1
|
Song M, Yang X, Zhang X, Li J, Xu Y, Shi J. The Masquelet technique triggers the formation of a network involving LncRNA, circRNA, miRNA, and mRNA during bone repair. Ann Med 2024; 56:2395591. [PMID: 39444146 PMCID: PMC11504341 DOI: 10.1080/07853890.2024.2395591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 03/26/2024] [Accepted: 03/26/2024] [Indexed: 10/25/2024] Open
Abstract
BACKGROUND The ceRNA network, which is competitive endogenous RNA, uncovers a fresh mechanism of RNA interaction and holds significant importance in diverse biological processes. The aim of this study is to investigate the molecular process of induced membrane (IM) formation in bone defects using the Masquelet's induced membrane technique (MIMT), in order to offer novel insights and a theoretical foundation for enhancing the treatment of bone defects with MIMT. METHODS In this work, we identified differentially expressed mRNAs (DEGs), lncRNAs (DELs), circRNAs (DECs), and miRNAs (DEMs). To explore the primary functions of the shared DEGs, we utilized Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses. Next, predictions were made for lncRNA-miRNA and miRNA-mRNA interactions, and the Cytoscape software was utilized to construct the regulatory network for ceRNA. RESULTS By integrating GO and KEGG enrichment analysis, a total of 385 differentially expressed genes (DEGs) were discovered in the samples from the MIMT-treated group. Additionally, after re-annotating the probes and intersecting two sets of differently expressed miRNAs, 1304 differentially expressed lncRNAs (DELs) and 23 differentially expressed circRNAs (DECs) were identified. Furthermore, 13 differentially expressed miRNAs (DEMs) were obtained. Moreover, utilizing the anticipated objectives of DEMs, we acquired 1203 pairs of lncRNA-miRNA-mRNA interactors (comprising 24 lncRNAs, 10 miRNAs, and 115 mRNAs) and 250 pairs of circRNA-miRNA-mRNA interactions (comprising 7 circRNAs, 9 miRNAs, and 115 mRNAs). CEBPA, DGAT2, CDKN1A, PLIN2, and CIDEC were identified as the five hub proteins in the PPI network. LncRNA/circRNA-hsa-miR-671-5p could potentially regulate the primary central protein, CEBPA. CONCLUSIONS In this study, we described the potential regulatory mechanism of the MIMT in treating bone defects. We proposed a new lncRNA-miRNA-mRNA ceRNA network that could help further explore the molecular mechanisms of bone repair.
Collapse
Affiliation(s)
- Muguo Song
- Department of Orthopaedics, 920th Hospital of the Joint Logistics Support Force of the PLA, Kunming City, Yunnan Province, China
| | - Xiaoyong Yang
- Department of Orthopaedics, 920th Hospital of the Joint Logistics Support Force of the PLA, Kunming City, Yunnan Province, China
| | - Xijiao Zhang
- Department of Orthopaedics, 920th Hospital of the Joint Logistics Support Force of the PLA, Kunming City, Yunnan Province, China
| | - Junyi Li
- Department of Orthopaedics, 920th Hospital of the Joint Logistics Support Force of the PLA, Kunming City, Yunnan Province, China
| | - Yongqing Xu
- Department of Orthopaedics, 920th Hospital of the Joint Logistics Support Force of the PLA, Kunming City, Yunnan Province, China
| | - Jian Shi
- Department of Orthopaedics, 920th Hospital of the Joint Logistics Support Force of the PLA, Kunming City, Yunnan Province, China
| |
Collapse
|
2
|
Arya PN, Saranya I, Selvamurugan N. RUNX2 regulation in osteoblast differentiation: A possible therapeutic function of the lncRNA and miRNA-mediated network. Differentiation 2024; 140:100803. [PMID: 39089986 DOI: 10.1016/j.diff.2024.100803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 07/19/2024] [Accepted: 07/22/2024] [Indexed: 08/04/2024]
Abstract
Osteogenic differentiation is a crucial process in the formation of the skeleton and the remodeling of bones. It relies on a complex system of signaling pathways and transcription factors, including Runt-related transcription factor 2 (RUNX2). Non-coding RNAs (ncRNAs) control the bone-specific transcription factor RUNX2 through post-transcriptional mechanisms to regulate osteogenic differentiation. The most research has focused on microRNAs (miRNAs) and long ncRNAs (lncRNAs) in studying how they regulate RUNX2 for osteogenesis in both normal and pathological situations. This article provides a concise overview of the recent advancements in understanding the critical roles of lncRNA/miRNA/axes in controlling the expression of RUNX2 during bone formation. The possible application of miRNAs and lncRNAs as therapeutic agents for the treatment of disorders involving the bones and bones itself is also covered.
