1
|
Liukkonen M, Heloterä H, Siintamo L, Ghimire B, Mattila P, Kivinen N, Kostanek J, Watala C, Hytti M, Hyttinen J, Koskela A, Blasiak J, Kaarniranta K. Oxidative Stress and Inflammation-Related mRNAs Are Elevated in Serum of a Finnish Wet AMD Cohort. Invest Ophthalmol Vis Sci 2024; 65:30. [PMID: 39546296 DOI: 10.1167/iovs.65.13.30] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2024] Open
Abstract
Purpose Localized diseases can be affected by and affect the systemic environment via blood circulation. In this study, we explored the differences in circulating serum mRNAs between patients with wet AMD (wAMD) and controls. Methods Blood samples were obtained from 60 Finnish patients with wAMD and 64 controls. After serum preparation and RNA sequencing, the count data was examined for differentially expressed genes (DEGs) and further checked for enriched molecular pathways and ontology terms as well as links to clinical data. Results We found many DEGs and some enriched pathways, including the inflammation and cell survival-associated pathway tumour necrosis factor alpha (TNF-α) signaling via nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB). The related DEGs were oxidized low-density lipoprotein receptor 1 (OLR1), salt inducible kinase 1 (SIK1), and coagulation factor III (F3). DEGs from degradative macular and retinal processes were also examined, many of which were also related to cardiovascular disease and maintenance. Additionally, DEG counts were inspected in relation to clinical and anti-VEGF treatment parameters, and glutamine amidotransferase-like class 1 domain-containing 3A (GATD3A) levels were found to be significantly lower in patients with wAMD treated with anti-VEGF. Conclusions Differentially expressed systemic mRNAs that are linked to mitochondrial function, oxidative stress, and inflammation may have a role in the pathology of wAMD. Our observations provide new data for the understanding of the progression of wAMD.
Collapse
Affiliation(s)
- Mikko Liukkonen
- Department of Ophthalmology, University of Eastern Finland, Kuopio, Finland
| | - Hanna Heloterä
- Department of Ophthalmology, University of Eastern Finland, Kuopio, Finland
| | - Leea Siintamo
- Department of Ophthalmology, Kuopio University Hospital, Kuopio, Finland
| | - Bishwa Ghimire
- Institute for Molecular Medicine Finland, University of Helsinki, Helsinki, Finland
- MediCity Research Laboratory, University of Turku, Turku, Finland
| | - Pirkko Mattila
- Institute for Molecular Medicine Finland, University of Helsinki, Helsinki, Finland
| | - Niko Kivinen
- Department of Ophthalmology, Kuopio University Hospital, Kuopio, Finland
| | - Joanna Kostanek
- Department of Haemostatic Disorders, Medical University of Lodz, Lodz, Poland
| | - Cezary Watala
- Department of Haemostatic Disorders, Medical University of Lodz, Lodz, Poland
| | - Maria Hytti
- Department of Ophthalmology, University of Eastern Finland, Kuopio, Finland
| | - Juha Hyttinen
- Department of Ophthalmology, University of Eastern Finland, Kuopio, Finland
| | - Ali Koskela
- Department of Ophthalmology, University of Eastern Finland, Kuopio, Finland
| | - Janusz Blasiak
- Faculty of Medicine, Mazovian Academy in Plock, Plock, Poland
| | - Kai Kaarniranta
- Department of Ophthalmology, University of Eastern Finland, Kuopio, Finland
- Department of Ophthalmology, Kuopio University Hospital, Kuopio, Finland
- Department of Molecular Genetics, University of Lodz, Lodz, Poland
| |
Collapse
|
2
|
Benavides-Aguilar JA, Morales-Rodríguez JI, Ambriz-González H, Ruiz-Manriquez LM, Banerjee A, Pathak S, Duttaroy AK, Paul S. The regulatory role of microRNAs in common eye diseases: A brief review. Front Genet 2023; 14:1152110. [PMID: 37065488 PMCID: PMC10090401 DOI: 10.3389/fgene.2023.1152110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Accepted: 03/20/2023] [Indexed: 03/31/2023] Open
Abstract
MicroRNAs (miRNAs) are highly conserved, small non-coding RNA molecules (∼21 nucleotides) that regulate numerous biological processes, including developmental timing, hematopoiesis, organogenesis, apoptosis, cell differentiation, and proliferation either by mRNA degradation or translation repression. Since eye physiology requires a perfect orchestration of complex regulatory networks, an altered expression of key regulatory molecules such as miRNAs potentially leads to numerous eye disorders. In recent years, comprehensive progress has been made in demonstrating the precise roles of miRNAs, emphasizing their potential use in diagnostic and therapeutic purposes of chronic human diseases. Thus, this review explicitly illustrates the regulatory roles of miRNAs in four common eye disorders, such as cataract, glaucoma, macular degeneration, and uveitis, and their application in disease management.
