1
|
Bell RT, Sahakyan H, Makarova KS, Wolf YI, Koonin EV. CoCoNuTs are a diverse subclass of Type IV restriction systems predicted to target RNA. eLife 2024; 13:RP94800. [PMID: 38739430 PMCID: PMC11090510 DOI: 10.7554/elife.94800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/14/2024] Open
Abstract
A comprehensive census of McrBC systems, among the most common forms of prokaryotic Type IV restriction systems, followed by phylogenetic analysis, reveals their enormous abundance in diverse prokaryotes and a plethora of genomic associations. We focus on a previously uncharacterized branch, which we denote coiled-coil nuclease tandems (CoCoNuTs) for their salient features: the presence of extensive coiled-coil structures and tandem nucleases. The CoCoNuTs alone show extraordinary variety, with three distinct types and multiple subtypes. All CoCoNuTs contain domains predicted to interact with translation system components, such as OB-folds resembling the SmpB protein that binds bacterial transfer-messenger RNA (tmRNA), YTH-like domains that might recognize methylated tmRNA, tRNA, or rRNA, and RNA-binding Hsp70 chaperone homologs, along with RNases, such as HEPN domains, all suggesting that the CoCoNuTs target RNA. Many CoCoNuTs might additionally target DNA, via McrC nuclease homologs. Additional restriction systems, such as Type I RM, BREX, and Druantia Type III, are frequently encoded in the same predicted superoperons. In many of these superoperons, CoCoNuTs are likely regulated by cyclic nucleotides, possibly, RNA fragments with cyclic termini, that bind associated CARF (CRISPR-Associated Rossmann Fold) domains. We hypothesize that the CoCoNuTs, together with the ancillary restriction factors, employ an echeloned defense strategy analogous to that of Type III CRISPR-Cas systems, in which an immune response eliminating virus DNA and/or RNA is launched first, but then, if it fails, an abortive infection response leading to PCD/dormancy via host RNA cleavage takes over.
Collapse
Affiliation(s)
- Ryan T Bell
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of HealthBethesdaUnited States
| | - Harutyun Sahakyan
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of HealthBethesdaUnited States
| | - Kira S Makarova
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of HealthBethesdaUnited States
| | - Yuri I Wolf
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of HealthBethesdaUnited States
| | - Eugene V Koonin
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of HealthBethesdaUnited States
| |
Collapse
|
2
|
Bell RT, Sahakyan H, Makarova KS, Wolf YI, Koonin EV. CoCoNuTs: A diverse subclass of Type IV restriction systems predicted to target RNA. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.07.31.551357. [PMID: 37790407 PMCID: PMC10542128 DOI: 10.1101/2023.07.31.551357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/05/2023]
Abstract
A comprehensive census of McrBC systems, among the most common forms of prokaryotic Type IV restriction systems, followed by phylogenetic analysis, reveals their enormous abundance in diverse prokaryotes and a plethora of genomic associations. We focus on a previously uncharacterized branch, which we denote CoCoNuTs (coiled-coil nuclease tandems) for their salient features: the presence of extensive coiled-coil structures and tandem nucleases. The CoCoNuTs alone show extraordinary variety, with 3 distinct types and multiple subtypes. All CoCoNuTs contain domains predicted to interact with translation system components, such as OB-folds resembling the SmpB protein that binds bacterial transfer-messenger RNA (tmRNA), YTH-like domains that might recognize methylated tmRNA, tRNA, or rRNA, and RNA-binding Hsp70 chaperone homologs, along with RNases, such as HEPN domains, all suggesting that the CoCoNuTs target RNA. Many CoCoNuTs might additionally target DNA, via McrC nuclease homologs. Additional restriction systems, such as Type I RM, BREX, and Druantia Type III, are frequently encoded in the same predicted superoperons. In many of these superoperons, CoCoNuTs are likely regulated by cyclic nucleotides, possibly, RNA fragments with cyclic termini, that bind associated CARF (CRISPR-Associated Rossmann Fold) domains. We hypothesize that the CoCoNuTs, together with the ancillary restriction factors, employ an echeloned defense strategy analogous to that of Type III CRISPR-Cas systems, in which an immune response eliminating virus DNA and/or RNA is launched first, but then, if it fails, an abortive infection response leading to PCD/dormancy via host RNA cleavage takes over.
