1
|
Lee YM, Kim M, Yuk HJ, Kim SH, Kim DS. Siraitia grosvenorii Residual Extract Inhibits Inflammation in RAW264.7 Macrophages and Attenuates Osteoarthritis Progression in a Rat Model. Nutrients 2023; 15:nu15061417. [PMID: 36986147 PMCID: PMC10058211 DOI: 10.3390/nu15061417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 03/07/2023] [Accepted: 03/13/2023] [Indexed: 03/17/2023] Open
Abstract
Osteoarthritis (OA) is a degenerative joint disease characterised by cartilage degeneration and chondrocyte inflammation. We investigated the anti-inflammatory effects of the Siraitia grosvenorii residual extract (SGRE) in lipopolysaccharide (LPS)-induced RAW264.7 macrophages in vitro and its anti-osteoarthritic effects in a monosodium iodoacetate (MIA)-induced OA rat model. SGRE dose-dependently decreased nitric oxide (NO) production in LPS-induced RAW264.7 cells. Moreover, SGRE reduced the pro-inflammatory mediator (cyclooxygenase-2 (COX2), inducible NO synthase (iNOS), and prostaglandin E2 (PGE2)) and pro-inflammatory cytokine (interleukin-(IL)-1β, IL-6, and tumour necrosis factor (TNF-α)) levels. SGRE suppressed nuclear factor kappa B (NF-κB) and mitogen-activated protein kinase (MAPK) pathway activation in RAW264.7 macrophages, thus reducing inflammation. Rats were orally administered SGRE (150 or 200 mg/kg) or the positive control drug JOINS (20 mg/kg) 3 days before MIA injection, and once daily for 21 days thereafter. SGRE elevated the hind paw weight-bearing distribution, thus relieving pain. It also reduced inflammation by inhibiting inflammatory mediator (iNOS, COX-2, 5-LOX, PGE2, and LTB4) and cytokine (IL-1β, IL-6, and TNF-α) expression, downregulating cartilage-degrading enzymes, such as MMP-1, -2, -9, and -13. SGRE significantly reduced the SOX9 and extracellular matrix component (ACAN and COL2A1) levels. Therefore, SGRE is a potential therapeutic active agent against inflammation and OA.
Collapse
Affiliation(s)
- Yun Mi Lee
- KM Science Research Division, Korea Institute of Oriental Medicine, Daejeon 34054, Republic of Korea; (Y.M.L.)
| | - Misun Kim
- KM Science Research Division, Korea Institute of Oriental Medicine, Daejeon 34054, Republic of Korea; (Y.M.L.)
| | - Heung Joo Yuk
- KM Science Research Division, Korea Institute of Oriental Medicine, Daejeon 34054, Republic of Korea; (Y.M.L.)
| | - Seung-Hyung Kim
- Institute of Traditional Medicine and Bioscience, Daejeon University, Daejeon 34520, Republic of Korea
| | - Dong-Seon Kim
- KM Science Research Division, Korea Institute of Oriental Medicine, Daejeon 34054, Republic of Korea; (Y.M.L.)
- Correspondence: ; Tel.: +82-42-868-9639
| |
Collapse
|
2
|
Abstract
Legumes are a staple of diets all around the world. In some least developed countries, they are the primary source of protein; however, their beneficial properties go beyond their nutritional value. Recent research has shown that legumes have bioactive compounds like peptides, polyphenols and saponins, which exhibit antioxidant, antihypertensive, anti-inflammatory and other biological activities. Thus, these compounds could be an alternative treatment for inflammatory diseases, in particular, chronic inflammation such as arthritis, obesity and cancer. Nowadays, there is a growing interest in alternative therapies derived from natural products; accordingly, the present review has compiled the bioactive compounds found in legumes that have demonstrated an anti-inflammatory effect in non-clinical studies.
