, F-54000 Nancy,
France
- Departament de Química
Física, Universitat de
València, 46100 Burjassot,
Spain
| | | | - Alessio Terenzi
- Department of Biological, Chemical and
Pharmaceutical Sciences and Technologies,
Università degli Studi di
Palermo, Viale delle Scienze, 90128 Palermo,
Italy
| | - Marco Marazzi
- Department of Analytical Chemistry,
Physical Chemistry and Chemical Engineering, Universidad
de Alcalá, Ctra. Madrid-Barcelona, Km
33,600, 28871 Alcalá de Henares, Madrid,
Spain
- Chemical Research Institute
“Andrés M. del Río” (IQAR),
Universidad de Alcalá, 28871
Alcalá de Henares, Madrid, Spain
| | - Giampaolo Barone
- Department of Biological, Chemical and
Pharmaceutical Sciences and Technologies,
Università degli Studi di
Palermo, Viale delle Scienze, 90128 Palermo,
Italy
| | - Antonio Monari
- Université de
Lorraine and CNRS, LPCT UMR 7019, F-54000 Nancy,
France
| |
Collapse
|
29
|
p53 CRISPR Deletion Affects DNA Structure and Nuclear Architecture. J Clin Med 2020; 9:jcm9020598. [PMID: 32098416 PMCID: PMC7073688 DOI: 10.3390/jcm9020598] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Revised: 02/20/2020] [Accepted: 02/20/2020] [Indexed: 01/10/2023] Open
Abstract
The TP53 gene is a key tumor suppressor. Although the tumor suppressor p53 was one of the first to be characterized as a transcription factor, with its main function potentiated by its interaction with DNA, there are still many unresolved questions about its mechanism of action. Here, we demonstrate a novel role for p53 in the maintenance of nuclear architecture of cells. Using three-dimensional (3D) imaging and spectral karyotyping, as well as super resolution microscopy of DNA structure, we observe significant differences in 3D telomere signatures, DNA structure and DNA-poor spaces as well gains or losses of chromosomes, between normal and tumor cells with CRISPR (Clustered Regularly Interspaced Short Palindromic Repeats)-deleted or wild-type TP53. Additionally, treatment with Nutlin-3 results in differences in nuclear architecture of telomeres in wild-type but not in p53 knockout MCF-7 (Michigan Cancer Foundation-7) cells. Nutlin-3 binds to the p53-binding pocket of mouse double minute 2 (MDM2) and blocks the p53-MDM2 interaction. Moreover, we demonstrate that another p53 stabilizing small molecule, RITA (reactivation of p53 and induction of tumor cell apoptosis), also induces changes in 3D DNA structure, apparently in a p53 independent manner. These results implicate p53 activity in regulating nuclear organization and, additionally, highlight the divergent effects of the p53 targeting compounds Nutlin-3 and RITA.
Collapse
|
30
|
Kamagata K, Itoh Y, Subekti DRG. How p53 Molecules Solve the Target DNA Search Problem: A Review. Int J Mol Sci 2020; 21:E1031. [PMID: 32033163 PMCID: PMC7037437 DOI: 10.3390/ijms21031031] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Revised: 01/11/2020] [Accepted: 01/31/2020] [Indexed: 12/14/2022] Open
Abstract
Interactions between DNA and DNA-binding proteins play an important role in many essential cellular processes. A key function of the DNA-binding protein p53 is to search for and bind to target sites incorporated in genomic DNA, which triggers transcriptional regulation. How do p53 molecules achieve "rapid" and "accurate" target search in living cells? The search dynamics of p53 were expected to include 3D diffusion in solution, 1D diffusion along DNA, and intersegmental transfer between two different DNA strands. Single-molecule fluorescence microscopy enabled the tracking of p53 molecules on DNA and the characterization of these dynamics quantitatively. Recent intensive single-molecule studies of p53 succeeded in revealing each of these search dynamics. Here, we review these studies and discuss the target search mechanisms of p53.
