1
|
Zhao M, Wang C, Li P, Sun T, Wang J, Zhang S, Ma Q, Ma F, Shi W, Shi M, Ma Y, Pan Y, Zhang H, Xie X. Single-cell RNA sequencing reveals the transcriptomic characteristics of peripheral blood mononuclear cells in hepatitis B vaccine non-responders. Front Immunol 2023; 14:1091237. [PMID: 37593735 PMCID: PMC10431960 DOI: 10.3389/fimmu.2023.1091237] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Accepted: 04/12/2023] [Indexed: 08/19/2023] Open
Abstract
The emergence of a vaccine against hepatitis B has proven to be an important milestone in the prevention of this disease; however, 5%-10% of vaccinated individuals do not generate an immune response to the vaccine, and its molecular mechanism has not been clarified. In this study, single-cell RNA sequencing was performed on peripheral blood mononuclear cells (PBMCs) from three volunteers with a high immune response (HR) and three with no immune response (NR) to the hepatitis B vaccine. We found that the antigen-presenting activity scores of various antigen-presenting cells, the mitogen-activated protein kinase (MAPK) pathway activity scores of naive B cells, and the cell activity scores of three types of effector T cells were significantly decreased, whereas the cytotoxicity scores of CD3highCD16lowKLRG1high natural killer T (NKT) cells were significantly increased in the NR group compared with those in the HR group. Additionally, the expression levels of some classical molecules associated with distinct signaling pathways-including HLA-B, HLA-DRB5, BLNK, BLK, IL4R, SCIMP, JUN, CEBPB, NDFIP1, and TXNIP-were significantly reduced in corresponding subsets of PBMCs from the NR group relative to those of the HR group. Furthermore, the expression of several cytotoxicity-related effector molecules, such as GNLY, NKG7, GZMB, GZMM, KLRC1, KLRD1, PRF1, CST7, and CTSW, was significantly higher in CD3highCD16lowKLRG1high NKT cells derived from non-responders. Our study provides a molecular basis for the lack of response to the hepatitis B vaccine, including defective antigen presentation, decreased T cell activity, and reduced IL-4 secretion, as well as novel insight into the role of NKT cells in the immune response to the hepatitis B vaccine.
Collapse
Affiliation(s)
- Meie Zhao
- School of Basic Medical Sciences, Lanzhou University, Lanzhou, Gansu, China
- Department of Laboratory Medicine, The First People’s Hospital of Lanzhou, Lanzhou, Gansu, China
| | - Chunxia Wang
- Department of Laboratory Medicine, The First People’s Hospital of Lanzhou, Lanzhou, Gansu, China
| | - Peiqiang Li
- School of Basic Medical Sciences, Lanzhou University, Lanzhou, Gansu, China
| | - Tao Sun
- Clinical Laboratory, Huzhou Central Hospital, Huzhou Hospital Affiliated with Zhejiang University, Huzhou, Zhejiang, China
| | - Jing Wang
- School of Basic Medical Sciences, Lanzhou University, Lanzhou, Gansu, China
| | - Shasha Zhang
- School of Basic Medical Sciences, Lanzhou University, Lanzhou, Gansu, China
| | - Qinglong Ma
- School of Basic Medical Sciences, Lanzhou University, Lanzhou, Gansu, China
| | - Fengdie Ma
- School of Basic Medical Sciences, Lanzhou University, Lanzhou, Gansu, China
| | - Wenjing Shi
- School of Basic Medical Sciences, Lanzhou University, Lanzhou, Gansu, China
| | - Maoning Shi
- School of Basic Medical Sciences, Lanzhou University, Lanzhou, Gansu, China
| | - Yapeng Ma
- Department of Laboratory Medicine, The First People’s Hospital of Tianshui, Tian Shui, Gansu, China
| | - Yunyan Pan
- Department of Laboratory Medicine, The Second Hospital of Lanzhou University, Lanzhou, Gansu, China
| | - Hui Zhang
- Virus Laboratory, Gansu Provincial Center for Disease Control and Prevention, Lanzhou, Gansu, China
| | - Xiaodong Xie
- School of Basic Medical Sciences, Lanzhou University, Lanzhou, Gansu, China
| |
Collapse
|
2
|