Collapse
Affiliation(s)
| | | | | | - Luis M. Ruiz-Manriquez
- Tecnológico de Monterrey, School of Engineering and Sciences, Queretaro, Mexico
- Tecnologico de Monterrey, School of Medicine and Health Science, Monterrey, Mexico
| | - Antara Banerjee
- Chettinad Academy of Research and Education (CARE), Chettinad Hospital and Research Institute (CHRI), Department of Medical Biotechnology, Faculty of Allied Health Sciences, Chennai, India
| | - Surajit Pathak
- Chettinad Academy of Research and Education (CARE), Chettinad Hospital and Research Institute (CHRI), Department of Medical Biotechnology, Faculty of Allied Health Sciences, Chennai, India
| | - Asim K. Duttaroy
- Department of Nutrition, Institute of Basic Medical Sciences, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Sujay Paul
- Tecnológico de Monterrey, School of Engineering and Sciences, Queretaro, Mexico
| |
Collapse
|
3
|
Cruz-Aguilar M, Groman-Lupa S, Jiménez-Martínez MC. MicroRNAs as potential biomarkers and therapeutic targets in age-related macular degeneration. FRONTIERS IN OPHTHALMOLOGY 2023; 3:1023782. [PMID: 38983087 PMCID: PMC11182111 DOI: 10.3389/fopht.2023.1023782] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Accepted: 01/30/2023] [Indexed: 07/11/2024]
Abstract
Age-related macular degeneration (AMD) involves degenerative and neovascular alteration in the macular region of the retina resulting in central vision loss. AMD can be classified into dry (dAMD) and wet AMD (wAMD). There is no established treatment for dAMD, and therapies available for wAMD have limited success. Diagnosis in early AMD stages is difficult due to the absence of clinical symptoms. Currently, imaging tests are used in the diagnosis of AMD, but cannot predict the clinical course. The clinical limitations to establishing a diagnosis of AMD have led to exploration for innovative and more sensitive tests to support the diagnosis and prognosis of the disease. MicroRNAs (miRNAs) are small single-stranded non-coding RNA molecules that negatively regulate genes by post-transcriptional gene silencing. Because these molecules are dysregulated in various processes implicated in the pathogenesis of AMD, they could contribute to the early detection of the disease and monitoring of its progression. Studies of miRNA profiling have indicated several miRNAs as potential diagnostic biomarkers of AMD, but no approved biomarker is available at present for early AMD detection. Thus, understanding the function of miRNAs in AMD and their use as potential biomarkers may lead to future advances in diagnosis and treatment. Here we present a brief review of some of the miRNAs involved in regulating pathological processes associated with AMD and discuss several candidate miRNAs proposed as biomarkers or therapeutic targets for AMD.
Collapse
Affiliation(s)
- Marisa Cruz-Aguilar
- Department of Immunology and Research Unit, Institute of Ophthalmology "Conde de Valenciana Foundation", Ciudad de México, Mexico
| | - Sergio Groman-Lupa
- Retina Service, Codet Vision Institute, Tijuana, Baja California, Mexico
| | - María C Jiménez-Martínez
- Department of Immunology and Research Unit, Institute of Ophthalmology "Conde de Valenciana Foundation", Ciudad de México, Mexico
- Department of Biochemistry, Faculty of Medicine, National Autonomous University of Mexico, Ciudad de México, Mexico
| |
Collapse
|
4
|
Lou R, Chen J, Zhou F, Wang C, Leung CH, Lin L. Exosome-cargoed microRNAs: Potential therapeutic molecules for diabetic wound healing. Drug Discov Today 2022; 27:103323. [PMID: 35868627 DOI: 10.1016/j.drudis.2022.07.008] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 06/07/2022] [Accepted: 07/15/2022] [Indexed: 02/08/2023]
Abstract
Diabetic foot ulcers are one of the most common complications of diabetes, requiring repeated surgical intervention and leading to amputation. Owing to the lack of effective drugs, novel therapeutics need to be explored. Decreased angiogenic factors, endothelial cell dysfunction and vascular lumen stenosis impair angiogenesis in diabetic wounds. Exosome-cargoed microRNAs are emerging as pivotal regulators of angiogenesis during wound closure. Herein, we summarize the up-to-date knowledge of exosomal microRNAs in modulating angiogenesis and accelerating diabetic wound healing, as well as their targets and underlying mechanisms. Exosomal microRNAs could be therapeutics with negligible rejection complications and good compatibility to treat diabetic foot ulcers.
