1
|
Kiran S, Xue Y, Sarker DB, Li Y, Sang QXA. Feeder-free differentiation of human iPSCs into natural killer cells with cytotoxic potential against malignant brain rhabdoid tumor cells. Bioact Mater 2024; 36:301-316. [PMID: 38496035 PMCID: PMC10940949 DOI: 10.1016/j.bioactmat.2024.02.031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 02/21/2024] [Accepted: 02/23/2024] [Indexed: 03/19/2024] Open
Abstract
Natural killer (NK) cells are cytotoxic immune cells that can eliminate target cells without prior stimulation. Human induced pluripotent stem cells (iPSCs) provide a robust source of NK cells for safe and effective cell-based immunotherapy against aggressive cancers. In this in vitro study, a feeder-free iPSC differentiation was performed to obtain iPSC-NK cells, and distinct maturational stages of iPSC-NK were characterized. Mature cells of CD56bright CD16bright phenotype showed upregulation of CD56, CD16, and NK cell activation markers NKG2D and NKp46 upon IL-15 exposure, while exposure to aggressive atypical teratoid/rhabdoid tumor (ATRT) cell lines enhanced NKG2D and NKp46 expression. Malignant cell exposure also increased CD107a degranulation markers and stimulated IFN-γ secretion in activated NK cells. CD56bright CD16bright iPSC-NK cells showed a ratio-dependent killing of ATRT cells, and the percentage lysis of CHLA-05-ATRT was higher than that of CHLA-02-ATRT. The iPSC-NK cells were also cytotoxic against other brain, kidney, and lung cancer cell lines. Further NK maturation yielded CD56-ve CD16bright cells, which lacked activation markers even after exposure to interleukins or ATRT cells - indicating diminished cytotoxicity. Generation and characterization of different NK phenotypes from iPSCs, coupled with their promising anti-tumor activity against ATRT in vitro, offer valuable insights into potential immunotherapeutic strategies for brain tumors.
Collapse
Affiliation(s)
- Sonia Kiran
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, FL 32306-4390, USA
| | - Yu Xue
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, FL 32306-4390, USA
| | - Drishty B. Sarker
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, FL 32306-4390, USA
| | - Yan Li
- Department of Chemical and Biomedical Engineering, FAMU-FSU College of Engineering, Florida State University, Tallahassee, FL, 32310-6046, USA
- Institute of Molecular Biophysics, Florida State University, Tallahassee, FL, 32306-4380, USA
| | - Qing-Xiang Amy Sang
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, FL 32306-4390, USA
- Institute of Molecular Biophysics, Florida State University, Tallahassee, FL, 32306-4380, USA
| |
Collapse
|
2
|
Wang M, Wang X, Jin X, Zhou J, Zhang Y, Yang Y, Liu Y, Zhang J. Cell-based and cell-free immunotherapies for glioblastoma: current status and future directions. Front Immunol 2023; 14:1175118. [PMID: 37304305 PMCID: PMC10248152 DOI: 10.3389/fimmu.2023.1175118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 05/08/2023] [Indexed: 06/13/2023] Open
Abstract
Glioblastoma (GBM) is among the most fatal and recurring malignant solid tumors. It arises from the GBM stem cell population. Conventional neurosurgical resection, temozolomide (TMZ)-dependent chemotherapy and radiotherapy have rendered the prognosis of patients unsatisfactory. Radiotherapy and chemotherapy can frequently induce non-specific damage to healthy brain and other tissues, which can be extremely hazardous. There is therefore a pressing need for a more effective treatment strategy for GBM to complement or replace existing treatment options. Cell-based and cell-free immunotherapies are currently being investigated to develop new treatment modalities against cancer. These treatments have the potential to be both selective and successful in minimizing off-target collateral harm in the normal brain. In this review, several aspects of cell-based and cell-free immunotherapies related to GBM will be discussed.