Gut-Spleen Axis: Microbiota via Vascular and Immune Pathways Improve Busulfan-Induced Spleen Disruption. mSphere 2023; 8:e0058122. [PMID: 36511706 PMCID: PMC9942571 DOI: 10.1128/msphere.00581-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Fecal microbiota transplantation (FMT) is an effective means of modulating gut microbiota for the treatment of many diseases, including Clostridioides difficile infections. The gut-spleen axis has been established, and this is involved in the development and function of the spleen. However, it is not understood whether gut microbiota can be used to improve spleen function, especially in spleens disrupted by a disease or an anti-cancer treatment. In the current investigation, we established that alginate oligosaccharide (AOS)-improved gut microbiota (A10-FMT) can rescue anticancer drug busulfan-disrupted spleen vasculature and spleen function. A10-FMT improved the gene and/or protein expression of genes involved in vasculature development, increased the cell proliferation rate, enhanced the endothelial progenitor cell capability, and elevated the expression of the cell junction molecules to increase the vascularization of the spleen. This investigation found for the first time that the reestablishment of spleen vascularization restored spleen function by improving spleen immune cells and iron metabolism. These findings may be used as a strategy to minimize the side effects of anti-cancer drugs or to improve spleen vasculature-related diseases. IMPORTANCE Alginate oligosaccharide (AOS)-improved gut microbiota (A10-FMT) can rescue busulfan disrupted spleen vasculature. A10-FMT improved the cell proliferation rate, endothelial progenitor cell capability, and cell junction molecules to increase vasculature formation in the spleen. This reestablishment restored spleen function by improving spleen immune cells and iron metabolism. These findings are useful for the treatment of spleen vasculature-related diseases.
Collapse
|
3
|
Luo YH, Liu H, Wampfler JA, Tazelaar HD, Li Y, Peikert T, Liu D, Leventakos K, Chen YM, Yang Y, Chiou SH, Yang P. Real-world efficacy of osimertinib in previously EGFR-TKI treated NSCLC patients without identification of T790M mutation. J Cancer Res Clin Oncol 2022; 148:2099-2114. [PMID: 34436667 PMCID: PMC9945911 DOI: 10.1007/s00432-021-03766-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2021] [Accepted: 08/14/2021] [Indexed: 02/05/2023]
Abstract
BACKGROUND The efficacy of osimertinib in previously EGFR-TKI-treated NSCLC without identification of T790M mutational status remains unclear in real-world practice. PATIENTS AND METHODS 417 patients had stage III-IV NSCLC harboring EGFR mutation and 154 out of 417 patients receiving osimertinib as ≥ second-line EGFR-TKI were identified. The time to treatment failure and risk of death were analyzed. RESULTS Higher risk of death was found in EGFR-mutant patients with age ≥ 65 years, non-adenocarcinoma, no surgery or radiation, non-exon 19 deletion/exon 21 L858R, higher ECOG PS (2-4), PD-L1 expression ≥ 50%, and bone/liver/adrenal metastasis (all p < 0.05). Osimertinib as ≥ second-line TKI in patients with/without identification of T790M revealed lower risk of death compared to first-line first/second generation TKI without subsequent osimertinib (p = 0.0002; 0.0232, respectively). However, osimertinib-treated patients with T790M did not have superior survival than those without (p = 0.2803). A higher risk of treatment failure for osimertinib was found in males, patients with first-line TKI duration ≤ 12 months, BMI drop > 10%, and PD-L1 expression ≥ 50% (All p < 0.05). Nonetheless, osimertinib as ≥ second-line TKI in patients without identification of 790 M did not have higher risk of treatment failure than those with T790M (p = 0.1236). CONCLUSIONS This study demonstrates that osimertinib as second line or subsequent TKI in EGFR-TKI-treated patients without identification of T790M revealed lower risk of death compared to first-line first/second generation TKI without subsequent osimertinib, in real-world practice. Additionally, EGFR-mutant patients with PD-L1 expression ≥ 50% had a higher risk of treatment failure for osimertinib and worse overall survival than those with PD-L1 expression < 50%. These results suggest that osimertinib as second line or subsequent TKI may be a potential alternative option for the treatment of patients without identification of T790M and PD-L1 expression ≥ 50% is associated with a significantly poor outcome in patients receiving osimertinib.