Collapse
Affiliation(s)
- Ruohan Lou
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao 999078, China
| | - Jiali Chen
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao 999078, China
| | - Fei Zhou
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao 999078, China
| | - Chunming Wang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao 999078, China
| | - Chung-Hang Leung
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao 999078, China
| | - Ligen Lin
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao 999078, China; Department of Pharmaceutical Sciences, Faculty of Health Sciences, University of Macau, Macao 999078, China.
| |
Collapse
|
5
|
Urbańska K, Stępień PW, Nowakowska KN, Stefaniak M, Osial N, Chorągiewicz T, Toro MD, Nowomiejska K, Rejdak R. The Role of Dysregulated miRNAs in the Pathogenesis, Diagnosis and Treatment of Age-Related Macular Degeneration. Int J Mol Sci 2022; 23:ijms23147761. [PMID: 35887109 PMCID: PMC9319652 DOI: 10.3390/ijms23147761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 07/06/2022] [Accepted: 07/12/2022] [Indexed: 12/04/2022] Open
Abstract
Age-related macular degeneration (AMD) is an eye disease causing damage to the macular region of the retina where most of the photoreceptors responsible for central visual acuity are located. MicroRNAs (miRNAs) are small single-stranded non-coding RNA molecules that negatively regulate genes by silent post-transcriptional gene expressions. Previous studies have shown that changes in specific miRNAs are involved in the pathogenesis of eye diseases, including AMD. Altered expressions of miRNAs are related to disturbances of regulating oxidative stress, inflammation, angiogenesis, apoptosis and phagocytosis, which are known factors in the pathogenesis of AMD. Moreover, dysregulation of miRNA is involved in drusen formation. Thus, miRNAs may be used as potential molecular biomarkers for the disease and, furthermore, tailoring therapeutics to particular disturbances in miRNAs may, in the future, offer hope to prevent irreversible vision loss. In this review, we clarify the current state of knowledge about the influence of miRNA on the pathogenesis, diagnosis and treatment of AMD. Our study material consisted of publications, which were found in PubMed, Google Scholar and Embase databases using “Age-related macular degeneration”, “miRNA”, “AMD biomarkers”, “miRNA therapeutics” and “AMD pathogenesis” as keywords. Paper search was limited to articles published from 2011 to date. In the section “Retinal, circulating and vitreous body miRNAs found in human studies”, we limited the search to studies with patients published in 2016–2021.
Collapse
Affiliation(s)
- Karolina Urbańska
- Chair and Department of General and Pediatric Ophthalmology, Medical University of Lublin, 20-079 Lublin, Poland; (K.U.); (P.W.S.); (K.N.N.); (M.S.); (N.O.); (M.D.T.); (K.N.); (R.R.)
| | - Piotr Witold Stępień
- Chair and Department of General and Pediatric Ophthalmology, Medical University of Lublin, 20-079 Lublin, Poland; (K.U.); (P.W.S.); (K.N.N.); (M.S.); (N.O.); (M.D.T.); (K.N.); (R.R.)
| | - Katarzyna Natalia Nowakowska
- Chair and Department of General and Pediatric Ophthalmology, Medical University of Lublin, 20-079 Lublin, Poland; (K.U.); (P.W.S.); (K.N.N.); (M.S.); (N.O.); (M.D.T.); (K.N.); (R.R.)
| | - Martyna Stefaniak
- Chair and Department of General and Pediatric Ophthalmology, Medical University of Lublin, 20-079 Lublin, Poland; (K.U.); (P.W.S.); (K.N.N.); (M.S.); (N.O.); (M.D.T.); (K.N.); (R.R.)
| | - Natalia Osial
- Chair and Department of General and Pediatric Ophthalmology, Medical University of Lublin, 20-079 Lublin, Poland; (K.U.); (P.W.S.); (K.N.N.); (M.S.); (N.O.); (M.D.T.); (K.N.); (R.R.)
| | - Tomasz Chorągiewicz
- Chair and Department of General and Pediatric Ophthalmology, Medical University of Lublin, 20-079 Lublin, Poland; (K.U.); (P.W.S.); (K.N.N.); (M.S.); (N.O.); (M.D.T.); (K.N.); (R.R.)
- Correspondence:
| | - Mario Damiano Toro
- Chair and Department of General and Pediatric Ophthalmology, Medical University of Lublin, 20-079 Lublin, Poland; (K.U.); (P.W.S.); (K.N.N.); (M.S.); (N.O.); (M.D.T.); (K.N.); (R.R.)