Collapse
Affiliation(s)
- Mingming Wang
- Department of Cell Biology and Genetics, Medical College of Yan’an University, Yan’an, Shaanxi, China
| | - Xiaojie Wang
- Basic Medical School, Shenyang Medical College, Shenyang, Liaoning, China
| | - Xiaoyan Jin
- Department of Cell Biology and Genetics, Medical College of Yan’an University, Yan’an, Shaanxi, China
| | - Jingjing Zhou
- Department of Cell Biology and Genetics, Medical College of Yan’an University, Yan’an, Shaanxi, China
| | - Yufu Zhang
- Department of Hepatobiliary Surgery, the Affiliated Hospital of Yan’an University, Yan’an, Shaanxi, China
| | - Yiyuan Yang
- Department of Cell Biology and Genetics, Medical College of Yan’an University, Yan’an, Shaanxi, China
| | - Yusi Liu
- Department of Cell Biology and Genetics, Medical College of Yan’an University, Yan’an, Shaanxi, China
| | - Jing Zhang
- Department of Cell Biology and Genetics, Medical College of Yan’an University, Yan’an, Shaanxi, China
| |
Collapse
|
3
|
Fares J, Davis ZB, Rechberger JS, Toll SA, Schwartz JD, Daniels DJ, Miller JS, Khatua S. Advances in NK cell therapy for brain tumors. NPJ Precis Oncol 2023; 7:17. [PMID: 36792722 PMCID: PMC9932101 DOI: 10.1038/s41698-023-00356-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Accepted: 01/31/2023] [Indexed: 02/17/2023] Open
Abstract
Despite advances in treatment regimens that comprise surgery, chemotherapy, and radiation, outcome of many brain tumors remains dismal, more so when they recur. The proximity of brain tumors to delicate neural structures often precludes complete surgical resection. Toxicity and long-term side effects of systemic therapy remain a concern. Novel therapies are warranted. The field of NK cell-based cancer therapy has grown exponentially and currently constitutes a major area of immunotherapy innovation. This provides a new avenue for the treatment of cancerous lesions in the brain. In this review, we explore the mechanisms by which the brain tumor microenvironment suppresses NK cell mediated tumor control, and the methods being used to create NK cell products that subvert immune suppression. We discuss the pre-clinical studies evaluating NK cell-based immunotherapies that target several neuro-malignancies and highlight advances in molecular imaging of NK cells that allow monitoring of NK cell-based therapeutics. We review current and ongoing NK cell based clinical trials in neuro-oncology.
Collapse
Affiliation(s)
- Jawad Fares
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA
- Northwestern Medicine Malnati Brain Tumor Institute, Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA
| | - Zachary B Davis
- Department of Medicine, Division of Hematology, Oncology and Transplantation, Masonic Cancer Center, University of Minnesota, Minneapolis, MN, 55454, USA
| | - Julian S Rechberger
- Department of Neurologic Surgery, Mayo Clinic, Rochester, MN, 55905, USA
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic Graduate School of Biomedical Sciences, Rochester, MN, 55905, USA
| | - Stephanie A Toll
- Department of Pediatrics, Division of Hematology/Oncology, Children's Hospital of Michigan, Detroit, MI, 48201, USA
| | - Jonathan D Schwartz
- Department of Pediatric Hematology/Oncology, Section of Neuro-Oncology, Mayo Clinic, Rochester, MN, 55905, USA
| | - David J Daniels
- Department of Neurologic Surgery, Mayo Clinic, Rochester, MN, 55905, USA
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic Graduate School of Biomedical Sciences, Rochester, MN, 55905, USA
| | - Jeffrey S Miller
- Department of Medicine, Division of Hematology, Oncology and Transplantation, Masonic Cancer Center, University of Minnesota, Minneapolis, MN, 55454, USA.
| | - Soumen Khatua
- Department of Pediatric Hematology/Oncology, Section of Neuro-Oncology, Mayo Clinic, Rochester, MN, 55905, USA.
| |
Collapse
|
4
|
Nanobodies targeting ABCC3 for immunotargeted applications in glioblastoma. Sci Rep 2022; 12:22581. [PMID: 36585418 PMCID: PMC9803684 DOI: 10.1038/s41598-022-27161-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Accepted: 12/27/2022] [Indexed: 12/31/2022] Open
Abstract
The cancer "omics" reveal many clinically relevant alterations that are transforming the molecular characterization of glioblastomas. However, many of these findings are not yet translated into clinical practice due, in part, to the lack of non-invasive biomarkers and the limitations imposed by the blood-brain barrier. Nanobodies, camelid single-domain antibody fragments, emerge as a promising tool for immunotargeted applications for diagnosing and treating glioblastomas. Performing agnostic bioinformatic analysis from glioblastoma patient datasets, we identified ATP Binding Cassette subfamily C member 3 (ABCC3) as a suitable target for immunotargeted applications. The expression of ABCC3 is associated with poor survival and impaired response to temozolomide. Importantly, high expression of ABCC3 is restricted to glioblastoma, with negligible levels in healthy brain tissue, and further correlates with tumor grade and stemness markers. We identified three immunogenic epitopes of ABCC3 which were used to isolate nanobodies from a glioblastoma-specific phage-display nanobody library. Two nanobodies targeting ABCC3 (NbA42 and NbA213) were further characterized and demonstrated in vivo selective recognition of ABCC3 in glioblastoma xenograft mouse models upon systemic administration. We designate NbA42 and NbA213 as new candidates to implement immunotargeted applications guiding a more personalized and precise diagnosis, monitoring, and treatment of glioblastoma patients.