Collapse
|
3
|
Mo S, Kim EY, Kwon YS, Lee MY, Ahn JC. NF-κB-mediated anti-inflammatory effects of an organic light-emitting diode (OLED) device in lipopolysaccharide (LPS)-induced in vitro and in vivo inflammation models. Front Immunol 2022; 13:1050908. [PMID: 36561754 PMCID: PMC9763281 DOI: 10.3389/fimmu.2022.1050908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Accepted: 11/21/2022] [Indexed: 12/12/2022] Open
Abstract
Inflammation is the body's physiological response to harmful agents. However, if not regulated properly, inflammation can become pathological. Macrophages are key players in the inflammatory process, and modulate the immune response. Due to the side effects of anti-inflammatory drugs, non-pharmaceutical therapies for inflammatory diseases must be developed. Photobiomodulation is a non-invasive therapeutic approach to treating certain pathological conditions using light energy. Light-emitting diodes (LEDs) are commonly used as light sources for photobiomodulation treatment, but their clinical applications are limited. Organic LEDs (OLEDs) are thin, lightweight and flexible, enabling consistent and even delivery of light energy to target areas; this makes OLED promising components for therapeutic devices. In the present study, we examined the effects of OLED treatment on inflammation in vitro using a lipopolysaccharide (LPS)-induced macrophage RAW264.7 cell model, and in vivo using a pinna skin mouse model. We found that LPS-induced morphological changes and inflammatory cytokine expression were significantly reduced in RAW264.7 cells subjected to OLED treatment compared to the LPS-induced controls. This work provides evidence for the anti-inflammatory effects of OLEDs, demonstrating their potential to be incorporated into medical devices in the future.
Collapse
Affiliation(s)
- SangJoon Mo
- Medical Laser Research Center, Dankook University, Cheonan, South Korea,Department of Otolaryngology-Head & Neck Surgery, College of Medicine, Dankook University, Cheonan, South Korea
| | - Eun Young Kim
- Beckman Laser Institute Korea, Dankook University, Cheonan, South Korea
| | - Yi-Suk Kwon
- Korea Testing Laboratory, Medical Device Evaluation Center, Medical Health Division, Seoul, South Korea
| | - Min Young Lee
- Center for Bio-Medical Engineering Core Facility, Dankook University, Cheonan, South Korea,Beckman Laser Institute Korea, Dankook University, Cheonan, South Korea,*Correspondence: Min Young Lee, ; Jin Chul Ahn,
| | - Jin Chul Ahn
- Medical Laser Research Center, Dankook University, Cheonan, South Korea,Beckman Laser Institute Korea, Dankook University, Cheonan, South Korea,Department of Otolaryngology-Head & Neck Surgery, College of Medicine, Dankook University, Cheonan, South Korea,*Correspondence: Min Young Lee, ; Jin Chul Ahn,
| |
Collapse
|
4
|
Su Y, Liu Y, He D, Hu G, Wang H, Ye B, He Y, Gao X, Liu D. Hordenine inhibits neuroinflammation and exerts neuroprotective effects via inhibiting NF-κB and MAPK signaling pathways in vivo and in vitro. Int Immunopharmacol 2022; 108:108694. [PMID: 35349959 DOI: 10.1016/j.intimp.2022.108694] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Revised: 02/28/2022] [Accepted: 03/08/2022] [Indexed: 12/30/2022]
|
5
|
Selenium-enriched oolong tea (Camellia sinensis) extract exerts anti-inflammatory potential via targeting NF-κB and MAPK pathways in macrophages. FOOD SCIENCE AND HUMAN WELLNESS 2022. [DOI: 10.1016/j.fshw.2021.12.020] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
6
|
Park SK, Lee HL, Kang JY, Kim JM, Heo HJ. Peanut (Arachis hypogaea) sprout prevents high-fat diet-induced cognitive impairment by improving mitochondrial function. Sci Rep 2022; 12:6213. [PMID: 35418581 PMCID: PMC9008020 DOI: 10.1038/s41598-022-10520-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Accepted: 04/06/2022] [Indexed: 11/09/2022] Open
Abstract
This study was performed to evaluate the improvement effect of the ethyl acetate fraction from peanut (Arachis hypogaea) sprout (EFPS) on high-fat diet (HFD)-induced cognitive deficits in C57BL/6 mice. Mice were randomly divided four groups (n = 13) as control (normal chow), HFD, EFPS 20 (20 mg/kg of body weight; intragastric administration) and EFPS 50 (50 mg/kg of body weight; intragastric administration) groups. HFD was provide for 15 weeks excepting control group. EFPS ameliorated cognitive dysfunction in Y-maze, passive avoidance test and Morris water maze test. EFPS significantly improved glucose tolerance and serum lipid profile, and reduced body weight. EFPS ameliorated oxidative stress by regulating MDA levels and SOD activity in liver and brain tissues. In addition, EFPS restored brain mitochondrial dysfunction related to energy metabolism. Moreover, the bioactive compounds of EFPS were identified as di-caffeic acid, caffeic acid, dihydrokaempferol-hexoside, di-p-coumaroyl tartaric acid isomer and group B soyasaponins using ultra-performance liquid chromatography-quadrupole-time-of-flight (UPLC-Q-TOF) mass spectrometry. These results show that EFPS can improve cognitive functions in HFD-induced diabetic mice.