- Eye Clinic, Public Health Department, University of Naples Federico II, 80131 Naples, Italy
| | - Katarzyna Nowomiejska
- Chair and Department of General and Pediatric Ophthalmology, Medical University of Lublin, 20-079 Lublin, Poland; (K.U.); (P.W.S.); (K.N.N.); (M.S.); (N.O.); (M.D.T.); (K.N.); (R.R.)
| | - Robert Rejdak
- Chair and Department of General and Pediatric Ophthalmology, Medical University of Lublin, 20-079 Lublin, Poland; (K.U.); (P.W.S.); (K.N.N.); (M.S.); (N.O.); (M.D.T.); (K.N.); (R.R.)
| |
Collapse
|
6
|
Predictive Biomarkers of Age-Related Macular Degeneration Response to Anti-VEGF Treatment. J Pers Med 2021; 11:jpm11121329. [PMID: 34945801 PMCID: PMC8706948 DOI: 10.3390/jpm11121329] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 11/10/2021] [Accepted: 12/06/2021] [Indexed: 02/06/2023] Open
Abstract
Age-related macular degeneration (AMD) is an incurable disease associated with aging that destroys sharp and central vision. Increasing evidence implicates both systemic and local inflammation in the pathogenesis of AMD. Intravitreal injection of anti-vascular endothelial growth factor (VEGF) agents is currently the first-line therapy for choroidal neovascularization in AMD patients. However, a high number of patients do not show satisfactory responses to anti-VEGF treatment after three injections. Predictive treatment response models are one of the most powerful tools for personalized medicine. Therefore, the application of these models is very helpful to predict the optimal treatment for an early application on each patient. We analyzed the transcriptome of peripheral blood mononuclear cells (PBMCs) from AMD patients before treatment to identify biomarkers of response to ranibizumab. A classification model comprised of four mRNAs and one miRNA isolated from PBMCs was able to predict the response to ranibizumab with high accuracy (Area Under the Curve of the Receiver Operating Characteristic curve = 0.968), before treatment. We consider that our classification model, based on mRNA and miRNA from PBMCs allows a robust prediction of patients with insufficient response to anti-VEGF treatment. In addition, it could be used in combination with other methods, such as specific baseline characteristics, to identify patients with poor response to anti-VEGF treatment to establish patient-specific treatment plans at the first visit.
Collapse
|
7
|
ElShelmani H, Brennan I, Kelly DJ, Keegan D. Differential Circulating MicroRNA Expression in Age-Related Macular Degeneration. Int J Mol Sci 2021; 22:ijms222212321. [PMID: 34830203 PMCID: PMC8625913 DOI: 10.3390/ijms222212321] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 11/10/2021] [Accepted: 11/12/2021] [Indexed: 02/06/2023] Open
Abstract
This study explored the expression of several miRNAs reported to be deregulated in age-related macular degeneration (AMD). Total RNA was isolated from sera from patients with dry AMD (n = 12), wet AMD (n = 14), and controls (n = 10). Forty-two previously investigated miRNAs were selected based on published data and their role in AMD pathogenesis, such as angiogenic and inflammatory effects, and were co-analysed using a miRCURY LNA miRNA SYBR® Green PCR kit via quantitative real-time polymerase chain reaction (qRT-PCR) to validate their presence. Unsupervised hierarchical clustering indicated that AMD serum specimens have a different miRNA profile to healthy controls. We successfully validated the differentially regulated miRNAs in serum from AMD patients versus controls. Eight miRNAs (hsa-let-7a-5p, hsa-let-7d-5p, hsa-miR-23a-3p, hsa-miR-301a-3p, hsa-miR-361-5p, hsa-miR-27b-3p, hsa-miR-874-3p, hsa-miR-19b-1-5p) showed higher expression in the serum of dry AMD patients than wet AMD patients and compared with healthy controls. Increased quantities of certain miRNAs in the serum of AMD patients indicate that these miRNAs could potentially serve as diagnostic AMD biomarkers and might be used as future AMD treatment targets. The discovery of significant serum miRNA biomarkers in AMD patients would provide an easy screening tool for at-risk populations.
Collapse
Affiliation(s)
- Hanan ElShelmani
- Mater Misericordiae University Hospital, Eccles St., Dublin 7, Ireland; (H.E.); (I.B.)
| | - Ian Brennan
- Mater Misericordiae University Hospital, Eccles St., Dublin 7, Ireland; (H.E.); (I.B.)
- University College Cork, College Road, Cork, Ireland
| | - David J. Kelly
- Zoology Department, School of Natural Sciences, Trinity College Dublin, University of Dublin, Dublin 2, Ireland;
| | - David Keegan
- Mater Misericordiae University Hospital, Eccles St., Dublin 7, Ireland; (H.E.); (I.B.)