Collapse
|
5
|
Hu W, Liu H, Li Z, Liu J, Chen L. Impact of molecular and clinical variables on survival outcome with immunotherapy for glioblastoma patients: A systematic review and meta-analysis. CNS Neurosci Ther 2022; 28:1476-1491. [PMID: 35822692 PMCID: PMC9437230 DOI: 10.1111/cns.13915] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Revised: 06/22/2022] [Accepted: 06/24/2022] [Indexed: 11/29/2022] Open
Abstract
BACKGROUND Given that only a subset of patients with glioblastoma multiforme (GBM) responds to immuno-oncology, this study aimed to assess the impact of multiple factors on GBM immunotherapy prognosis and investigate the potential predictors. METHODS A quantitative meta-analysis was conducted using the random-effects model. Several potential factors were also reviewed qualitatively. RESULTS A total of 39 clinical trials were included after screening 1317 papers. Patients with O6-methylguanine-DNA methyltransferase (MGMT) promoter methylation [hazard ratio (HR) for overall survival (OS) = 2.30, p < 0.0001; HR for progression-free survival (PFS) = 2.10, p < 0.0001], gross total resection (HR for OS = 0.70, p = 0.02; HR for PFS = 0.56, p = 0.004), and no baseline steroid use (HR for OS = 0.52, p = 0.0002; HR for PFS = 0.61, p = 0.02) had a relatively significant favorable OS and PFS following immunotherapy. Patients with a Karnofsky Performance Status score < 80 (HR = 1.73, p = 0.0007) and undergoing two prior relapses (HR = 2.08, p = 0.003) were associated with worse OS. Age, gender, tumor programmed death-ligand 1 expression, and history of chemotherapy were not associated with survival outcomes. Notably, immunotherapy significantly improved the OS among patients undergoing two prior recurrences (HR = 0.40, p = 0.008) but not among patients in any other subgroups, as opposed to non-immunotherapy. CONCLUSION Several factors were associated with prognostic outcomes of GBM patients receiving immunotherapy; multiple recurrences might be a candidate predictor. More marker-driven prospective studies are warranted.
Collapse
Affiliation(s)
- Wentao Hu
- School of Medicine, Nankai University, Tianjin, China.,Department of Neurosurgery, First Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Hongyu Liu
- Department of Neurosurgery, First Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Ze Li
- Department of Neurosurgery, First Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Jialin Liu
- Department of Neurosurgery, First Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Ling Chen
- Department of Neurosurgery, First Medical Center of Chinese PLA General Hospital, Beijing, China
| |
Collapse
|
6
|
Clinicopathological and Prognostic Significance of ABCC3 in Human Glioma. JOURNAL OF ONCOLOGY 2022; 2021:1827992. [PMID: 34976054 PMCID: PMC8718316 DOI: 10.1155/2021/1827992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/20/2021] [Revised: 12/11/2021] [Accepted: 12/13/2021] [Indexed: 11/18/2022]
Abstract
Glioma is the most common malignant primary brain tumor with an inferior survival period and unsatisfactory prognoses. Identification of novel biomarkers is important for the improvements of clinical outcomes of glioma patients. In recent years, more and more biomarkers were identified in many types of tumors. However, the sensitive markers for diagnoses and prognoses of patients with glioma remained unknown. In the present research, our team intended to explore the expression and clinical significance of ABCC3 in glioma patients. Sequential data filtration (survival analyses, independent prognosis analyses, ROC curve analyses, and clinical association analyses) was completed, which gave rise to the determination of the relationship between glioma and the ABCC3 gene. Clinical assays on the foundation of CGGA and TCGA datasets unveiled that ABCC3 expression was distinctly upregulated in glioma and predicted a shorter overall survival. In the multivariable Cox analysis, our team discovered that the expression of ABCC3 was an independent prognosis marker for both 5-year OS (HR = 1.118, 95% CI: 1.052-1.188; P < 0.001). Moreover, our team also studied the association between ABCC3 expression and clinical features of glioma patients, finding that differential expression of ABCC3 was remarkably related to age, 1p19q codeletion, PRS type, chemo status, grade, IDH mutation state, and histology. Overall, our findings suggested ABCC3 might be a novel prognosis marker in glioma.