Collapse
Affiliation(s)
- Pakkath Narayanan Arya
- Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur, 603 203, Tamil Nadu, India
| | - Iyyappan Saranya
- Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur, 603 203, Tamil Nadu, India
| | - Nagarajan Selvamurugan
- Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur, 603 203, Tamil Nadu, India.
| |
Collapse
|
3
|
Amroodi MN, Maghsoudloo M, Amiri S, Mokhtari K, Mohseni P, Pourmarjani A, Jamali B, Khosroshahi EM, Asadi S, Tabrizian P, Entezari M, Hashemi M, Wan R. Unraveling the molecular and immunological landscape: Exploring signaling pathways in osteoporosis. Biomed Pharmacother 2024; 177:116954. [PMID: 38906027 DOI: 10.1016/j.biopha.2024.116954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 06/05/2024] [Accepted: 06/15/2024] [Indexed: 06/23/2024] Open
Abstract
Osteoporosis, characterized by compromised bone density and microarchitecture, represents a significant global health challenge, particularly in aging populations. This comprehensive review delves into the intricate signaling pathways implicated in the pathogenesis of osteoporosis, providing valuable insights into the pivotal role of signal transduction in maintaining bone homeostasis. The exploration encompasses cellular signaling pathways such as Wnt, Notch, JAK/STAT, NF-κB, and TGF-β, all of which play crucial roles in bone remodeling. The dysregulation of these pathways is a contributing factor to osteoporosis, necessitating a profound understanding of their complexities to unveil the molecular mechanisms underlying bone loss. The review highlights the pathological significance of disrupted signaling in osteoporosis, emphasizing how these deviations impact the functionality of osteoblasts and osteoclasts, ultimately resulting in heightened bone resorption and compromised bone formation. A nuanced analysis of the intricate crosstalk between these pathways is provided to underscore their relevance in the pathophysiology of osteoporosis. Furthermore, the study addresses some of the most crucial long non-coding RNAs (lncRNAs) associated with osteoporosis, adding an additional layer of academic depth to the exploration of immune system involvement in various types of osteoporosis. Finally, we propose that SKP1 can serve as a potential biomarker in osteoporosis.
Collapse
Affiliation(s)
- Morteza Nakhaei Amroodi
- Bone and Joint Reconstruction Research Center, Shafa Orthopedic Hospital, department of orthopedic, school of medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Mazaher Maghsoudloo
- Key Laboratory of Epigenetics and Oncology, the Research Center for Preclinical Medicine, Southwest Medical University, Luzhou 646000, Sichuan, China
| | - Shayan Amiri
- Bone and Joint Reconstruction Research Center, Shafa Orthopedic Hospital, department of orthopedic, school of medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Khatere Mokhtari
- Department of Cellular and Molecular Biology and Microbiology, Faculty of Biological Science and Technology, University of Isfahan, Isfahan, Iran
| | - Parnaz Mohseni
- Department of Pediatrics, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Azadeh Pourmarjani
- Department of Pediatrics, School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Behdokht Jamali
- Department of microbiology and genetics, kherad Institute of higher education, Busheher, lran
| | - Elaheh Mohandesi Khosroshahi
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Department of Genetics, Faculty of Advanced Science and Technology Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Saba Asadi
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Department of Genetics, Faculty of Advanced Science and Technology Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Pouria Tabrizian
- Bone and Joint Reconstruction Research Center, Shafa Orthopedic Hospital, department of orthopedic, school of medicine, Iran University of Medical Sciences, Tehran, Iran.