- Correspondence:
| |
Collapse
|
8
|
Ulańczyk Z, Grabowicz A, Mozolewska‐Piotrowska K, Safranow K, Kawa MP, Pałucha A, Krawczyk M, Sikora P, Matczyńska E, Machaliński B, Machalińska A. Genetic factors associated with age-related macular degeneration: identification of a novel PRPH2 single nucleotide polymorphism associated with increased risk of the disease. Acta Ophthalmol 2021; 99:739-749. [PMID: 33354892 DOI: 10.1111/aos.14721] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Accepted: 11/20/2020] [Indexed: 12/17/2022]
Abstract
PURPOSE Age-related macular degeneration (AMD) is associated with multiple environmental and genetic risk factors. Two main risk factors for AMD are variants in the CFH and ARMS2/HTRA1 genes. We investigated over 2000 variants in AMD patients and controls using high-throughput sequencing methods to search for variants associated with AMD. METHODS A total of 296 AMD patients and 100 controls were enrolled in this study. Genetic analysis was performed with the Illumina NextSeq 500 system. RESULTS Multivariate analysis of patients and controls, adjusted for age, sex and smoking status (pack-years), revealed that three SNPs were strong risk factors independently associated with AMD: CFH Y402H, ARMS A69S and PRPH2 c.582-67T>A (rs3818086). The TC genotype in CFH Y402H was associated with 1.90-fold higher odds, and the CC genotype was associated with 5.66-fold higher odds of AMD compared with the TT genotype. The GT genotype in ARMS A69S was associated with 2.40-fold higher odds, and the TT genotype was associated with 6.75-fold higher odds of disease compared with the GG genotype. In the case of rs3818086, the A allele could be considered a 'risk' allele, since AA + TA genotypes were associated with 2.33-fold higher odds of AMD compared with the TT genotype. CONCLUSIONS Although PRPH2 mutations have been previously implicated in various forms of retinal degeneration, to the best of our knowledge, this study is the first to show that the rs3818086 variant increases the risk for AMD more than two times. Further studies on larger cohorts are required to elucidate how this variant affects protein structure.
Collapse
Affiliation(s)
- Zofia Ulańczyk
- Department of General Pathology Pomeranian Medical University Szczecin Poland
| | | | | | - Krzysztof Safranow
- Department of Biochemistry and Medical Chemistry Pomeranian Medical University Szczecin Poland
| | - Miłosz Piotr Kawa
- Department of General Pathology Pomeranian Medical University Szczecin Poland
| | | | | | | | | | | | - Anna Machalińska
- First Department of Ophthalmology Pomeranian Medical University Szczecin Poland
| |
Collapse
|
9
|
The Role of Oxidative Stress and the Importance of miRNAs as Potential Biomarkers in the Development of Age-Related Macular Degeneration. Processes (Basel) 2021. [DOI: 10.3390/pr9081328] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Age-related macular degeneration (AMD) is the primary cause of blindness in developed countries. With the progressive aging of the population, AMD is a significant ophthalmological problem in the population over 50 years of age. The etiology of AMD is known to be based on various biochemical, immunological and molecular pathways and to be influenced by a range of genetic and environmental elements. This review provides an overview of the pathophysiological role of oxidative stress and free radicals in the retina with a special focus on the DNA repair efficiency and enzymatic antioxidant defense. It also presents a correlation between miRNA profile and AMD, and indicates their involvement in inflammation, angiogenesis, increased oxidation of cellular components, enzymatic antioxidant capacity and DNA repair efficiency, which play particularly important roles in AMD pathogenesis. Gene silencing by miRNAs can induce changes in antioxidant enzymes, leading to a complex interplay between redox imbalance by free radicals and miRNAs in modulating cellular redox homeostasis.
Collapse
|
10
|
Martinez B, Peplow PV. MicroRNAs as diagnostic and prognostic biomarkers of age-related macular degeneration: advances and limitations. Neural Regen Res 2021; 16:440-447. [PMID: 32985463 PMCID: PMC7996036 DOI: 10.4103/1673-5374.293131] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Revised: 03/11/2020] [Accepted: 04/02/2020] [Indexed: 01/10/2023] Open
Abstract
A main cause of vision loss in the elderly is age-related macular degeneration (AMD). Among the cellular, biochemical, and molecular changes linked to this disease, inflammation and angiogenesis appear as being crucial in AMD pathogenesis and progression. There are two forms of the disease: dry AMD, accounting for 80-90% of cases, and wet AMD. The disease usually begins as dry AMD associated with retinal pigment epithelium and photoreceptor degeneration, whereas wet AMD is associated with choroidal neovascularization resulting in severe vision impairment. The new vessels are largely malformed, leading to blood and fluid leakage within the disrupted tissue, which provokes inflammation and scar formation and results in retinal damage and detachment. MicroRNAs are dysregulated in AMD and may facilitate the early detection of the disease and monitoring disease progression. Two recent reviews of microRNAs in AMD had indicated weaknesses or limitations in four earlier investigations. Studies in the last three years have shown considerable progress in overcoming some of these concerns and identifying specific microRNAs as biomarkers for AMD. Further large-scale studies are warranted using appropriate statistical methods to take into account gender and age disparity in the study populations and confounding factors such as smoking status.