Collapse
|
7
|
Anghileri E, Patanè M, Di Ianni N, Sambruni I, Maffezzini M, Milani M, Maddaloni L, Pollo B, Eoli M, Pellegatta S. Deciphering the Labyrinthine System of the Immune Microenvironment in Recurrent Glioblastoma: Recent Original Advances and Lessons from Clinical Immunotherapeutic Approaches. Cancers (Basel) 2021; 13:6156. [PMID: 34944776 PMCID: PMC8699787 DOI: 10.3390/cancers13246156] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 11/30/2021] [Accepted: 11/30/2021] [Indexed: 01/15/2023] Open
Abstract
The interpretation of the presence and function of immune infiltration in glioblastoma (GBM) is still debated. Over the years, GBM has been considered a cold tumor that is less infiltrated by effector cells and characterized by a high proportion of immunosuppressive innate immune cells, including GBM-associated microglia/macrophages (GAMs). In this context, the failure of checkpoint inhibitors, particularly in recurrent GBM (rGBM), caused us to look beyond the clinical results and consider the point of view of immune cells. The tumor microenvironment in rGBM can be particularly hostile, even when exposed to standard immunomodulatory therapies, and tumor-infiltrating lymphocytes (TILs), when present, are either dysfunctional or terminally exhausted. However, after checkpoint blockade therapy, it was possible to observe specific recruitment of adaptive immune cells and an efficient systemic immune response. In this review article, we attempt to address current knowledge regarding the tumor and immune microenvironment in rGBM. Furthermore, immunosuppression induced by GAMs and TIL dysfunction was revisited to account for genetic defects that can determine resistance to therapies and manipulate the immune microenvironment upon recurrence. Accordingly, we reevaluated the microenvironment of some of our rGBM patients treated with dendritic cell immunotherapy, with the goal of identifying predictive immune indicators of better treatment response.
Collapse
Affiliation(s)
- Elena Anghileri
- Unit of Molecular Neuro-Oncology, Fondazione IRCCS Istituto Neurologico Carlo Besta, 20133 Milan, Italy; (E.A.); (N.D.I.); (I.S.); (M.M.); (M.M.); (L.M.); (M.E.)
| | - Monica Patanè
- Unit of Neuropathology, Fondazione IRCCS Istituto Neurologico Carlo Besta, 20133 Milan, Italy; (M.P.); (B.P.)
| | - Natalia Di Ianni
- Unit of Molecular Neuro-Oncology, Fondazione IRCCS Istituto Neurologico Carlo Besta, 20133 Milan, Italy; (E.A.); (N.D.I.); (I.S.); (M.M.); (M.M.); (L.M.); (M.E.)
- Unit of Immunotherapy of Brain Tumors, Fondazione IRCCS Istituto Neurologico Carlo Besta, Via Celoria, 11, 20133 Milan, Italy
| | - Irene Sambruni
- Unit of Molecular Neuro-Oncology, Fondazione IRCCS Istituto Neurologico Carlo Besta, 20133 Milan, Italy; (E.A.); (N.D.I.); (I.S.); (M.M.); (M.M.); (L.M.); (M.E.)
- Unit of Immunotherapy of Brain Tumors, Fondazione IRCCS Istituto Neurologico Carlo Besta, Via Celoria, 11, 20133 Milan, Italy
| | - Martina Maffezzini
- Unit of Molecular Neuro-Oncology, Fondazione IRCCS Istituto Neurologico Carlo Besta, 20133 Milan, Italy; (E.A.); (N.D.I.); (I.S.); (M.M.); (M.M.); (L.M.); (M.E.)
- Unit of Immunotherapy of Brain Tumors, Fondazione IRCCS Istituto Neurologico Carlo Besta, Via Celoria, 11, 20133 Milan, Italy
| | - Micaela Milani
- Unit of Molecular Neuro-Oncology, Fondazione IRCCS Istituto Neurologico Carlo Besta, 20133 Milan, Italy; (E.A.); (N.D.I.); (I.S.); (M.M.); (M.M.); (L.M.); (M.E.)