Collapse
Affiliation(s)
- Kiyoto Kamagata
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, Katahira 2-1-1, Aoba-ku, Sendai 980-8577, Japan; (Y.I.); (D.R.G.S.)
- Department of Chemistry, Graduate School of Science, Tohoku University, Sendai 980-8578, Japan
| | - Yuji Itoh
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, Katahira 2-1-1, Aoba-ku, Sendai 980-8577, Japan; (Y.I.); (D.R.G.S.)
- Genome Dynamics Laboratory, National Institute of Genetics, Mishima, Shizuoka 411-8540, Japan
| | - Dwiky Rendra Graha Subekti
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, Katahira 2-1-1, Aoba-ku, Sendai 980-8577, Japan; (Y.I.); (D.R.G.S.)
- Department of Chemistry, Graduate School of Science, Tohoku University, Sendai 980-8578, Japan
| |
Collapse
|
31
|
The Influence of Quadruplex Structure in Proximity to P53 Target Sequences on the Transactivation Potential of P53 Alpha Isoforms. Int J Mol Sci 2019; 21:ijms21010127. [PMID: 31878115 PMCID: PMC6982142 DOI: 10.3390/ijms21010127] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 12/22/2019] [Accepted: 12/23/2019] [Indexed: 12/24/2022] Open
Abstract
p53 is one of the most studied tumor suppressor proteins that plays an important role in basic biological processes including cell cycle, DNA damage response, apoptosis, and senescence. The human TP53 gene contains alternative promoters that produce N-terminally truncated proteins and can produce several isoforms due to alternative splicing. p53 function is realized by binding to a specific DNA response element (RE), resulting in the transactivation of target genes. Here, we evaluated the influence of quadruplex DNA structure on the transactivation potential of full-length and N-terminal truncated p53α isoforms in a panel of S. cerevisiae luciferase reporter strains. Our results show that a G-quadruplex prone sequence is not sufficient for transcription activation by p53α isoforms, but the presence of this feature in proximity to a p53 RE leads to a significant reduction of transcriptional activity and changes the dynamics between co-expressed p53α isoforms.
Collapse
|
32
|
Bartas M, Brázda V, Červeň J, Pečinka P. Characterization of p53 Family Homologs in Evolutionary Remote Branches of Holozoa. Int J Mol Sci 2019; 21:ijms21010006. [PMID: 31861340 PMCID: PMC6981761 DOI: 10.3390/ijms21010006] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Revised: 12/08/2019] [Accepted: 12/16/2019] [Indexed: 01/07/2023] Open
Abstract
The p53 family of transcription factors plays key roles in development, genome stability, senescence and tumor development, and p53 is the most important tumor suppressor protein in humans. Although intensively investigated for many years, its initial evolutionary history is not yet fully elucidated. Using bioinformatic and structure prediction methods on current databases containing newly-sequenced genomes and transcriptomes, we present a detailed characterization of p53 family homologs in remote members of the Holozoa group, in the unicellular clades Filasterea, Ichthyosporea and Corallochytrea. Moreover, we show that these newly characterized homologous sequences contain domains that can form structures with high similarity to the human p53 family DNA-binding domain, and some also show similarities to the oligomerization and SAM domains. The presence of these remote homologs demonstrates an ancient origin of the p53 protein family.
Collapse
Affiliation(s)
- Martin Bartas
- Department of Biology and Ecology, University of Ostrava, 710 00 Ostrava, Czech Republic; (M.B.)
| | - Václav Brázda
- Institute of Biophysics of the Czech Academy of Sciences, 612 65 Brno, Czech Republic;
| | - Jiří Červeň
- Department of Biology and Ecology, University of Ostrava, 710 00 Ostrava, Czech Republic; (M.B.)
| | - Petr Pečinka
- Department of Biology and Ecology, University of Ostrava, 710 00 Ostrava, Czech Republic; (M.B.)
- Correspondence: ; Tel.: +420-553-46-2318
| |
Collapse
|