| | - Maliheh Entezari
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Department of Genetics, Faculty of Advanced Science and Technology Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| | - Mehrdad Hashemi
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Department of Genetics, Faculty of Advanced Science and Technology Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| | - Runlan Wan
- Department of Oncology, The Affiliated Hospital, Southwest Medical University, Luzhou 646000, China; Key Laboratory of Medical Electrophysiology, Ministry of Education & Medical Electrophysiological Key Laboratory of Sichuan Province, (Collaborative Innovation Center for Prevention of Cardiovascular Diseases), Institute of Cardiovascular Research, Southwest Medical University, Luzhou 646000, China.
| |
Collapse
|
4
|
Su Y, Yu G, Li D, Lu Y, Ren C, Xu Y, Yang Y, Zhang K, Ma T, Li Z. Identification of mitophagy-related biomarkers in human osteoporosis based on a machine learning model. Front Physiol 2024; 14:1289976. [PMID: 38260098 PMCID: PMC10800828 DOI: 10.3389/fphys.2023.1289976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Accepted: 12/21/2023] [Indexed: 01/24/2024] Open
Abstract
Background: Osteoporosis (OP) is a chronic bone metabolic disease and a serious global public health problem. Several studies have shown that mitophagy plays an important role in bone metabolism disorders; however, its role in osteoporosis remains unclear. Methods: The Gene Expression Omnibus (GEO) database was used to download GSE56815, a dataset containing low and high BMD, and differentially expressed genes (DEGs) were analyzed. Mitochondrial autophagy-related genes (MRG) were downloaded from the existing literature, and highly correlated MRG were screened by bioinformatics methods. The results from both were taken as differentially expressed (DE)-MRG, and Gene Ontology (GO) analysis and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis were performed. Protein-protein interaction network (PPI) analysis, support vector machine recursive feature elimination (SVM-RFE), and Boruta method were used to identify DE-MRG. A receiver operating characteristic curve (ROC) was drawn, a nomogram model was constructed to determine its diagnostic value, and a variety of bioinformatics methods were used to verify the relationship between these related genes and OP, including GO and KEGG analysis, IP pathway analysis, and single-sample Gene Set Enrichment Analysis (ssGSEA). In addition, a hub gene-related network was constructed and potential drugs for the treatment of OP were predicted. Finally, the specific genes were verified by real-time quantitative polymerase chain reaction (RT-qPCR). Results: In total, 548 DEGs were identified in the GSE56815 dataset. The weighted gene co-expression network analysis(WGCNA) identified 2291 key module genes, and 91 DE-MRG were obtained by combining the two. The PPI network revealed that the target gene for AKT1 interacted with most proteins. Three MRG (NELFB, SFSWAP, and MAP3K3) were identified as hub genes, with areas under the curve (AUC) 0.75, 0.71, and 0.70, respectively. The nomogram model has high diagnostic value. GO and KEGG analysis showed that ribosome pathway and cellular ribosome pathway may be the pathways regulating the progression of OP. IPA showed that MAP3K3 was associated with six pathways, including GNRH Signaling. The ssGSEA indicated that NELFB was highly correlated with iDCs (cor = -0.390, p < 0.001). The regulatory network showed a complex relationship between miRNA, transcription factor(TF) and hub genes. In addition, 4 drugs such as vinclozolin were predicted to be potential therapeutic drugs for OP. In RT-qPCR verification, the hub gene NELFB was consistent with the results of bioinformatics analysis. Conclusion: Mitophagy plays an important role in the development of osteoporosis. The identification of three mitophagy-related genes may contribute to the early diagnosis, mechanism research and treatment of OP.