Collapse
Affiliation(s)
- Bridget Martinez
- Physical Chemistry and Applied Spectroscopy, Chemistry Division, Los Alamos National Laboratory, Los Alamos, NM, USA
- Department of Medicine, St. George's University School of Medicine, Grenada
| | - Philip V. Peplow
- Department of Anatomy, University of Otago, Dunedin, New Zealand
| |
Collapse
|
11
|
Ulańczyk Z, Grabowicz A, Cecerska-Heryć E, Śleboda-Taront D, Krytkowska E, Mozolewska-Piotrowska K, Safranow K, Kawa MP, Dołęgowska B, Machalińska A. Dietary and Lifestyle Factors Modulate the Activity of the Endogenous Antioxidant System in Patients with Age-Related Macular Degeneration: Correlations with Disease Severity. Antioxidants (Basel) 2020; 9:E954. [PMID: 33027903 PMCID: PMC7600107 DOI: 10.3390/antiox9100954] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Revised: 09/25/2020] [Accepted: 10/02/2020] [Indexed: 12/15/2022] Open
Abstract
Age-related macular degeneration (AMD) is a common cause of blindness in the elderly population, but the pathogenesis of this disease remains largely unknown. Since oxidative stress is suggested to play a major role in AMD, we aimed to assess the activity levels of components of the antioxidant system in patients with AMD. We also investigated whether lifestyle and dietary factors modulate the activity of these endogenous antioxidants and clinical parameters of disease severity. We recruited 330 patients with AMD (39 with early, 100 with intermediate and 191 with late form of AMD) and 121 controls in this study. At enrolment, patients' dietary habits and physical activity were assessed, and each study participant underwent a thorough ophthalmologic examination. The activity of several components of the antioxidant system were measured in red blood cells and platelets using both kinetic and spectrophotometric methods. Patients with AMD consumed much lower levels of fatty fish and eggs than the control group (p = 0.008 and p = 0.04, respectively). In the nAMD group, visual acuity (VA) correlated positively with green vegetable consumption (Rs = +0.24, p = 0.004) and omega-3-rich oil intake (Rs = +0.17, p = 0.03). In the AMD group, the total physical activity MET score correlated positively with VA (Rs = +0.17, p = 0.003) and correlated negatively with the severity of AMD (Rs = -0.14, p = 0.01). A multivariate analysis of patients and controls adjusted for age, sex, and smoking status (pack-years) revealed that AMD was an independent variable associated with a lower RBC catalase (β = -0.37, p < 0.001) and higher PLT catalase (β = +0.25, p < 0.001), RBC GPx (β = +0.26, p < 0.001), PLT GPx (β = +0.16, p = 0.001), RBC R-GSSG (β = +0.13, p = 0.009), PLT R-GSSG (β = +0.12, p = 0.02) and RBC GSH transferase (β = +0.23, p < 0.001) activity. The activities of components of the antioxidant system were associated with disease severity and depended on dietary habits. The observed substantial increase in the activity of many critical endogenous antioxidants in patients with AMD further indicates that the required equilibrium in the antioxidant system is disturbed throughout the course of the disease. Our findings explicitly show that a diet rich in green vegetables, fish and omega-3-rich oils, supplemented by physical exercise, is beneficial for patients with AMD, as it might delay disease progression and help retain better visual function.
Collapse
Affiliation(s)
- Zofia Ulańczyk
- Department of General Pathology, Pomeranian Medical University, 70-111 Szczecin, Poland; (Z.U.); (M.P.K.)
| | - Aleksandra Grabowicz
- First Department of Ophthalmology, Pomeranian Medical University, 70-111 Szczecin, Poland; (A.G.); (E.K.); (K.M.-P.)
| | - Elżbieta Cecerska-Heryć
- Department of Laboratory Medicine, Pomeranian Medical University, 70-111 Szczecin, Poland; (E.C.-H.); (D.Ś.-T.); (B.D.)
| | - Daria Śleboda-Taront
- Department of Laboratory Medicine, Pomeranian Medical University, 70-111 Szczecin, Poland; (E.C.-H.); (D.Ś.-T.); (B.D.)
| | - Elżbieta Krytkowska
- First Department of Ophthalmology, Pomeranian Medical University, 70-111 Szczecin, Poland; (A.G.); (E.K.); (K.M.-P.)
| | | | - Krzysztof Safranow
- Department of Biochemistry and Medical Chemistry, Pomeranian Medical University, 70-111 Szczecin, Poland;
| | - Miłosz Piotr Kawa
- Department of General Pathology, Pomeranian Medical University, 70-111 Szczecin, Poland; (Z.U.); (M.P.K.)
| | - Barbara Dołęgowska
- Department of Laboratory Medicine, Pomeranian Medical University, 70-111 Szczecin, Poland; (E.C.-H.); (D.Ś.-T.); (B.D.)
| | - Anna Machalińska
- First Department of Ophthalmology, Pomeranian Medical University, 70-111 Szczecin, Poland; (A.G.); (E.K.); (K.M.-P.)