Collapse
Affiliation(s)
- Ryan T. Bell
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894, USA
| | - Harutyun Sahakyan
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894, USA
| | - Kira S. Makarova
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894, USA
| | - Yuri I. Wolf
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894, USA
| | - Eugene V. Koonin
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894, USA
| |
Collapse
|
3
|
Xu P, Tong W, Kuo CY, Chen HH, Wang RYL. The Upf1 protein restricts EV-A71 viral replication. Microbes Infect 2023; 25:105220. [PMID: 37734533 DOI: 10.1016/j.micinf.2023.105220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 09/07/2023] [Accepted: 09/15/2023] [Indexed: 09/23/2023]
Abstract
Enterovirus A71 (EV-A71) is transmitted through the respiratory tract, gastrointestinal system, and fecal-oral routes. The main symptoms caused by EV-A71 are hand, foot, and mouth disease (HFMD) or vesicular sore throat. Upf1 (Up-frameshift protein 1) was reported to degrade mRNA containing early stop codons, known as nonsense-mediated decay (NMD). Upf1 is also involved in the NMD mechanism as a host factor detrimental to viral replication. In this study, we dissected the potential roles of Upf1 in the EV-A71-infected cells. Upf1 was virulently down-regulated in three different EV-A71-infected cells, RD, Hela, and 293T, implying that Upf1 is a host protein unfavorable for EV-A71 replication. Knockdown of Upf1 protein resulted in increased viral RNA expression and production of progeny virus, and conversely, overexpression of Upf1 protein resulted in decreased viral RNA expression and production of progeny virus. Importantly, we observed increased RNA levels of asparagine synthetase (ASNS), one of the indicator substrates for the NMD mechanism, which indirectly suggests that EV-A71 infection of cells suppresses NMD activity in the host. The results shown in this study are useful for subsequent analysis of the relationship between the NMD/Upf1 mechanism and other picornaviruses, which may lead to the development of anti-picornavirus drugs.
Collapse
Affiliation(s)
- Peng Xu
- Xiangyang No. 1 People's Hospital and Hubei University of Medicine; Hubei Province, China
| | - Wei Tong
- Department of Clinical Laboratory, Xiangyang No. 1 People's Hospital, Hubei University of Medicine, Xiangyang, China
| | - Chen-Yen Kuo
- Division of Pediatric Infectious Diseases, Department of Pediatrics, Chang Gung Memorial and Children's Hospital, Linkou 33305, Taiwan
| | - Han-Hsiang Chen
- Department of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan
| | - Robert Y L Wang
- Division of Pediatric Infectious Diseases, Department of Pediatrics, Chang Gung Memorial and Children's Hospital, Linkou 33305, Taiwan; Department of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan; Kidney Research Center and Department of Nephrology, Chang Gung Memorial Hospital, Linkou 33305, Taiwan.
| |
Collapse
|
4
|
Shen S, Zhang C, Meng Y, Cui G, Wang Y, Liu X, He Q. Sensing of H2O2-induced oxidative stress by the UPF factor complex is crucial for activation of catalase-3 expression in Neurospora. PLoS Genet 2023; 19:e1010985. [PMID: 37844074 PMCID: PMC10578600 DOI: 10.1371/journal.pgen.1010985] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 09/19/2023] [Indexed: 10/18/2023] Open
Abstract
UPF-1-UPF-2-UPF-3 complex-orchestrated nonsense-mediated mRNA decay (NMD) is a well-characterized eukaryotic cellular surveillance mechanism that not only degrades aberrant transcripts to protect the integrity of the transcriptome but also eliminates normal transcripts to facilitate appropriate cellular responses to physiological and environmental changes. Here, we describe the multifaceted regulatory roles of the Neurospora crassa UPF complex in catalase-3 (cat-3) gene expression, which is essential for scavenging H2O2-induced oxidative stress. First, losing UPF proteins markedly slowed down the decay rate of cat-3 mRNA. Second, UPF proteins indirectly attenuated the transcriptional activity of cat-3 gene by boosting the decay of cpc-1 and ngf-1 mRNAs, which encode a well-studied transcription factor and a histone acetyltransferase, respectively. Further study showed that under oxidative stress condition, UPF proteins were degraded, followed by increased CPC-1 and NGF-1 activity, finally activating cat-3 expression to resist oxidative stress. Together, our data illustrate a sophisticated regulatory network of the cat-3 gene mediated by the UPF complex under physiological and H2O2-induced oxidative stress conditions.