Collapse
Affiliation(s)
- Seon Kyeong Park
- Division of Applied Life Science, Institute of Agriculture and Life Science (BK21), Gyeongsang National University, Jinju, 52828, Republic of Korea
- Korea Food Research Institute, Wanju-gun, 55365, Republic of Korea
| | - Hyo Lim Lee
- Division of Applied Life Science, Institute of Agriculture and Life Science (BK21), Gyeongsang National University, Jinju, 52828, Republic of Korea
| | - Jin Yong Kang
- Division of Applied Life Science, Institute of Agriculture and Life Science (BK21), Gyeongsang National University, Jinju, 52828, Republic of Korea
- Advanced Process Technology and Fermentation Research Group, World Institute of Kimchi, Gwangju, 61755, Republic of Korea
| | - Jong Min Kim
- Division of Applied Life Science, Institute of Agriculture and Life Science (BK21), Gyeongsang National University, Jinju, 52828, Republic of Korea
| | - Ho Jin Heo
- Division of Applied Life Science, Institute of Agriculture and Life Science (BK21), Gyeongsang National University, Jinju, 52828, Republic of Korea.
| |
Collapse
|
7
|
ML365 inhibits lipopolysaccharide-induced inflammatory responses via the NF-κB signaling pathway. Immunobiology 2022; 227:152208. [DOI: 10.1016/j.imbio.2022.152208] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 03/04/2022] [Accepted: 03/20/2022] [Indexed: 01/23/2023]
|
8
|
LUO J, XIAO S, LI XJ, LIU XQ, KWON OK, LEE HK, KO SK, WHANG WK, YOOK CS. Extracts with anti-inflammatory activities from Acanthopanax trifoliatus (L.) Merr. by inhibiting LPS-induced expression of iNOS and COX-2. FOOD SCIENCE AND TECHNOLOGY 2021. [DOI: 10.1590/fst.96821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Affiliation(s)
- Jiao LUO
- Hunan University of Chinese Medicine, China
| | - Shan XIAO
- Hunan University of Chinese Medicine, China
| | | | | | - Ok-Kyoung KWON
- Korea Research Institute of Bioscience and Biotechnology, Korea
| | - Hyeong-Kyu LEE
- Korea Research Institute of Bioscience and Biotechnology, Korea
| | | | | | | |
Collapse
|
9
|
Seo SH, Jo SM, Truong TTM, Zhang G, Kim DS, Lee M, Lee Y, Kang I. Peanut sprout rich in p-coumaric acid ameliorates obesity and lipopolysaccharide-induced inflammation and the inhibition of browning in adipocytes via mitochondrial activation. Food Funct 2021; 12:5361-5374. [PMID: 33982705 DOI: 10.1039/d1fo00342a] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Obesity is accompanied by adipose tissue inflammation that subsequently reduces thermogenic potential in brown and beige (brown-like) adipocytes. We previously reported that peanut sprout (PS) inhibited triglyceride accumulation via fatty acid oxidation in adipocytes. However, it is unknown whether PS reverses diet-induced obesity/inflammation and protects against the inflammation-induced inhibition of browning. To investigate this, C57BL/6 male mice, as an in vivo model, were randomly assigned to three different diets and fed for 8 weeks: (i) low-fat diet (LF, 11% kcal from fat), (ii) high-fat diet (HF, 61% kcal from fat), or (iii) HF diet with PS (4% PS in diet, HF + PS). As an in vitro model, lipopolysaccharides (LPS)-induced macrophages and 3T3-L1 adipocytes in the absence (white adipocytes) or presence of dibutyryl-cAMP (Bt-cAMP, beige adipocytes) were used. The supplementation of PS improved HF-diet-mediated body weight gain, dyslipidemia, and hyperglycemia as compared to the HF group. Although there was a marginal impact on visceral hypertrophy, PS reversed the adipocyte inflammation. In parallel, LPS-mediated induction of inflammation was impeded by PS extract (PSE) in macrophages and adipocytes. PSE