| |
Collapse
|
12
|
Cystathionine β-synthase deficiency: different changes in proteomes of thrombosis-resistant Cbs -/- mice and thrombosis-prone CBS -/- humans. Sci Rep 2020; 10:10726. [PMID: 32612202 PMCID: PMC7329814 DOI: 10.1038/s41598-020-67672-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Accepted: 05/27/2020] [Indexed: 12/21/2022] Open
Abstract
Cystathionine β-synthase (CBS)-deficient patients are prone to vascular thrombosis. In contrast, Cbs-/- mice show no abnormalities in blood coagulation. To identify molecular basis underlying these disparately different thrombotic phenotypes, we analyzed plasma proteomes of Cbs-/- vs. Cbs+/+ mice (8-month-old, 12/group, sex-matched) and CBS-/- vs. CBS+/+ humans (37 ± 7-year-old, 10-14/group, sex-matched) using label-free mass spectrometry. We identified 117 and 41 differentiating plasma proteins in Cbs-/- mice and CBS-/- humans, respectively. Twenty-one proteins were shared between CBS-/- humans and Cbs-/- mice, with sixteen changed in the opposite direction. Proteins involved in blood coagulation and complement/coagulation cascades represented a greater fraction of the differentiating proteins in CBS-/- patients (51%) than in Cbs-/- mice (21%). Top canonical pathways, identified by Ingenuity Pathways Analysis, such as LXR/RXR, FXR/RXR activation (- log[P-value] = 30-31) and atherosclerosis signaling (- log[P-value] = 10-11) were similarly affected in Cbs-/- mice and CBS-/- humans. The Coagulation System was affected stronger in CBS-/- humans than in Cbs-/- mice (- log[P-value] = 15 vs. 10, respectively) while acute phase response and complement system were affected stronger in Cbs-/- mice (- log[P-value] = 33 and 22, respectively) than in humans (- log[P-value] = 22 and 6, respectively). Other pathways, including IL-7 signaling and B cell development were affected only in Cbs-/- mice. Taken together, our findings suggest that differences in these processes, in particular in the Coagulation System, could account for the thrombotic phenotype in CBS-/- patients and the absence of thrombosis in Cbs-/- mice. Overall, our findings suggest that Cbs-/- mice have a better adaptive response to protect from prothrombotic effects of hyperhomocysteinemia than CBS-/- humans.
Collapse
|
13
|
Kiel C, Berber P, Karlstetter M, Aslanidis A, Strunz T, Langmann T, Grassmann F, Weber BH. A Circulating MicroRNA Profile in a Laser-Induced Mouse Model of Choroidal Neovascularization. Int J Mol Sci 2020; 21:E2689. [PMID: 32294914 PMCID: PMC7216141 DOI: 10.3390/ijms21082689] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 04/09/2020] [Accepted: 04/10/2020] [Indexed: 12/15/2022] Open
Abstract
Choroidal neovascularization (CNV) is a pathological process in which aberrant blood vessels invade the subretinal space of the mammalian eye. It is a characteristic feature of the prevalent neovascular age-related macular degeneration (nAMD). Circulating microRNAs (cmiRNAs) are regarded as potentially valuable biomarkers for various age-related diseases, including nAMD. Here, we investigated cmiRNA expression in an established laser-induced CNV mouse model. Upon CNV induction in C57Bl/6 mice, blood-derived cmiRNAs were initially determined globally by RNA next generation sequencing, and the most strongly dysregulated cmiRNAs were independently replicated by quantitative reverse transcription PCR (RT-qPCR) in blood, retinal, and retinal pigment epithelium (RPE)/choroidal tissue. Our findings suggest that two miRNAs, mmu-mir-486a-5p and mmur-mir-92a-3p, are consistently dysregulated during CNV formation. Furthermore, in functional in vitro assays, a significant impact of mmu-mir-486a-5p and mmu-mir-92a-3p on murine microglial cell viability was observed, while mmu-mir-92a-3p also showed an impact on microglial mobility. Taken together, we report a robust dysregulation of two miRNAs in blood and RPE/choroid after laser-induced initiation of CNV lesions in mice, highlighting their potential role in pathology and eventual therapy of CNV-associated complications.
