1
|
Wang TS, Ruchirawat M, Narasumrit P, Xia ZL, Au WW. Lymphocyte-based challenge DNA-repair assays for personalized health risk assessment. MUTATION RESEARCH. REVIEWS IN MUTATION RESEARCH 2022; 790:108427. [PMID: 35688302 DOI: 10.1016/j.mrrev.2022.108427] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 05/29/2022] [Accepted: 06/03/2022] [Indexed: 01/01/2023]
Abstract
Combinations of genetic and environmental factors are responsible for the development of many human diseases, such as cancer, as demonstrated using various biomarkers. Within this scenario, DNA repair holds a gate-keeper position which determines outcomes after appearance of DNA damage and, therefore, adverse cellular consequences, e.g., initiation of carcinogenesis. DNA repair deficiency and some of the subsequent events can be validated from studies using live cells from cancer patients. However, these deficiencies/events are difficult to demonstrate in live cells from normal individuals because individual variations in DNA repair capacities (DRC) are too low to be measured easily. Such lack of information has been hindering progress in developing personalized disease prevention and intervention protocols, especially among exposed populations. However, using a variety of challenge assays as biomarkers, variations in individual's DRC can be amplified in live cells and be determined. Furthermore, evidence indicates that DRC are not only inherited but can also be modified by environmental factors (e.g., nutritional status and exposure to genotoxic substances). Using these challenge assays, e.g., in live lymphocytes, individual's DRC can be holistically and functionally determined as well as quantitated. With the more precise information, assessment of health risk can be better determined on an individual rather than on a population basis. This review provides a succinct summary on the development and application of recent challenge assays in lymphocytes which can provide measurements of individuals' DRC, and on the latest data for more precise disease prevention and intervention.
Collapse
Affiliation(s)
- Tong-Shuai Wang
- Department of Occupational Health and Toxicology, School of Public Health, Fudan University, Shanghai, China; Shanghai Key Laboratory of Maternal Fetal Medicine, Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai, China
| | - Mathuros Ruchirawat
- Center of Excellence on Environmental Health, Toxicology and Management of Chemicals, Bangkok, Thailand; Laboratory of Environmental Toxicology, Chulabhorn Research Institute, Toxicology and Management of Chemicals, Bangkok, Thailand
| | - Panida Narasumrit
- Center of Excellence on Environmental Health, Toxicology and Management of Chemicals, Bangkok, Thailand; Laboratory of Environmental Toxicology, Chulabhorn Research Institute, Toxicology and Management of Chemicals, Bangkok, Thailand
| | - Zhao-Lin Xia
- Department of Occupational Health and Toxicology, School of Public Health, Fudan University, Shanghai, China.
| | - William W Au
- University of Medicine, Pharmacy, Science and Technology, Targu Mures, Romania; University of Texas Medical Branch, Galveston, Texas, USA.
| |
Collapse
|
2
|
Shen W, Ma Y, Qi H, Wang W, He J, Xiao F, Zhu H, He S. Kinetics model of DNA double-strand break repair in eukaryotes. DNA Repair (Amst) 2021; 100:103035. [PMID: 33618125 DOI: 10.1016/j.dnarep.2020.103035] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Accepted: 12/11/2020] [Indexed: 11/26/2022]
Abstract
This manuscript outlines the kinetics of two main repair pathways of DNA double-strand break (DSB) in eukaryotes: non-homologous end joining (NHEJ) and homologous recombination repair (HRR). In this review, we discuss the precise study of recruitment kinetics of repair proteins based on the latest technologies in the past two decades. Then we simulate the theoretical description of the DNA repair process by mathematical models. In our study, the consecutive reactions chain (CRC) model and continuous-time random walk (CTRW) model have been unified by us, so that we can obtain the function of the number of intermediates with time in the same framework of equations, overcome the incompatibility between the two models. On this basis, we propose a data fitting workflow using these both models. Finally, we give an overview of different real-time quantitative methods and the new mechanism complexity that can be found from the corresponding dynamic models.