also protected against LPS-induced suppression of adipocyte browning in Bt-cAMP-treated adipocytes with mitochondrial activation. The phenolic acid analysis showed that among the constituent of PSE, p-coumaric acid (PCA) was identified as a polyphenol that showed a similar effect to PSE. PCA treatment was also able to maintain a higher temperature than the control group upon cold exposure. Taken together, PCA-enriched PS attenuated HF-diet-induced obesity and protected against LPS-induced inflammation and the inhibition of browning via mitochondrial activation.
Collapse
Affiliation(s)
- Seok Hee Seo
- Department of Food Science and Nutrition, Jeju National University, Jeju 63243, Korea.
| | - Sang-Mi Jo
- Department of Food Science and Nutrition, Jeju National University, Jeju 63243, Korea.
| | - Tien Thi My Truong
- Interdisciplinary Graduate Program in Advanced Convergence Technology and Science, Jeju National University, Jeju 63243, Korea
| | - Guiguo Zhang
- College of Animal Sciences and Technology, Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, 61 Daizong Street, Taian City, Shandong Province 271018, China
| | - Dong-Shin Kim
- Department of Food Bioengineering, Jeju National University, Jeju 63243, Korea
| | - Myoungsook Lee
- Department of Food and Nutrition, Sungshin Women's University, Seoul 01133, Korea
| | - Yunkyoung Lee
- Department of Food Science and Nutrition, Jeju National University, Jeju 63243, Korea. and Interdisciplinary Graduate Program in Advanced Convergence Technology and Science, Jeju National University, Jeju 63243, Korea
| | - Inhae Kang
- Department of Food Science and Nutrition, Jeju National University, Jeju 63243, Korea. and Interdisciplinary Graduate Program in Advanced Convergence Technology and Science, Jeju National University, Jeju 63243, Korea
| |
Collapse
|
10
|
Aboutabl ME, Hamed AR, Hamissa MF, Ahmed EK. Anti-Inflammatory and Analgesic Activities of 7-Chloro-4-(Piperazin-1-yl) Quinoline Derivative Mediated by Suppression of InflammatoryMediators Expression in Both RAW 264.7 and Mouse Models. PHARMACEUTICAL SCIENCES 2020. [DOI: 10.34172/ps.2020.101] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Background: 4-Aminoquinoline derivatives possess various potential biological properties.The introduction of additional piperazine heterocyclic pharmacophoric moiety tends to haveprofound impact in increasing the activity. The present work was undertaken to investigate thein-vitro and in-vivo anti-inflammatory activity as well as the peripheral and central analgesicactivities of compound 1-(4-(7-chloroquinoline-4-yl)piperazin-1-yl)-2-(4-phenylpiperazin-1-yl)ethanone (5) in experimental models. Methods: The percentage inhibition of the lipopolysaccharide induced NO release of 7-chloro-4-(piperazin-1-yl)quinoline derivatives 1-9 was determined in RAW 264.7 murine macrophagemodel. Western blot analysis was performed to evaluate the effect of compound 5 on proteinexpression of inducible nitric oxide synthase (iNOS). Gene expression of inflammatory markerswas evaluated using real-time polymerase chain reaction. The peripheral and central analgesicactivities of compound 5 were evaluated in mice using writhing and hot-plate tests, respectively.Anti-inflammatory activity was assessed using carrageenan-induced paw edema assay in miceand serum NO and COX-2 levels were measured. Results: Compound 5 demonstrated the highest NO inhibitory activity that was accompaniedby inhibition of iNOS protein expression and decreased gene expression levels of inflammatorymarkers. It revealed a potential peripheral analgesic