Collapse
Affiliation(s)
- Yung-Hung Luo
- Department of Chest Medicine, Taipei Veterans General Hospital, Taipei, Taiwan
- School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
- Institute of Clinical Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Han Liu
- Department of Respiratory Medicine, The First Hospital of Jilin University, Changchun, China
| | - Jason A Wampfler
- Division of Biomedical Statistics and Informatics, Department of Health Science Research, Mayo Clinic, Rochester, MN, USA
| | - Henry D Tazelaar
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Scottsdale, AZ, USA
| | - Yalun Li
- Department of Respiratory and Critical Care Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Tobias Peikert
- Division of Pulmonary and Critical Care, Mayo Clinic, Rochester, MN, USA
| | - Dan Liu
- Department of Respiratory and Critical Care Medicine, West China Hospital, Sichuan University, Chengdu, China
| | | | - Yuh-Min Chen
- Department of Chest Medicine, Taipei Veterans General Hospital, Taipei, Taiwan
- School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
- Taipei Cancer Center, Taipei Medical University, Taipei, Taiwan
| | - Yanan Yang
- Thoracic Disease Research Unit, Division of Pulmonary and Critical Care Medicine, College of Medicine and Science, Mayo Clinic, Rochester, MN, USA
- Department of Biochemistry and Molecular Biology, College of Medicine and Science, Mayo Clinic, Rochester, MN, USA
- Developmental Therapeutics and Cell Biology Programs, Mayo Clinic Cancer Center, Rochester, MN, USA
| | - Shih-Hwa Chiou
- School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
- Institute of Clinical Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
- Department of Medical Research, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Ping Yang
- Division of Epidemiology, Department of Health Sciences Research, Mayo Clinic, 13400 E Shea Blvd, Scottsdale, AZ, USA.
- Department of Health Sciences Research, Mayo Clinic, Scottsdale, AZ, USA.
| |
Collapse
|
4
|
Meng JH, Chen CX, Ahmadian MR, Zan H, Luo KJ, Jiang JX. Cross-Activation of Hemichannels/Gap Junctions and Immunoglobulin-Like Domains in Innate–Adaptive Immune Responses. Front Immunol 2022; 13:882706. [PMID: 35911693 PMCID: PMC9334851 DOI: 10.3389/fimmu.2022.882706] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Accepted: 06/23/2022] [Indexed: 11/13/2022] Open
Abstract
Hemichannels (HCs)/gap junctions (GJs) and immunoglobulin (Ig)-like domain-containing proteins (IGLDCPs) are involved in the innate–adaptive immune response independently. Despite of available evidence demonstrating the importance of HCs/GJs and IGLDCPs in initiating, implementing, and terminating the entire immune response, our understanding of their mutual interactions in immunological function remains rudimentary. IGLDCPs include immune checkpoint molecules of the immunoglobulin family expressed in T and B lymphocytes, most of which are cluster of differentiation (CD) antigens. They also constitute the principal components of the immunological synapse (IS), which is formed on the cell surface, including the phagocytic synapse, T cell synapse, B cell synapse, and astrocytes–neuronal synapse. During the three stages of the immune response, namely innate immunity, innate–adaptive immunity, and adaptive immunity, HCs/GJs and IGLDCPs are cross-activated during the entire process. The present review summarizes the current understanding of HC-released immune signaling factors that influence IGLDCPs in regulating innate–adaptive immunity. ATP-induced “eat me” signals released by HCs, as well as CD31, CD47, and CD46 “don’t eat me” signaling molecules, trigger initiation of innate immunity, which serves to regulate phagocytosis. Additionally, HC-mediated trogocytosis promotes antigen presentation and amplification. Importantly, HC-mediated CD4+ T lymphocyte activation is critical in the transition of the innate immune response to adaptive immunity. HCs also mediate non-specific transcytosis of antibodies produced by mature B lymphocytes, for instance, IgA transcytosis in ovarian cancer cells, which triggers innate immunity. Further understanding of the interplay between HCs/GJs and IGLDCPs would aid in identifying therapeutic targets that regulate the HC–Ig-like domain immune response, thereby providing a viable treatment strategy for immunological diseases. The present review delineates the clinical immunology-related applications of HC–Ig-like domain cross-activation, which would greatly benefit medical professionals and immunological researchers alike. HCs/GJs and IGLDCPs mediate phagocytosis via ATP; “eat me and don’t eat me” signals trigger innate immunity; HC-mediated trogocytosis promotes antigen presentation and amplification in innate–adaptive immunity; HCs also mediate non-specific transcytosis of antibodies produced by mature B lymphocytes in adaptive immunity.