Collapse
Affiliation(s)
- Shuangjie Shen
- MOA Key Laboratory of Soil Microbiology, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Chengcheng Zhang
- MOA Key Laboratory of Soil Microbiology, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Yuanhao Meng
- MOA Key Laboratory of Soil Microbiology, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Guofei Cui
- MOA Key Laboratory of Soil Microbiology, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Ying Wang
- MOA Key Laboratory of Soil Microbiology, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Xiao Liu
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
- College of Life Sciences, University of the Chinese Academy of Sciences, Beijing, China
| | - Qun He
- MOA Key Laboratory of Soil Microbiology, College of Biological Sciences, China Agricultural University, Beijing, China
| |
Collapse
|
5
|
Guan Q, Zhao P, Tian Y, Yang L, Zhang Z, Li J. Identification of cancer risk assessment signature in patients with chronic obstructive pulmonary disease and exploration of the potential key genes. Ann Med 2022; 54:2309-2320. [PMID: 35993327 PMCID: PMC9415445 DOI: 10.1080/07853890.2022.2112070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
It is essential to assess the cancer risk for patients with chronic obstructive pulmonary disease (COPD). Comparing gene expression data from patients with lung cancer (a total of 506 samples) and those with cancer-adjacent normal lung tissues (a total of 370 samples), we generated a qualitative transcriptional signature consisting of 2046 gene pairs. The signature was verified in an evaluation dataset comprising 18 subjects with severe disease and 52 subjects with moderate disease (Wilcoxon rank-sum test; p = 7.33 × 10-5). Similar results were obtained in other independent datasets. Among the gene pairs in the signature, 326 COPD stage-related gene pairs were identified based on Spearman's rank correlation tests and those gene pairs comprised 368 unique genes. Of these 368 genes, 16 genes were significantly dysregulated in COPD rat model data compared with control data. Some of these genes (Dhx16, Upf2, Notch3, Sec61a1, Dyrk2, and Hmmr) were altered when the COPD rat model was treated with traditional Chinese medicines (TCM), including Bufei Yishen formula, Bufei Jianpi formula, and Yiqi Zishen formula. Overall, the signature could predict the cancer incidence-risk of COPD and the identified key genes might provide guidance regarding both the treatment of COPD using TCM and the prevention of cancer in patients with COPD. KEY MESSAGESA cancer risk assessment signature was identified in patients with COPD.The signature is insensitive to batch effects and is well verified.COPD key genes identified in this study might play a crucial role in TCM treatment and cancer prevention.
Collapse
Affiliation(s)
- Qingzhou Guan
- Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, Zhengzhou, China.,Henan Key Laboratory of Chinese Medicine for Respiratory Disease, Co-Construction Collaborative Innovation Center for Chinese Medicine and Respiratory Diseases by Henan & Education Ministry of P.R. China, Henan University of Chinese Medicine, Zhengzhou, China
| | - Peng Zhao
- Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, Zhengzhou, China.,Henan Key Laboratory of Chinese Medicine for Respiratory Disease, Co-Construction Collaborative Innovation Center for Chinese Medicine and Respiratory Diseases by Henan & Education Ministry of P.R. China, Henan University of Chinese Medicine, Zhengzhou, China
| | - Yange Tian
- Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, Zhengzhou, China.,Henan Key Laboratory of Chinese Medicine for Respiratory Disease, Co-Construction Collaborative Innovation Center for Chinese Medicine and Respiratory Diseases by Henan & Education Ministry of P.R. China, Henan University of Chinese Medicine, Zhengzhou, China
| | - Liping Yang
- School of Basic Medicine, Henan University of Chinese Medicine, Zhengzhou, China
| | - Zhenzhen Zhang
- Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, Zhengzhou, China.,Henan Key Laboratory of Chinese Medicine for Respiratory Disease, Co-Construction Collaborative Innovation Center for Chinese Medicine and Respiratory Diseases by Henan & Education Ministry of P.R. China, Henan University of Chinese Medicine, Zhengzhou, China
| | - Jiansheng Li
- Henan Key Laboratory of Chinese Medicine for Respiratory Disease, Co-Construction Collaborative Innovation Center for Chinese Medicine and Respiratory Diseases by Henan & Education Ministry of P.R. China, Henan University of Chinese Medicine, Zhengzhou, China.,The First Affiliated Hospital, Henan University of Chinese Medicine, Zhengzhou, China
| |
Collapse
|
6
|
Padariya M, Kalathiya U. The Binding Specificity of PAB1 with Poly(A) mRNA, Regulated by Its Structural Folding. Biomedicines 2022; 10:biomedicines10112981. [PMID: 36428549 PMCID: PMC9687780 DOI: 10.3390/biomedicines10112981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 11/15/2022] [Accepted: 11/16/2022] [Indexed: 11/22/2022] Open
Abstract
The poly(A)-binding protein cytoplasmic 1 (PAB1 or PABPC1) protein is associated with the long poly(A) mRNA tails, inducing stability. Herein, we investigated the dynamics of the PABPC1 protein, along with tracing its mRNA binding specificity. During molecular dynamics simulations (MDS), the R176-Y408 amino acids (RRM3-4 domains; RNA recognition motifs) initiated a folded structure that resulted in the formation of different conformations. The RRM4 domain formed high-frequency intramolecular interactions, despite such induced flexibility. Residues D45, Y54, Y56, N58, Q88, and N100 formed long-lasting interactions, and specifically, aromatic residues (Y14, Y54, Y56, W86, and Y140) gained a unique binding pattern with the poly(A) mRNA. In addition, the poly(A) mRNA motif assembled a PABPC1-specific conformation, by inducing movement of the center three nucleotides to face towards RRM1-2 domains. The majority of the high-frequency cancer mutations in PAB1 reside within the RRM4 domain and amino acids engaging in high-frequency interactions with poly(A) mRNA were found to be preserved in different cancer types. Except for the G123C variant, other studied cancer-derived mutants hindered the stability of the protein. Molecular details from this study will provide a detailed understanding of the PABPC1 structure, which can be used to modulate the activity of this gene, resulting in production of mutant peptide or neoantigens in cancer.
Collapse
|
7
|
Bonczek O, Wang L, Gnanasundram SV, Chen S, Haronikova L, Zavadil-Kokas F, Vojtesek B. DNA and RNA Binding Proteins: From Motifs to Roles in Cancer. Int J Mol Sci 2022; 23:ijms23169329. [PMID: 36012592 PMCID: PMC9408909 DOI: 10.3390/ijms23169329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 08/15/2022] [Accepted: 08/17/2022] [Indexed: 11/16/2022] Open
Abstract
DNA and RNA binding proteins (DRBPs) are a broad class of molecules that regulate numerous cellular processes across all living organisms, creating intricate dynamic multilevel networks to control nucleotide metabolism and gene expression. These interactions are highly regulated, and dysregulation contributes to the development of a variety of diseases, including cancer. An increasing number of proteins with DNA and/or RNA binding activities have been identified in recent years, and it is important to understand how their activities are related to the molecular mechanisms of cancer. In addition, many of these proteins have overlapping functions, and it is therefore essential to analyze not only the loss of function of individual factors, but also to group abnormalities into specific types of activities in regard to particular cancer types. In this review, we summarize the classes of DNA-binding, RNA-binding, and DRBPs, drawing particular attention to the similarities and differences between these protein classes. We also perform a cross-search analysis of relevant protein databases, together with our own pipeline, to identify DRBPs involved in cancer. We discuss the most common DRBPs and how they are related to specific cancers, reviewing their biochemical, molecular biological, and cellular properties to highlight their functions and potential as targets for treatment.