effect through inhibition of abdominalwrithing in mice treated with doses of 15 and 30 mg/kg and its effect was comparable to diclofenacsodium. Compound 5 possessed an analgesic activity starting from 15 min post administrationand reached its peak at 45 min which was significantly higher than that of tramadol hydrochloridesuggesting its potential as central analgesic agent. It also showed percentage of inhibition ofedema of 34, 50 and 64% at 1, 2, and 3 h respectively, post carrageenan challenge together with asignificant decrease in serum NO and COX-2 levels. Conclusion: The remarkable anti-inflammatory and analgesic activities of compound 5 couldbe attributed to the advantageous introduction of the heterocyclic 7-chloro-4-(piperazin1-yl)quinoline scaffold incorporated with N-phenylpiperzine functional groups linked together withthe ethanone pharmacophoric chain.
Collapse
Affiliation(s)
- Mona Elsayed Aboutabl
- Medicinal and Pharmaceutical Chemistry Department (Pharmacology Group), Pharmaceutical and Drug Industries Research Division, National Research Centre (ID: 60014618), 33 El Bohouth St., P.O. 12622, Dokki, Giza, Egypt
| | - Ahmed Ragab Hamed
- Chemistry of Medicinal Plants Department, National Research Centre, 33 El-Bohouth St., Dokki, Giza 12622, Egypt; Biology Unit, Central Laboratory for Pharmaceutical and Drug Industries Research Division, National Research Centre (ID: 60014618), 33 El Bohouth St., P.O. 12622, Dokki, Giza, Egypt
| | - Mohamed Farouk Hamissa
- Medicinal and Pharmaceutical Chemistry Department, Pharmaceutical and Drug Industries Research Division, National Research Centre (ID: 60014618), 33 El Bohouth St., P.O. 12622, Dokki, Giza, Egypt
- Department of Biomolecular Spectroscopy, Institute of Organic Chemistry and Biochemistry, Academy of Sciences, Prague, Czech Republic
| | - Emad Khairy Ahmed
- Department of Biochemistry, Faculty of Science, Ain Shams University, P.O. 11566, Cairo, Egypt
| |
Collapse
|
11
|
Merecz-Sadowska A, Sitarek P, Śliwiński T, Zajdel R. Anti-Inflammatory Activity of Extracts and Pure Compounds Derived from Plants via Modulation of Signaling Pathways, Especially PI3K/AKT in Macrophages. Int J Mol Sci 2020; 21:ijms21249605. [PMID: 33339446 PMCID: PMC7766727 DOI: 10.3390/ijms21249605] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Revised: 12/12/2020] [Accepted: 12/14/2020] [Indexed: 02/07/2023] Open
Abstract
The plant kingdom is a source of important therapeutic agents. Therefore, in this review, we focus on natural compounds that exhibit efficient anti-inflammatory activity via modulation signaling transduction pathways in macrophage cells. Both extracts and pure chemicals from different species and parts of plants such as leaves, roots, flowers, barks, rhizomes, and seeds rich in secondary metabolites from various groups such as terpenes or polyphenols were included. Selected extracts and phytochemicals control macrophages biology via modulation signaling molecules including NF-κB, MAPKs, AP-1, STAT1, STAT6, IRF-4, IRF-5, PPARγ, KLF4 and especially PI3K/AKT. Macrophages are important immune effector cells that take part in antigen presentation, phagocytosis, and immunomodulation. The M1 and M2 phenotypes are related to the production of pro- and anti-inflammatory agents, respectively. The successful resolution of inflammation mediated by M2, or failed resolution mediated by M1, may lead to tissue repair or chronic inflammation. Chronic inflammation is strictly related to several disorders. Thus, compounds of plant origin targeting inflammatory response may constitute promising therapeutic strategies.