Collapse
Affiliation(s)
- Christina Kiel
- Institute of Human Genetics, University of Regensburg, 93053 Regensburg, Germany; (C.K.); (P.B.); (T.S.); (F.G.)
| | - Patricia Berber
- Institute of Human Genetics, University of Regensburg, 93053 Regensburg, Germany; (C.K.); (P.B.); (T.S.); (F.G.)
| | - Marcus Karlstetter
- Laboratory for Experimental Immunology of the Eye, Department of Ophthalmology, Faculty of Medicine and University Hospital of Cologne, 50931 Cologne, Germany; (M.K.); (A.A.); (T.L.)
| | - Alexander Aslanidis
- Laboratory for Experimental Immunology of the Eye, Department of Ophthalmology, Faculty of Medicine and University Hospital of Cologne, 50931 Cologne, Germany; (M.K.); (A.A.); (T.L.)
| | - Tobias Strunz
- Institute of Human Genetics, University of Regensburg, 93053 Regensburg, Germany; (C.K.); (P.B.); (T.S.); (F.G.)
| | - Thomas Langmann
- Laboratory for Experimental Immunology of the Eye, Department of Ophthalmology, Faculty of Medicine and University Hospital of Cologne, 50931 Cologne, Germany; (M.K.); (A.A.); (T.L.)
| | - Felix Grassmann
- Institute of Human Genetics, University of Regensburg, 93053 Regensburg, Germany; (C.K.); (P.B.); (T.S.); (F.G.)
- Department of Medical Epidemiology and Biostatistics, Karolinska Institute, 171 77 Stockholm, Sweden
| | - Bernhard H.F. Weber
- Institute of Human Genetics, University of Regensburg, 93053 Regensburg, Germany; (C.K.); (P.B.); (T.S.); (F.G.)
- Institute of Clinical Human Genetics, University Clinics Regensburg, 93053 Regensburg, Germany
| |
Collapse
|
14
|
Differential Secretion of Angiopoietic Factors and Expression of MicroRNA in Umbilical Cord Blood from Healthy Appropriate-For-Gestational-Age Preterm and Term Newborns- in Search of Biomarkers of Angiogenesis-Related Processes in Preterm Birth. Int J Mol Sci 2020; 21:ijms21041305. [PMID: 32075190 PMCID: PMC7072966 DOI: 10.3390/ijms21041305] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Revised: 02/04/2020] [Accepted: 02/04/2020] [Indexed: 12/22/2022] Open
Abstract
Objectives: Premature birth, defined as less than 37 weeks gestation, affects approximately 12% of all live births around the world. Advances in neonatal care have resulted in the increased survival of infants born prematurely. Although prematurity is a known risk factor for different cardiovascular diseases, little is known about the pathophysiology of vasculature during premature gestation and angiopoietic factors network during premature birth. Aims: The objective of this study was to determine whether the profile of several pro-angiogenic and anti-angiogenic factors in umbilical cord blood (UCB) is different in healthy appropriate-for-gestational-age preterm newborns and normal term babies. The second aim of this study was to investigate the microRNA (miRNAs) expression profile in UCB from preterm labor and to detect miRNAs potentially taking part in control of angogenesis-related processes (Angio-MiRs). Methods: Using an immunobead Luminex assay, we simultaneously measured the concentration of Angiogenin, Angiopoietin-1, FGF-acidic, FGF-basic, PDGF-aa, PlGF, VEGF, VEGF-D, Endostatin, Thrombospondin-2, NGF, BDNF, GDNF, and NT-4 in UCB samples collected from the preterm (n = 27) and term (n = 52) delivery. In addition, the global microRNA expression in peripheral blood mononuclear cells (PBMCs) circulating in such UCB samples was examined in this study using microarray MiRNA technique. Results: The concentrations of five from eight measured pro-angiogenic factors (VEGF, Angiopoietin-1, PDGF-AA, FGF-a, and FGF-b) were significantly lower in UCB from preterm newborns. On the contrary, two angiostatic factors (Endostatin and Thrombospondin-2) were significantly up-regulated in preterm UCB. Among analyzed neurotrophins in preterm newborns, the elevated UCB concentration was found only in the case of GDNF, whereas BDNF was significantly reduced. Moreover, two angiopoietic factors, VEGF-D and PlGF, and two neurotrophins, NT4 and NGF, did not differ in concentration in preterm and term babies. We also discovered that among the significantly down-regulated miRNAs, there were several classical Angio-MiRs (inter alia MiR-125, MiR-126, MiR-145, MiR-150, or MiR155), which are involved in angiogenesis regulation in newborn after preterm delivery. Conclusions: This is the first report of simultaneous measurements of several angiopoietic factors in UCB collected from infants during preterm and term labor. Here, we observed that several pro-angiogenic factors were at lower concentration in UCB collected from preterm newborns than term babies. In contrast, the two measured angiostatic factors, Endostatin and Thrombospondin-2, were significantly higher in UCB from preterm babies. This can suggest that distinct pathophysiological contributions from differentially expressed various angiopoietic factors may determine the clinical outcomes after preterm birth. Especially, our angiogenesis-related molecules analysis indicates that preterm birth of healthy, appropriate-for-gestational-age newborns is an “anti-angiogenic state” that may provide an increased risk for improper development and function of cardiovascular system in the adulthood. This work also contributes to a better understanding of the role of miRNAs potentially involved in angiogenesis control in preterm newborns.
Collapse
|