- Unit of Immunotherapy of Brain Tumors, Fondazione IRCCS Istituto Neurologico Carlo Besta, Via Celoria, 11, 20133 Milan, Italy
| | - Luisa Maddaloni
- Unit of Molecular Neuro-Oncology, Fondazione IRCCS Istituto Neurologico Carlo Besta, 20133 Milan, Italy; (E.A.); (N.D.I.); (I.S.); (M.M.); (M.M.); (L.M.); (M.E.)
| | - Bianca Pollo
- Unit of Neuropathology, Fondazione IRCCS Istituto Neurologico Carlo Besta, 20133 Milan, Italy; (M.P.); (B.P.)
| | - Marica Eoli
- Unit of Molecular Neuro-Oncology, Fondazione IRCCS Istituto Neurologico Carlo Besta, 20133 Milan, Italy; (E.A.); (N.D.I.); (I.S.); (M.M.); (M.M.); (L.M.); (M.E.)
| | - Serena Pellegatta
- Unit of Molecular Neuro-Oncology, Fondazione IRCCS Istituto Neurologico Carlo Besta, 20133 Milan, Italy; (E.A.); (N.D.I.); (I.S.); (M.M.); (M.M.); (L.M.); (M.E.)
- Unit of Immunotherapy of Brain Tumors, Fondazione IRCCS Istituto Neurologico Carlo Besta, Via Celoria, 11, 20133 Milan, Italy
| |
Collapse
|
8
|
Comprehensive pharmacogenomics characterization of temozolomide response in gliomas. Eur J Pharmacol 2021; 912:174580. [PMID: 34678239 DOI: 10.1016/j.ejphar.2021.174580] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 10/11/2021] [Accepted: 10/18/2021] [Indexed: 01/11/2023]
Abstract
Recent developments in pharmacogenomics have created opportunities for predicting temozolomide response in gliomas. Temozolomide is the main first-line alkylating chemotherapeutic drug together with radiotherapy as standard treatments of high-risk gliomas after surgery. However, there are great individual differences in temozolomide response. Besides the heterogeneity of gliomas, pharmacogenomics relevant genetic polymorphisms can not only affect pharmacokinetics of temozolomide but also change anti-tumor effects of temozolomide. This review will summarize pharmacogenomic studies of temozolomide in gliomas which can lay the foundation to personalized chemotherapy.
Collapse
|
9
|
Di Ianni N, Maffezzini M, Eoli M, Pellegatta S. Revisiting the Immunological Aspects of Temozolomide Considering the Genetic Landscape and the Immune Microenvironment Composition of Glioblastoma. Front Oncol 2021; 11:747690. [PMID: 34646780 PMCID: PMC8503270 DOI: 10.3389/fonc.2021.747690] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Accepted: 09/03/2021] [Indexed: 12/13/2022] Open
Abstract
The microenvironment (ME) plays a critical role in causing glioblastoma (GBM) to be a moving and incurable target. The main features governing the interaction between cancer cells and the ME include dependency, promotion, and in rare cases, even competition. In the original Stupp protocol, the alkylating agent temozolomide (TMZ) is the first-line chemotherapy drug to treat GBM, and it is broadly used together or after radiotherapy. Some studies have described TMZ as an adjuvant to other therapeutic approaches including immunotherapy because of its ability to induce an immunogenic death of cancer cells. TMZ also exerts immunomodulatory effects on the tumor and immune ME. These findings support the coexistence of two circuits, i.e., one that subverts local immunosuppressive mechanisms and another that exerts a harmful influence on the peripheral immune response. A bias toward the latter can drive the failure of treatments based on the combination of chemotherapy and immunotherapy approaches. In this review, we will reanalyze how intrinsic and acquired resistance to TMZ impacts the immunomodulatory effects previously described by way of inducing a functional alteration of local immune cells and promoting immunosuppression and how different components of the immune ME, with particular attention to tumor-associated macrophages and microglia, can cause TMZ resistance to circumvent potential local immunogenic mechanisms.