Collapse
Affiliation(s)
- Anna Merecz-Sadowska
- Department of Computer Science in Economics, University of Lodz, 90-214 Lodz, Poland
- Correspondence: (A.M.-S.); (T.Ś.)
| | - Przemysław Sitarek
- Department of Biology and Pharmaceutical Botany, Medical University of Lodz, 90-151 Lodz, Poland;
| | - Tomasz Śliwiński
- Laboratory of Medical Genetics, Faculty of Biology and Environmental Protection, University of Lodz, 90-236 Lodz, Poland
- Correspondence: (A.M.-S.); (T.Ś.)
| | - Radosław Zajdel
- Department of Medical Informatics and Statistics, Medical University of Lodz, 90-645 Lodz, Poland;
| |
Collapse
|
12
|
Fan H, Wu Q, Peng L, Li D, Dong Y, Cao M, Liu P, Wang X, Hu X, Wang Y. Phyllolobium chinense Fisch Flavonoids (PCFF) Suppresses the M1 Polarization of LPS-Stimulated RAW264.7 Macrophages by Inhibiting NF-κB/iNOS Signaling Pathway. Front Pharmacol 2020; 11:864. [PMID: 32625088 PMCID: PMC7314944 DOI: 10.3389/fphar.2020.00864] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Accepted: 05/26/2020] [Indexed: 12/19/2022] Open
Abstract
Background M1 macrophage plays an important role in inflammatory reaction. In this study, potential anti-inflammatory effect of Phyllolobium chinense Fisch flavonoids (PCFF) was assessed via Zebrafish acute inflammation model in vivo and LPS-induced pro-inflammatory M1 macrophage model in vitro. Methods The quality control of P. chinense Fisch flavonoids (PCFF) was analyzed by HPLC. Anti-inflammatory effect of PCFF on the acute injured zebrafish was evaluated by the migration of fluorescence labeled macrophages and neutrophils, and the gene expression of inflammatory factors. In addition, the anti-inflammatory mechanism of PCFF was investigated by the related gene expression and related signaling pathway regulation of pro-inflammatory mediators in LPS-induced pro-inflammatory M1 RAW264.7 macrophage. Results P. chinense Fisch flavonoids (PCFF) markedly suppressed macrophage and neutrophil migration and iNOS gene expression in acute injured zebrafish with tail-cutting. PCFF significantly inhibited NO overproduction and iNOS gene overexpression in LPS-sitimulated pro-inflammatory M1 RAW264.7 macrophages. What's more, PCFF could evidently decrease p65 protein production, but had no effect on the production of P38, JNK and ERK1/2 proteins. Conclusion P. chinense Fisch flavonoids (PCFF) have a remarkable inhibitory effect on the inflammatory response in acute injured zebrafish and LPS-stimulated M1 RAW264.7 macrophage. The pharmacological mechanism may be related to the regulation of NO overproduction and the inhibition of NF-κB/iNOS signaling pathway.
Collapse
Affiliation(s)
- Hua Fan
- Cardiovascular Department, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Qiong Wu
- Cardiovascular Department, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Longping Peng
- Cardiovascular Department, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Du Li
- Department of Biology, School of Basic Medical Science, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yidan Dong
- Cardiovascular Department, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Min Cao
- Cardiovascular Department, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Ping Liu
- Cardiovascular Department, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xu Wang
- Cancer Institute, Fudan University Shanghai Cancer Center, Shanghai, China
| | - Xudong Hu
- Department of Biology, School of Basic Medical Science, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Youhua Wang
- Cardiovascular Department, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|