Collapse
Affiliation(s)
- Yu Su
- Honghui Hospital, Xi’an Jiaotong University, Xi’an, China
| | - Gangying Yu
- Department of International Ward (Orthopedic), Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Dongchen Li
- Honghui Hospital, Xi’an Jiaotong University, Xi’an, China
| | - Yao Lu
- Honghui Hospital, Xi’an Jiaotong University, Xi’an, China
| | - Cheng Ren
- Honghui Hospital, Xi’an Jiaotong University, Xi’an, China
| | - Yibo Xu
- Honghui Hospital, Xi’an Jiaotong University, Xi’an, China
| | - Yanling Yang
- Basic Medical College of Yan’an University, Yan’an, China
| | - Kun Zhang
- Honghui Hospital, Xi’an Jiaotong University, Xi’an, China
| | - Teng Ma
- Honghui Hospital, Xi’an Jiaotong University, Xi’an, China
| | - Zhong Li
- Honghui Hospital, Xi’an Jiaotong University, Xi’an, China
| |
Collapse
|
5
|
Baniasadi M, Talebi S, Mokhtari K, Zabolian AH, Khosroshahi EM, Entezari M, Dehkhoda F, Nabavi N, Hashemi M. Role of non-coding RNAs in osteoporosis. Pathol Res Pract 2024; 253:155036. [PMID: 38134836 DOI: 10.1016/j.prp.2023.155036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Revised: 12/10/2023] [Accepted: 12/10/2023] [Indexed: 12/24/2023]
Abstract
Osteoporosis, a prevalent bone disorder influenced by genetic and environmental elements, significantly increases the likelihood of fractures and bone weakness, greatly affecting the lives of those afflicted. Yet, the exact epigenetic processes behind the onset of osteoporosis are still unclear. Growing research indicates that epigenetic changes could act as vital mediators that connect genetic tendencies and environmental influences, thereby increasing the risk of osteoporosis and bone fractures. Within these epigenetic factors, certain types of RNA, such as microRNAs (miRNAs), long non-coding RNAs (lncRNAs), and circular RNAs (circRNAs), have been recognized as key regulatory elements. These RNA types wield significant influence on gene expression through epigenetic regulation, directing various biological functions essential to bone metabolism. This extensive review compiles current research uncovering the complex ways in which miRNAs, lncRNAs, and circRNAs are involved in the development of osteoporosis, especially in osteoblasts and osteoclasts. Gaining a more profound understanding of the roles these three RNA classes play in osteoporosis could reveal new diagnostic methods and treatment approaches for this incapacitating condition. In conclusion, this review delves into the complex domain of epigenetic regulation via non-coding RNA in osteoporosis. It sheds light on the complex interactions and mechanisms involving miRNAs, lncRNAs, and circRNAs within osteoblasts and osteoclasts, offering an in-depth understanding of the less explored aspects of osteoporosis pathogenesis. These insights not only reveal the complexity of the disease but also offer significant potential for developing new diagnostic methods and targeted treatments. Therefore, this review marks a crucial step in deciphering the elusive complexities of osteoporosis, leading towards improved patient care and enhanced quality of life.
Collapse
Affiliation(s)
- Mojtaba Baniasadi
- Department of Orthopedics, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Sina Talebi
- Department of Orthopedics, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Khatere Mokhtari
- Department of Cellular and Molecular Biology and Microbiology, Faculty of Biological Science and Technology, University of Isfahan, Isfahan, Iran; Department of Animal Biotechnology, Cell Science Research Center, Royan Institute for Biotechnology, ACECR, Isfahan,Iran
| | - Amir Hossein Zabolian
- Department of Orthopedics, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Elahe Mohandesi Khosroshahi
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Maliheh Entezari
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| | - Farshid Dehkhoda
- Department of Orthopedics, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Noushin Nabavi
- Department of Urologic Sciences, University of British Columbia, Vancouver, BC V5Z 1M9, Canada
| | - Mehrdad Hashemi
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| |
Collapse
|
6
|