Collapse
Affiliation(s)
- Natalia Di Ianni
- Unit of Immunotherapy of Brain Tumors, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
- Unit of Molecular Neuro-Oncology, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Martina Maffezzini
- Unit of Immunotherapy of Brain Tumors, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
- Unit of Molecular Neuro-Oncology, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Marica Eoli
- Unit of Molecular Neuro-Oncology, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Serena Pellegatta
- Unit of Immunotherapy of Brain Tumors, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
- Unit of Molecular Neuro-Oncology, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| |
Collapse
|
10
|
Ramírez-Cosmes A, Reyes-Jiménez E, Zertuche-Martínez C, Hernández-Hernández CA, García-Román R, Romero-Díaz RI, Manuel-Martínez AE, Elizarrarás-Rivas J, Vásquez-Garzón VR. The implications of ABCC3 in cancer drug resistance: can we use it as a therapeutic target? Am J Cancer Res 2021; 11:4127-4140. [PMID: 34659880 PMCID: PMC8493376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Accepted: 06/12/2021] [Indexed: 06/13/2023] Open
Abstract
Drug resistance is one of the main causes of chemotherapy failure. Although several factors are involved in cancer drug resistant, the exporter pumps overexpression that mediates the drugs flow to outside the cells and reduces both the drugs intracellular concentration and effectiveness, has been one of the most important challenges. Overexpression of ABCC3, a member of the ABCC subfamily, has been strongly associated to the resistance to multiple drugs. ABCC3 has been found highly expressed in different types of cancers and is associated with poor prognosis and resistance to treatments. In this review, we summarize the molecular mechanisms involved in cancer drug resistance and discuss the current knowledge about the structure, function and role of ABCC3 in drug resistance, as well as, the expression status of ABCC3 in different types of cancer. We also provide evidences that place ABCC3 as a potential therapeutic target for improving the cancer treatment by focusing on the need of developing more effective cancer therapies to target ABCC3 in translational researches.
Collapse
Affiliation(s)
- Adriana Ramírez-Cosmes
- Laboratorio Fibrosis y Cáncer, Facultad de Medicina y Cirugía, Universidad Autónoma “Benito Juárez” de OaxacaOaxaca, Oax, México
| | - Edilburga Reyes-Jiménez
- Laboratorio Fibrosis y Cáncer, Facultad de Medicina y Cirugía, Universidad Autónoma “Benito Juárez” de OaxacaOaxaca, Oax, México
| | - Cecilia Zertuche-Martínez
- Laboratorio Fibrosis y Cáncer, Facultad de Medicina y Cirugía, Universidad Autónoma “Benito Juárez” de OaxacaOaxaca, Oax, México
| | | | | | | | | | | | - Verónica R Vásquez-Garzón
- Laboratorio Fibrosis y Cáncer, Facultad de Medicina y Cirugía, Universidad Autónoma “Benito Juárez” de OaxacaOaxaca, Oax, México
- CONACYT-Facultad de Medicina y Cirugía, Universidad Autónoma “Benito Juárez” de OaxacaOaxaca, Oax, México
| |
Collapse
|
11
|
In silico identification of the prognostic biomarkers and therapeutic targets associated with cancer stem cell characteristics of glioma. Biosci Rep 2021; 40:225916. [PMID: 32725165 PMCID: PMC7418212 DOI: 10.1042/bsr20201037] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Revised: 07/17/2020] [Accepted: 07/22/2020] [Indexed: 02/07/2023] Open
Abstract
Glioma is the common histological subtype of malignancy in central nervous system, with a high morbidity and mortality. Cancer stem cells (CSCs) play an important role in regulating the tumorigenesis and progression of glioma; however, the prognostic biomarkers and therapeutic targets associated with CSC characteristics have not been fully acknowledged in glioma. In order to identify the prognostic stemness-related genes (SRGs) of glioma in silico, the RNA sequencing data of patients with glioma were retrieved from The Cancer Genome Atlas (TCGA) databases. The mRNA expression-based stemness index (mRNAsi) was significantly associated with the glioma histologic grade, isocitrate dehydrogenase 1 (IDH1) mutation and overall survival of glioma patients by the nonparametric test and Kaplan–Meier survival analysis. A total of 340 SRGs were identified as the overlapped stemness-related differential expressed genes (DEGs) of different histologic grade screened by the univariate Cox analysis. Based on 11 prognostic SRGs, the predict nomogram was constructed with the AUC of 0.832. Moreover, the risk score of the nomogram was an independent prognostic factor, indicating its significant applicability. Besides other eight reported biomarkers of glioma, we found that F2RL2, CLCNKA and LOXL4 were first identified as prognostic biomarkers for glioma. In conclusion, this bioinformatics study demonstrates the mRNAsi as a reliable index for the IDH1 mutation, histologic grade and OS of glioma patients and provides a well-applied model for predicting the OS for patients with glioma based on prognostic SRGs. Additionally, this in silico study also identifies three novel prognostic biomarkers (F2RL2, CLCNKA and LOXL4) for glioma patients.