Collapse
Affiliation(s)
- Ondrej Bonczek
- Research Centre for Applied Molecular Oncology (RECAMO), Masaryk Memorial Cancer Institute (MMCI), Zluty Kopec 7, 656 53 Brno, Czech Republic
- Department of Medical Biosciences, Umea University, 90187 Umea, Sweden
- Correspondence: (O.B.); (B.V.)
| | - Lixiao Wang
- Department of Medical Biosciences, Umea University, 90187 Umea, Sweden
| | | | - Sa Chen
- Department of Medical Biosciences, Umea University, 90187 Umea, Sweden
| | - Lucia Haronikova
- Research Centre for Applied Molecular Oncology (RECAMO), Masaryk Memorial Cancer Institute (MMCI), Zluty Kopec 7, 656 53 Brno, Czech Republic
| | - Filip Zavadil-Kokas
- Research Centre for Applied Molecular Oncology (RECAMO), Masaryk Memorial Cancer Institute (MMCI), Zluty Kopec 7, 656 53 Brno, Czech Republic
| | - Borivoj Vojtesek
- Research Centre for Applied Molecular Oncology (RECAMO), Masaryk Memorial Cancer Institute (MMCI), Zluty Kopec 7, 656 53 Brno, Czech Republic
- Correspondence: (O.B.); (B.V.)
| |
Collapse
|
8
|
Sui S, Wang Z, Cui X, Jin L, Zhu C. The biological behavior of tRNA-derived fragment tRF-Leu-AAG in pancreatic cancer cells. Bioengineered 2022; 13:10617-10628. [PMID: 35442152 PMCID: PMC9161985 DOI: 10.1080/21655979.2022.2064206] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 03/29/2022] [Accepted: 04/05/2022] [Indexed: 01/01/2023] Open
Abstract
Pancreatic cancer (PC) is a life-threatening cancer with increasing incidence in developed countries. Reports indicate that tRNA-derived fragments (tRFs) are possible therapeutic targets and biomarkers for cancer treatment. Nonetheless, the effect of tRF-Leu-AAG on PC is unclear. This study aims to explore the role of tRF-Leu-AAG and upstream frameshift mutant 1 (UPF1) in the development of PC and its potential underlying mechanisms. High-throughput second-generation sequencing techniques were used to detect the expression of tRFs in cancerous and adjacent normal tissues from PC patients. The role of tRF-Leu-AAG proliferation in PC cells was investigated via the Cell Counting Kit-8 (CCK8) assay. The effect of tRF-Leu-AAG on the invasion and migration ability of PC cells was also determined by the transwell assay. Thereafter, the downstream target genes of tRF-Leu-AAG were comprehensively predicted using bioinformatics analysis databases. We also used the Dual-Luciferase Reporter assay to assess the nexus between tRF-Leu-AAG and UPF1. Eventually, Western Blot was used to validate the expression of UPF1 in PC cells. A total of 33 tRF expressions significantly varied from PC patients. RT-qPCR confirmed that the expression of tRF-Leu-AAG was observably up-regulated in PC cells as compared to the control cells. Importantly, knockdown of tRF-Leu-AAG observably inhibited cell proliferation, migration, and invasion. Furthermore, according to the predicted frameshift database results, the UPF1 acted as downstream target genes for tRF-Leu-AAG and significantly down-regulated UPF1 expression.