Khotib J, Marhaeny HD, Miatmoko A, Budiatin AS, Ardianto C, Rahmadi M, Pratama YA, Tahir M. Differentiation of osteoblasts: the links between essential transcription factors. J Biomol Struct Dyn 2023; 41:10257-10276. [PMID: 36420663 DOI: 10.1080/07391102.2022.2148749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Accepted: 11/12/2022] [Indexed: 11/27/2022]
Abstract
Osteoblasts, cells derived from mesenchymal stem cells (MSCs) in the bone marrow, are cells responsible for bone formation and remodeling. The differentiation of osteoblasts from MSCs is triggered by the expression of specific genes, which are subsequently controlled by pro-osteogenic pathways. Mature osteoblasts then differentiate into osteocytes and are embedded in the bone matrix. Dysregulation of osteoblast function can cause inadequate bone formation, which leads to the development of bone disease. Various key molecules are involved in the regulation of osteoblastogenesis, which are transcription factors. Previous studies have heavily examined the role of factors that control gene expression during osteoblastogenesis, both in vitro and in vivo. However, the systematic relationship of these transcription factors remains unknown. The involvement of ncRNAs in this mechanism, particularly miRNAs, lncRNAs, and circRNAs, has been shown to influence transcriptional factor activity in the regulation of osteoblast differentiation. Here, we discuss nine essential transcription factors involved in osteoblast differentiation, including Runx2, Osx, Dlx5, β-catenin, ATF4, Ihh, Satb2, and Shn3. In addition, we summarize the role of ncRNAs and their relationship to these essential transcription factors in order to improve our understanding of the transcriptional regulation of osteoblast differentiation. Adequate exploration and understanding of the molecular mechanisms of osteoblastogenesis can be a critical strategy in the development of therapies for bone-related diseases.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Junaidi Khotib
- Department of Pharmacy Practice, Faculty of Pharmacy, Universitas Airlangga, Surabaya, Indonesia
| | - Honey Dzikri Marhaeny
- Department of Pharmacy Practice, Faculty of Pharmacy, Universitas Airlangga, Surabaya, Indonesia
| | - Andang Miatmoko
- Department of Pharmaceutical Science, Faculty of Pharmacy, Universitas Airlangga, Surabaya, Indonesia
| | - Aniek Setiya Budiatin
- Department of Pharmacy Practice, Faculty of Pharmacy, Universitas Airlangga, Surabaya, Indonesia
| | - Chrismawan Ardianto
- Department of Pharmacy Practice, Faculty of Pharmacy, Universitas Airlangga, Surabaya, Indonesia
| | - Mahardian Rahmadi
- Department of Pharmacy Practice, Faculty of Pharmacy, Universitas Airlangga, Surabaya, Indonesia
| | - Yusuf Alif Pratama
- Department of Pharmacy Practice, Faculty of Pharmacy, Universitas Airlangga, Surabaya, Indonesia
| | - Muhammad Tahir
- Department of Pharmaceutical Science, Kulliyah of Pharmacy, International Islamic University Malaysia, Pahang, Malaysia
| |
Collapse
|
7
|
Meng F, Yu Y, Tian Y, Deng M, Zheng K, Guo X, Zeng B, Li J, Qian A, Yin C. A potential therapeutic drug for osteoporosis: prospect for osteogenic LncRNAs. Front Endocrinol (Lausanne) 2023; 14:1219433. [PMID: 37600711 PMCID: PMC10435887 DOI: 10.3389/fendo.2023.1219433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Accepted: 07/17/2023] [Indexed: 08/22/2023] Open
Abstract
Long non-coding RNAs (LncRNAs) play essential roles in multiple physiological processes including bone formation. Investigators have revealed that LncRNAs regulated bone formation through various signaling pathways and micro RNAs (miRNAs). However, several problems exist in current research studies on osteogenic LncRNAs, including sophisticated techniques, high cost for in vivo experiment, as well as low homology of LncRNAs between animal model and human, which hindered translational medicine research. Moreover, compared with gene editing, LncRNAs would only lead to inhibition of target genes rather than completely knocking them out. As the studies on osteogenic LncRNA gradually proceed, some of these problems have turned osteogenic LncRNA research studies into slump. This review described some new techniques and innovative ideas to address these problems. Although investigations on osteogenic LncRNAs still have obtacles to overcome, LncRNA will work as a promising therapeutic drug for osteoporosis in the near future.