Collapse
Affiliation(s)
- Jiang-Hui Meng
- School of Life Sciences, Yunnan University, Kunming, China
- Key Laboratory of the University in Yunnan Province for International Cooperation in Intercellular Communications and Regulations, Yunnan University, Kunming, China
| | - Chang-Xu Chen
- School of Life Sciences, Yunnan University, Kunming, China
- Key Laboratory of the University in Yunnan Province for International Cooperation in Intercellular Communications and Regulations, Yunnan University, Kunming, China
| | - Mohammad R. Ahmadian
- Institute of Biochemistry and Molecular Biology II, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Hong Zan
- Department of Microbiology, Immunology and Molecular Genetics, University of Texas Health Science Center, San Antonio, TX, United States
| | - Kai-Jun Luo
- School of Life Sciences, Yunnan University, Kunming, China
- Key Laboratory of the University in Yunnan Province for International Cooperation in Intercellular Communications and Regulations, Yunnan University, Kunming, China
- *Correspondence: Kai-Jun Luo, ; Jean X. Jiang,
| | - Jean X. Jiang
- Department of Biochemistry and Structural Biology, University of Texas Health Science Center, San Antonio, TX, United States
- *Correspondence: Kai-Jun Luo, ; Jean X. Jiang,
| |
Collapse
|
5
|
Liang L, Pan Y, Bin L, Liu Y, Huang W, Li R, Lai KP. Immunotoxicity mechanisms of perfluorinated compounds PFOA and PFOS. CHEMOSPHERE 2022; 291:132892. [PMID: 34780734 DOI: 10.1016/j.chemosphere.2021.132892] [Citation(s) in RCA: 60] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 11/09/2021] [Accepted: 11/11/2021] [Indexed: 05/14/2023]
Abstract
Perfluorinated and polyfluorinated compounds (PFASs) are a class of synthetic chemical substances that are widely used in human production and life, such as fire-fighting foams, textiles and clothing, surfactants, and surface protective agents. Perfluorooctane sulfonic acid (PFOS) and perfluorooctanoic acid (PFOA) are the most abundant and common perfluorinated compounds in biota and humans. Currently, PFOA and PFOS have been listed in the Stockholm Convention on Persistent Organic Pollutants, and their production has been halted in many countries. However, because the high-energy carbon-fluorine bond can make it resistant to hydrolysis, photolysis, microbial degradation, and vertebrate metabolism, PFOA and PFOS show environmental persistence and bioaccumulation and hence, are of great concern to humans and wildlife. PFOA and PFOS have toxic effects on the immune system of the body. This article reviewed the effects of PFOA and PFOS on immune organs such as the spleen, bone marrow, and thymus of mice and zebrafish, and the effects on non-specific immune functions such as the skin barrier, intestinal mucosal barrier, and humoral immunity. We also reviewed the influence of specific immune functions based on cellular immunity, and further summarized the possible immune toxicity mechanisms such as AIM2 inflammasome activation, gene dysregulation, and signal pathway disorders caused by PFOA and PFOS. The aim of this review was to provide a reference for further understanding of the immunotoxicity and the responsible mechanism of PFOA and PFOS.
Collapse
Affiliation(s)
- Luyun Liang
- School of Lingui Clinical Medicine, Guilin Medical University, Guilin, PR China; Laboratory of Environmental Pollution and Integrative Omics, Guilin Medical University, Guilin, PR China
| | - Yongling Pan
- School of Lingui Clinical Medicine, Guilin Medical University, Guilin, PR China; Laboratory of Environmental Pollution and Integrative Omics, Guilin Medical University, Guilin, PR China
| | - Lihua Bin
- School of Lingui Clinical Medicine, Guilin Medical University, Guilin, PR China; Laboratory of Environmental Pollution and Integrative Omics, Guilin Medical University, Guilin, PR China
| | - Yu Liu
- School of Lingui Clinical Medicine, Guilin Medical University, Guilin, PR China; Laboratory of Environmental Pollution and Integrative Omics, Guilin Medical University, Guilin, PR China
| | - Wenjun Huang
- Laboratory of Environmental Pollution and Integrative Omics, Guilin Medical University, Guilin, PR China
| | - Rong Li
- Laboratory of Environmental Pollution and Integrative Omics, Guilin Medical University, Guilin, PR China.