Collapse
Affiliation(s)
- Shizhen Sui
- Graduate School of Dalian Medical University, Dalian Medical University, Dalian, Liaoning, China
| | - Zhihuai Wang
- Graduate School of Dalian Medical University, Dalian Medical University, Dalian, Liaoning, China
| | - Xiaohan Cui
- Department of Hepatobiliary Surgery, The Affiliated Changzhou No. 2 People’s Hospital of Nanjing Medical University, Changzhou, Jiangsu, China
| | - Lei Jin
- Department of Hepatobiliary Surgery, The Affiliated Changzhou No. 2 People’s Hospital of Nanjing Medical University, Changzhou, Jiangsu, China
| | - Chunfu Zhu
- Department of Hepatobiliary Surgery, The Affiliated Changzhou No. 2 People’s Hospital of Nanjing Medical University, Changzhou, Jiangsu, China
| |
Collapse
|
9
|
Molecular Determinants and Specificity of mRNA with Alternatively-Spliced UPF1 Isoforms, Influenced by an Insertion in the 'Regulatory Loop'. Int J Mol Sci 2021; 22:ijms222312744. [PMID: 34884553 PMCID: PMC8657986 DOI: 10.3390/ijms222312744] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 11/19/2021] [Accepted: 11/22/2021] [Indexed: 01/25/2023] Open
Abstract
The nonsense-mediated mRNA decay (NMD) pathway rapidly detects and degrades mRNA containing premature termination codons (PTCs). UP-frameshift 1 (UPF1), the master regulator of the NMD process, has two alternatively-spliced isoforms; one carries 353-GNEDLVIIWLR-363 insertion in the ‘regulatory loop (involved in mRNA binding)’. Such insertion can induce catalytic and/or ATPase activity, as determined experimentally; however, the kinetics and molecular level information are not fully understood. Herein, applying all-atom molecular dynamics, we probe the binding specificity of UPF1 with different GC- and AU-rich mRNA motifs and the influence of insertion to the viable control over UPF1 catalytic activity. Our results indicate two distinct conformations between 1B and RecA2 domains of UPF1: ‘open (isoform_2; without insertion)’ and ‘closed (isoform_1; with insertion)’. These structural movements correspond to an important stacking pattern in mRNA motifs, i.e., absence of stack formation in mRNA, with UPF1 isoform_2 results in the ‘open conformation’. Particularly, for UPF1 isoform_1, the increased distance between 1B and RecA2 domains has resulted in reducing the mRNA–UPF1 interactions. Lower fluctuating GC-rich mRNA motifs have better binding with UPF1, compared with AU-rich sequences. Except CCUGGGG, all other GC-rich motifs formed a 4-stack pattern with UPF1. High occupancy R363, D364, T627, and G862 residues were common binding GC-rich motifs, as were R363, N535, and T627 for the AU-rich motifs. The GC-rich motifs behave distinctly when bound to either of the isoforms; lower stability was observed with UPF1 isoform_2. The cancer-associated UPF1 variants (P533L/T and A839T) resulted in decreased protein–mRNA binding efficiency. Lack of mRNA stacking poses in the UPF1P533T system significantly decreased UPF1-mRNA binding efficiency and increased distance between 1B-RecA2. These novel findings can serve to further inform NMD-associated mechanistic and kinetic studies.
Collapse
|
10
|
Kalathiya U, Padariya M, Faktor J, Coyaud E, Alfaro JA, Fahraeus R, Hupp TR, Goodlett DR. Interfaces with Structure Dynamics of the Workhorses from Cells Revealed through Cross-Linking Mass Spectrometry (CLMS). Biomolecules 2021; 11:382. [PMID: 33806612 PMCID: PMC8001575 DOI: 10.3390/biom11030382] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Revised: 02/26/2021] [Accepted: 03/01/2021] [Indexed: 12/28/2022] Open
Abstract
The fundamentals of how protein-protein/RNA/DNA interactions influence the structures and functions of the workhorses from the cells have been well documented in the 20th century. A diverse set of methods exist to determine such interactions between different components, particularly, the mass spectrometry (MS) methods, with its advanced instrumentation, has become a significant approach to analyze a diverse range of biomolecules, as well as bring insights to their biomolecular processes. This review highlights the principal role of chemistry in MS-based structural proteomics approaches, with a particular focus on the chemical cross-linking of protein-protein/DNA/RNA complexes. In addition, we discuss different methods to prepare the cross-linked samples for MS analysis and tools to identify cross-linked peptides. Cross-linking mass spectrometry (CLMS) holds promise to identify interaction sites in larger and more complex biological systems. The typical CLMS workflow allows for the measurement of the proximity in three-dimensional space of amino acids, identifying proteins in direct contact with DNA or RNA, and it provides information on the folds of proteins as well as their topology in the complexes. Principal CLMS applications, its notable successes, as well as common pipelines that bridge proteomics, molecular biology, structural systems biology, and interactomics are outlined.