Collapse
|
12
|
Bruckmueller H, Cascorbi I. ABCB1, ABCG2, ABCC1, ABCC2, and ABCC3 drug transporter polymorphisms and their impact on drug bioavailability: what is our current understanding? Expert Opin Drug Metab Toxicol 2021; 17:369-396. [PMID: 33459081 DOI: 10.1080/17425255.2021.1876661] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
INTRODUCTION Interindividual differences in drug response are a frequent clinical challenge partly due to variation in pharmacokinetics. ATP-binding cassette (ABC) transporters are crucial determinants of drug disposition. They are subject of gene regulation and drug-interaction; however, it is still under debate to which extend genetic variants in these transporters contribute to interindividual variability of a wide range of drugs. AREAS COVERED This review discusses the current literature on the impact of genetic variants in ABCB1, ABCG2 as well as ABCC1, ABCC2, and ABCC3 on pharmacokinetics and drug response. The aim was to evaluate if results from recent studies would increase the evidence for potential clinically relevant pharmacogenetic effects. EXPERT OPINION Although enormous efforts have been made to investigate effects of ABC transporter genotypes on drug pharmacokinetics and response, the majority of studies showed only weak if any associations. Despite few unique results, studies mostly failed to confirm earlier findings or still remained inconsistent. The impact of genetic variants on drug bioavailability is only minor and other factors regulating the transporter expression and function seem to be more critical. In our opinion, the findings on the so far investigated genetic variants in ABC efflux transporters are not suitable as predictive biomarkers.
Collapse
Affiliation(s)
- Henrike Bruckmueller
- Institute of Experimental and Clinical Pharmacology, University Hospital Schleswig-Holstein, Campus Kiel, 24105 Kiel, Germany
| | - Ingolf Cascorbi
- Institute of Experimental and Clinical Pharmacology, University Hospital Schleswig-Holstein, Campus Kiel, 24105 Kiel, Germany
| |
Collapse
|
13
|
Sprenger T, Schirrmacher V, Stücker W, van Gool SW. Position paper: new insights into the immunobiology and dynamics of tumor-host interactions require adaptations of clinical studies. Expert Rev Anticancer Ther 2020; 20:639-646. [PMID: 32600076 DOI: 10.1080/14737140.2020.1785874] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
INTRODUCTION Prospective double-blind placebo-controlled randomized clinical trials (RCTs) are considered standard for the proof of the efficacy of oncologic therapies. Molecular methods have provided new insights into tumor biology and led to the development of targeted therapies. Due to the increasing complexity of molecular tumor characteristics and of the individuality of specific anti-tumor immune reactivity, RCTs are unfortunately only of limited use. AREAS COVERED The historical methods of drug research and approval and the related practices of reimbursement by statutory and private health insurance companies are being questioned. New, innovative methods for the documentation of evidence in personalized medicine will be addressed. Possible perspectives and new approaches are discussed, in particular with regard to glioblastoma. EXPERT OPINION Highly specialized translational oncology groups like the IOZK can contribute to medical progress and quick transfer 'from bench to bedside.' Their contribution should be acknowledged and taken into account more strongly in the development of guidelines and the reimbursement of therapy costs. Methodological plurality should be encouraged.