| | - Keng Po Lai
- Laboratory of Environmental Pollution and Integrative Omics, Guilin Medical University, Guilin, PR China.
| |
Collapse
|
6
|
Abnormal Expression of Connexin43 in Cardiac Injury Induced by S-Band and X-Band Microwave Exposure in Rats. J Immunol Res 2021; 2021:3985697. [PMID: 34957312 PMCID: PMC8709747 DOI: 10.1155/2021/3985697] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Accepted: 11/06/2021] [Indexed: 12/17/2022] Open
Abstract
Although the effects of microwave exposure on the heart have gradually become the focus of domestic and foreign scholars, the biological effects caused by different doses and different frequency bands of exposure are still unclear. In this study, we will investigate the damaging effect of S-band and X-band microwave composite exposure on cardiac structure and function, as well as the pathophysiological significance of Cx43 in cardiac conduction dysfunction after exposure. We used S- and X-band radiation sources with the average power density of 5 and 10 mW/cm2 to expose Wistar rats to single or composite exposure. At the 6th hour, on the 7th, 14th, and 28th days after exposure, ECG was used to detect the electrical conduction of the heart, and the myocardial enzyme was measured by the automatic biochemical analyzer. We selected the observation time points and groups with severe damage to observe the changes of myocardial structure and ultrastructure with an optical microscope and TEM; and to detect the expression and distribution of Cx43 by western blotting and immunohistochemistry. After exposure, the heart rate increased, the P wave amplitude decreased, and the R wave amplitude increased; the content of the myocardial enzyme in serum increased; the structure and ultrastructure of cardiac tissue were damaged. The damage was dose-dependent and frequency-dependent. The expression of Cx43 in myocardial tissue decreased, and distribution was abnormal. Taken together, these findings suggested that the mechanism of abnormal electrical conduction in the heart of rats by S- and X-band microwave exposure might be related to the decreased expression and disordered distribution of Cx43 after microwave exposure.
Collapse
|
7
|
Tittarelli A. Connexin channels modulation in pathophysiology and treatment of immune and inflammatory disorders. Biochim Biophys Acta Mol Basis Dis 2021; 1867:166258. [PMID: 34450245 DOI: 10.1016/j.bbadis.2021.166258] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 07/28/2021] [Accepted: 08/19/2021] [Indexed: 12/16/2022]
Abstract
Connexin-mediated intercellular communication mechanisms include bidirectional cell-to-cell coupling by gap junctions and release/influx of molecules by hemichannels. These intercellular communications have relevant roles in numerous immune system activities. Here, we review the current knowledge about the function of connexin channels, mainly those formed by connexin-43, on immunity and inflammation. Focusing on those evidence that support the design and development of therapeutic tools to modulate connexin expression and/or channel activities with treatment potential for infections, wounds, cancer, and other inflammatory conditions.
Collapse
Affiliation(s)
- Andrés Tittarelli
- Programa Institucional de Fomento a la Investigación, Desarrollo e Innovación, Universidad Tecnológica Metropolitana, Santiago 8940577, Chile.
| |
Collapse
|
8
|
Qiang H, Yuanshui S. Comment on "Prognostic and predictive implications of sarcopenia in Western patients undergoing gastric resections for carcinoma of the stomach". J Surg Oncol 2020; 121:697. [PMID: 31965574 DOI: 10.1002/jso.25843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Accepted: 12/21/2019] [Indexed: 11/09/2022]
Affiliation(s)
- Hu Qiang
- Department of General Surgery, Tongde Hospital of Zhejiang Province, Hangzhou, China
| | - Sun Yuanshui
- Department of General Surgery, Tongde Hospital of Zhejiang Province, Hangzhou, China
| |
Collapse
|