Collapse
Affiliation(s)
- Umesh Kalathiya
- International Centre for Cancer Vaccine Science, University of Gdansk, ul. Kładki 24, 80-822 Gdansk, Poland; (M.P.); (J.F.); (J.A.A.); (R.F.); (T.R.H.)
| | - Monikaben Padariya
- International Centre for Cancer Vaccine Science, University of Gdansk, ul. Kładki 24, 80-822 Gdansk, Poland; (M.P.); (J.F.); (J.A.A.); (R.F.); (T.R.H.)
| | - Jakub Faktor
- International Centre for Cancer Vaccine Science, University of Gdansk, ul. Kładki 24, 80-822 Gdansk, Poland; (M.P.); (J.F.); (J.A.A.); (R.F.); (T.R.H.)
| | - Etienne Coyaud
- Protéomique Réponse Inflammatoire Spectrométrie de Mass—PRISM, Inserm U1192, University Lille, CHU Lille, F-59000 Lille, France;
| | - Javier A. Alfaro
- International Centre for Cancer Vaccine Science, University of Gdansk, ul. Kładki 24, 80-822 Gdansk, Poland; (M.P.); (J.F.); (J.A.A.); (R.F.); (T.R.H.)
- Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, Scotland EH4 2XR, UK
| | - Robin Fahraeus
- International Centre for Cancer Vaccine Science, University of Gdansk, ul. Kładki 24, 80-822 Gdansk, Poland; (M.P.); (J.F.); (J.A.A.); (R.F.); (T.R.H.)
| | - Ted R. Hupp
- International Centre for Cancer Vaccine Science, University of Gdansk, ul. Kładki 24, 80-822 Gdansk, Poland; (M.P.); (J.F.); (J.A.A.); (R.F.); (T.R.H.)
- Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, Scotland EH4 2XR, UK
| | - David R. Goodlett
- International Centre for Cancer Vaccine Science, University of Gdansk, ul. Kładki 24, 80-822 Gdansk, Poland; (M.P.); (J.F.); (J.A.A.); (R.F.); (T.R.H.)
- Department of Biochemistry & Microbiology, University of Victoria, Victoria, BC V8Z 7X8, Canada
- Genome BC Proteome Centre, University of Victoria, Victoria, BC V8Z 5N3, Canada
| |
Collapse
|
11
|
Kalathiya U, Padariya M, Mayordomo M, Lisowska M, Nicholson J, Singh A, Baginski M, Fahraeus R, Carragher N, Ball K, Haas J, Daniels A, Hupp TR, Alfaro JA. Highly Conserved Homotrimer Cavity Formed by the SARS-CoV-2 Spike Glycoprotein: A Novel Binding Site. J Clin Med 2020; 9:E1473. [PMID: 32422996 PMCID: PMC7290299 DOI: 10.3390/jcm9051473] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Revised: 05/08/2020] [Accepted: 05/12/2020] [Indexed: 12/11/2022] Open
Abstract
An important stage in severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) life cycle is the binding of the spike (S) protein to the angiotensin converting enzyme-2 (ACE2) host cell receptor. Therefore, to explore conserved features in spike protein dynamics and to identify potentially novel regions for drugging, we measured spike protein variability derived from 791 viral genomes and studied its properties by molecular dynamics (MD) simulation. The findings indicated that S2 subunit (heptad-repeat 1 (HR1), central helix (CH), and connector domain (CD) domains) showed low variability, low fluctuations in MD, and displayed a trimer cavity. By contrast, the receptor binding domain (RBD) domain, which is typically targeted in drug discovery programs, exhibits more sequence variability and flexibility. Interpretations from MD simulations suggest that the monomer form of spike protein is in constant motion showing transitions between an "up" and "down" state. In addition, the trimer cavity may function as a "bouncing spring" that may facilitate the homotrimer spike protein interactions with the ACE2 receptor. The feasibility of the trimer cavity as a potential drug target was examined by structure based virtual screening. Several hits were identified that have already been validated or suggested to inhibit the SARS-CoV-2 virus in published cell models. In particular, the data suggest an action mechanism for molecules including Chitosan and macrolides such as the mTOR (mammalian target of Rapamycin) pathway inhibitor Rapamycin. These findings identify a novel small molecule binding-site formed by the spike protein oligomer, that might assist in future drug discovery programs aimed at targeting the coronavirus (CoV) family of viruses.