Collapse
Affiliation(s)
- Wangtao Shen
- Institute of Biochemistry and Molecular Biology, Hengyang Medical College, University of South China, Hengyang, 421001, China
| | - Yun Ma
- Institute of Biochemistry and Molecular Biology, Hengyang Medical College, University of South China, Hengyang, 421001, China.
| | - Huizhou Qi
- Institute of Biochemistry and Molecular Biology, Hengyang Medical College, University of South China, Hengyang, 421001, China; Function Laboratory Center, Hengyang Medical College, University of South China, Hengyang, 421001, China; Hengyang Key Laboratory for Biological Effects of Nuclear Radiation, University of South China, Hengyang, 421001, China
| | - Wuzhou Wang
- Institute of Biochemistry and Molecular Biology, Hengyang Medical College, University of South China, Hengyang, 421001, China; Hengyang Key Laboratory for Biological Effects of Nuclear Radiation, University of South China, Hengyang, 421001, China
| | - Junyan He
- Department of Radiation Oncology, The First Affiliated Hospital of University of South China, Hengyang, 421001, China
| | - Fangzhu Xiao
- Hengyang Key Laboratory for Biological Effects of Nuclear Radiation, University of South China, Hengyang, 421001, China
| | - Hui Zhu
- Institute of Engineering Mathematics, Mathematics and Physics College, University of South China, Hengyang, 421001, China
| | - Shuya He
- Institute of Biochemistry and Molecular Biology, Hengyang Medical College, University of South China, Hengyang, 421001, China; Hengyang Key Laboratory for Biological Effects of Nuclear Radiation, University of South China, Hengyang, 421001, China.
| |
Collapse
|
3
|
Robu M, Shah RG, Shah GM. Methods to Study Intracellular Movement and Localization of the Nucleotide Excision Repair Proteins at the DNA Lesions in Mammalian Cells. Front Cell Dev Biol 2020; 8:590242. [PMID: 33282869 PMCID: PMC7705073 DOI: 10.3389/fcell.2020.590242] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Accepted: 10/27/2020] [Indexed: 11/13/2022] Open
Abstract
Nucleotide excision repair (NER) is the most versatile DNA repair pathway that removes a wide variety of DNA lesions caused by different types of physical and chemical agents, such as ultraviolet radiation (UV), environmental carcinogen benzo[a]pyrene and anti-cancer drug carboplatin. The mammalian NER utilizes more than 30 proteins, in a multi-step process that begins with the lesion recognition within seconds of DNA damage to completion of repair after few hours to several days. The core proteins and their biochemical reactions are known from in vitro DNA repair assays using purified proteins, but challenge was to understand the dynamics of their rapid recruitment and departure from the lesion site and their coordination with other proteins and post-translational modifications to execute the sequential steps of repair. Here, we provide a brief overview of various techniques developed by different groups over last 20 years to overcome these challenges. However, more work is needed for a comprehensive knowledge of all aspects of mammalian NER. With this aim, here we provide detailed protocols of three simple yet innovative methods developed by many teams that range from local UVC irradiation to in situ extraction and sub-cellular fractionation that will permit study of endogenous as well as exogenous NER proteins in any cellular model. These methods do not require unique reagents or specialized instruments, and will allow many more laboratories to explore this repair pathway in different models. These techniques would reveal intracellular movement of these proteins to the DNA lesion site, their interactions with other proteins during repair and the effect of post-translational modifications on their functions. We also describe how these methods led us to identify hitherto unexpected role of poly(ADP-ribose) polymerase-1 (PARP1) in NER. Collectively these three simple techniques can provide an initial assessment of the functions of known and unknown proteins in the core or auxiliary events associated with mammalian NER. The results from these techniques could serve as a solid foundation and a justification for more detailed studies in NER using specialized reagents and more sophisticated tools. They can also be suitably modified to study other cellular processes beyond DNA repair.
Collapse
Affiliation(s)
- Mihaela Robu
- CHU de Québec Université Laval Research Centre (site CHUL), Laboratory for Skin Cancer Research and Axe Neuroscience, Québec, QC, Canada
| | - Rashmi G Shah
- CHU de Québec Université Laval Research Centre (site CHUL), Laboratory for Skin Cancer Research and Axe Neuroscience, Québec, QC, Canada
| | - Girish M Shah
- CHU de Québec Université Laval Research Centre (site CHUL), Laboratory for Skin Cancer Research and Axe Neuroscience, Québec, QC, Canada
| |
Collapse
|