Collapse
|
14
|
Tomaszewski M, Grywalska E, Tomaszewski A, Błaszczak P, Kurzyna M, Roliński J, Kopeć G. Overexpression of PD-1 on Peripheral Blood Lymphocytes in Patients with Idiopathic Pulmonary Arterial Hypertension and Its Association with High Viral Loads of Epstein-Barr Virus and Poor Clinical Parameters. J Clin Med 2020; 9:jcm9061966. [PMID: 32599687 PMCID: PMC7355537 DOI: 10.3390/jcm9061966] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2020] [Revised: 06/19/2020] [Accepted: 06/19/2020] [Indexed: 12/12/2022] Open
Abstract
Idiopathic pulmonary arterial hypertension (IPAH) is a rare but severe disease with the elevated blood pressure in the pulmonary arteries without a known trigger of vascular remodelling. It leads to the right heart failure with reduced survival. Changes in the immunological landscape of the lungs and the periphery are common in IPAH patients, suggesting an immune system dysfunction. A cohort of 25 IPAH patients was enrolled in our study to investigate a link between the patient’s clinical status, immune parameters of the blood, and the Epstein–Barr virus (EBV) infection. We found significant alterations of the patients’ peripheral blood parameters. Therein, T lymphocytes and NK cell counts were decreased in the IPAH patients’ blood, while the proportion of regulatory T cells was increased. Additionally, levels of proinflammatory cytokines interleukin-6 (IL-6), IL-2, and interferon-gamma (IFN-γ) were elevated. We identified a weak correlation between EBV loads and IPAH patients’ clinical state (r = 0.54) and between EBV loads and overexpression of PD-1 on helper T cells (r = 0.56). We speculate that a significant dysregulation of the immune system homeostasis observed in IPAH patients may contribute to increased susceptibility of those patients to EBV infection, yet further longitudinal studies are required to characterize this relation in detail.
Collapse
Affiliation(s)
- Michał Tomaszewski
- Department of Cardiology, Medical University of Lublin, 20-954 Lublin, Poland; (M.T.); (A.T.)
| | - Ewelina Grywalska
- Department of Clinical Immunology and Immunotherapy, Medical University of Lublin, 20-093 Lublin, Poland;
- Correspondence: ; Tel.: +48-81448-6420
| | - Andrzej Tomaszewski
- Department of Cardiology, Medical University of Lublin, 20-954 Lublin, Poland; (M.T.); (A.T.)
| | - Piotr Błaszczak
- Department of Cardiology, Cardinal Wyszynski Hospital, 20-718 Lublin, Poland;
| | - Marcin Kurzyna
- Department of Pulmonary Circulation, Thromboembolic Diseases and Cardiology, Centre of Postgraduate Medical Education, Fryderyk Chopin Hospital in European Health Centre Otwock, 05-400 Otwock, Poland;
| | - Jacek Roliński
- Department of Clinical Immunology and Immunotherapy, Medical University of Lublin, 20-093 Lublin, Poland;
| | - Grzegorz Kopeć
- Department of Cardiac and Vascular Diseases, Faculty of Medicine, Jagiellonian University Medical College, Centre for Rare Cardiovascular Diseases, John Paul II Hospital, 31-202 Krakow, Poland;
| |
Collapse
|
15
|
ThymicPeptides Reverse Immune Exhaustion in Patients with Reactivated Human Alphaherpesvirus1 Infections. Int J Mol Sci 2020; 21:ijms21072379. [PMID: 32235584 PMCID: PMC7178259 DOI: 10.3390/ijms21072379] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2020] [Revised: 03/11/2020] [Accepted: 03/29/2020] [Indexed: 12/12/2022] Open
Abstract
Recurrent infection with human alphaherpesvirus 1 (HHV-1) may be associated with immune exhaustion that impairs virus elimination. Thymic peptides enhance immune function and thus could overcome immune exhaustion. In this study, we investigated whether reactivation of herpes infections was associated with immune exhaustion. Moreover, we examined the impact of treatment with thymostimulin on the expression of programmed cell death protein 1 (PD-1) and its ligand (PD-L1) on T and B lymphocytes in patients suffering from recurrent HHV-1 reactivation. We also assessed the effector function of peripheral blood mononuclear cells (PBMCs) after stimulation with thymic peptides. We enrolled 50 women with reactivated HHV-1 infections and healthy volunteers. We measured the expression of various activation and exhaustion markers on the surface of PBMCs using flow cytometry. In ex vivo experiments, we measured the secretion of inflammatory cytokines by PBMCs cultured with thymostimulin. Compared with controls, patients with reactivated HHV-1 infections had increased percentages of CD3+ co-expressing CD25, an activation marker (p < 0.001). Moreover, these patients had increased percentages of CD4+ and CD8+ cells co-expressing the inhibitory markers PD-1 and PD-L1. In cultures of PBMCs from the patients, thymostimulin increased the secretion of interferon gamma (p < 0.001) and interleukin (IL)-2 (p = 0.023), but not IL-4 or IL-10.Two-month thymostimulin therapy resulted in no reactivation of HHV-1 infection during this period and the reduction of PD-1 and PD-L1 expression on the surface of T and B lymphocytes (p < 0.001). In conclusion, reactivation of herpes infection is associated with immune exhaustion, which could be reversed by treatment with thymic peptides.
Collapse
|