Collapse
Affiliation(s)
- Umesh Kalathiya
- International Centre for Cancer Vaccine Science, University of Gdansk, Wita Stwosza 63, 80-308 Gdansk, Poland; (M.P.); (M.M.); (M.L.); (A.S.); (R.F.)
| | - Monikaben Padariya
- International Centre for Cancer Vaccine Science, University of Gdansk, Wita Stwosza 63, 80-308 Gdansk, Poland; (M.P.); (M.M.); (M.L.); (A.S.); (R.F.)
| | - Marcos Mayordomo
- International Centre for Cancer Vaccine Science, University of Gdansk, Wita Stwosza 63, 80-308 Gdansk, Poland; (M.P.); (M.M.); (M.L.); (A.S.); (R.F.)
| | - Małgorzata Lisowska
- International Centre for Cancer Vaccine Science, University of Gdansk, Wita Stwosza 63, 80-308 Gdansk, Poland; (M.P.); (M.M.); (M.L.); (A.S.); (R.F.)
| | - Judith Nicholson
- Sharp Life Science (EU) Limited, Oxford Science Park, Edmund Halley Rd, Oxford OX4 4GB, UK;
| | - Ashita Singh
- International Centre for Cancer Vaccine Science, University of Gdansk, Wita Stwosza 63, 80-308 Gdansk, Poland; (M.P.); (M.M.); (M.L.); (A.S.); (R.F.)
| | - Maciej Baginski
- Department of Pharmaceutical Technology and Biochemistry, Faculty of Chemistry, Gdansk University of Technology, Narutowicza St 11/12, 80-233 Gdansk, Poland;
| | - Robin Fahraeus
- International Centre for Cancer Vaccine Science, University of Gdansk, Wita Stwosza 63, 80-308 Gdansk, Poland; (M.P.); (M.M.); (M.L.); (A.S.); (R.F.)
| | - Neil Carragher
- Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, Scotland EH4 2XR, UK; (N.C.); (K.B.)
| | - Kathryn Ball
- Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, Scotland EH4 2XR, UK; (N.C.); (K.B.)
| | - Juergen Haas
- Department of Infectious Disease, Edinburgh, Scotland EH4 2XR, UK; (J.H.); (A.D.)
| | - Alison Daniels
- Department of Infectious Disease, Edinburgh, Scotland EH4 2XR, UK; (J.H.); (A.D.)
| | - Ted R. Hupp
- International Centre for Cancer Vaccine Science, University of Gdansk, Wita Stwosza 63, 80-308 Gdansk, Poland; (M.P.); (M.M.); (M.L.); (A.S.); (R.F.)
- Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, Scotland EH4 2XR, UK; (N.C.); (K.B.)
| | - Javier Antonio Alfaro
- International Centre for Cancer Vaccine Science, University of Gdansk, Wita Stwosza 63, 80-308 Gdansk, Poland; (M.P.); (M.M.); (M.L.); (A.S.); (R.F.)
- Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, Scotland EH4 2XR, UK; (N.C.); (K.B.)
| |
Collapse
|
12
|
Nonsense-Mediated mRNA Decay: Pathologies and the Potential for Novel Therapeutics. Cancers (Basel) 2020; 12:cancers12030765. [PMID: 32213869 PMCID: PMC7140085 DOI: 10.3390/cancers12030765] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 03/19/2020] [Accepted: 03/19/2020] [Indexed: 12/22/2022] Open
Abstract
Nonsense-mediated messenger RNA (mRNA) decay (NMD) is a surveillance pathway used by cells to control the quality mRNAs and to fine-tune transcript abundance. NMD plays an important role in cell cycle regulation, cell viability, DNA damage response, while also serving as a barrier to virus infection. Disturbance of this control mechanism caused by genetic mutations or dys-regulation of the NMD pathway can lead to pathologies, including neurological disorders, immune diseases and cancers. The role of NMD in cancer development is complex, acting as both a promoter and a barrier to tumour progression. Cancer cells can exploit NMD for the downregulation of key tumour suppressor genes, or tumours adjust NMD activity to adapt to an aggressive immune microenvironment. The latter case might provide an avenue for therapeutic intervention as NMD inhibition has been shown to lead to the production of neoantigens that stimulate an immune system attack on tumours. For this reason, understanding the biology and co-option pathways of NMD is important for the development of novel therapeutic agents. Inhibitors, whose design can make use of the many structures available for NMD study, will play a crucial role in characterizing and providing diverse therapeutic options for this pathway in cancer and other diseases.
Collapse
|