Collapse
Affiliation(s)
- Fanjin Meng
- Department of Clinical Laboratory, Department of Oncology, Department of Rehabilitation Medicine, Ministry of Science and Technology, Affiliated Hospital of North Sichuan Medical College, Nanchong, China
- Department of Laboratory Medicine, Translational Medicine Research Center, North Sichuan Medical College, Nanchong, China
| | - Yang Yu
- School of Pharmacy, Tianjin Medical University, Tianjin, China
| | - Ye Tian
- Lab for Bone Metabolism, Xi’an Key Laboratory of Special Medicine and Health Engineering, Key Lab for Space Biosciences and Biotechnology, Research Center for Special Medicine and Health Systems Engineering, NPU-UAB Joint Laboratory for Bone Metabolism, School of Life Sciences, Northwestern Polytechnical University, Xi’an, Shaanxi, China
| | - Meng Deng
- Department of Clinical Laboratory, Department of Oncology, Department of Rehabilitation Medicine, Ministry of Science and Technology, Affiliated Hospital of North Sichuan Medical College, Nanchong, China
- Department of Laboratory Medicine, Translational Medicine Research Center, North Sichuan Medical College, Nanchong, China
| | - Kaiyuan Zheng
- Department of Clinical Laboratory, Department of Oncology, Department of Rehabilitation Medicine, Ministry of Science and Technology, Affiliated Hospital of North Sichuan Medical College, Nanchong, China
- Department of Laboratory Medicine, Translational Medicine Research Center, North Sichuan Medical College, Nanchong, China
| | - Xiaolan Guo
- Department of Clinical Laboratory, Department of Oncology, Department of Rehabilitation Medicine, Ministry of Science and Technology, Affiliated Hospital of North Sichuan Medical College, Nanchong, China
- Department of Laboratory Medicine, Translational Medicine Research Center, North Sichuan Medical College, Nanchong, China
| | - Beilei Zeng
- Department of Clinical Laboratory, Department of Oncology, Department of Rehabilitation Medicine, Ministry of Science and Technology, Affiliated Hospital of North Sichuan Medical College, Nanchong, China
| | - Jingjia Li
- Department of Clinical Laboratory, Department of Oncology, Department of Rehabilitation Medicine, Ministry of Science and Technology, Affiliated Hospital of North Sichuan Medical College, Nanchong, China
| | - Airong Qian
- Lab for Bone Metabolism, Xi’an Key Laboratory of Special Medicine and Health Engineering, Key Lab for Space Biosciences and Biotechnology, Research Center for Special Medicine and Health Systems Engineering, NPU-UAB Joint Laboratory for Bone Metabolism, School of Life Sciences, Northwestern Polytechnical University, Xi’an, Shaanxi, China
| | - Chong Yin
- Department of Clinical Laboratory, Department of Oncology, Department of Rehabilitation Medicine, Ministry of Science and Technology, Affiliated Hospital of North Sichuan Medical College, Nanchong, China
- Department of Laboratory Medicine, Translational Medicine Research Center, North Sichuan Medical College, Nanchong, China
- Lab for Bone Metabolism, Xi’an Key Laboratory of Special Medicine and Health Engineering, Key Lab for Space Biosciences and Biotechnology, Research Center for Special Medicine and Health Systems Engineering, NPU-UAB Joint Laboratory for Bone Metabolism, School of Life Sciences, Northwestern Polytechnical University, Xi’an, Shaanxi, China
| |
Collapse
|
8
|
Yalaev BI, Khusainova RI. Epigenetic regulation of bone remodeling and its role in the pathogenesis of primary osteoporosis. Vavilovskii Zhurnal Genet Selektsii 2023; 27:401-410. [PMID: 37465189 PMCID: PMC10350859 DOI: 10.18699/vjgb-23-48] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 12/02/2022] [Accepted: 12/02/2022] [Indexed: 07/20/2023] Open
Abstract
Discovery of molecular mechanisms of primary osteoporosis development is fundamental to understand the pathogenesis of musculoskeletal diseases in general and for identifying key links in the genetic and epigenetic regulation of bone remodelling genes. The number of identified molecular genetic markers for osteoporosis is increasing but there is a need to describe their functional interactions. These interactions have been determined to be associated with the control of expression of a number of transcription factors and the differentiation of mesenchymal stem cells through the pathway of osteoblastogenesis or adipogenesis, and monocytic precursors through the pathway of osteoclastogenesis. The results of epigenetic studies have significantly increased the understanding of the role of post-translational modifications of histones, DNA methylation and RNA interference in the osteoporosis pathogenesis and in bone remodelling. However, the knowledge should be systematised and generalised according to the results of research on the role of epigenetic modifiers in the development of osteoporosis, and the influence of each epigenetic mechanism on the individual links of bone remodelling during ontogenesis of humans in general, including the elderly, should be described. Understanding which mechanisms and systems are involved in the development of this nosology is of interest for the development of targeted therapies, as the possibility of using microRNAs to regulate genes is now being considered. Systematisation of these data is important to investigate the differences in epigenetic marker arrays by race and ethnicity. The review article analyses references to relevant reviews and original articles, classifies information on current advances in the study of epigenetic mechanisms in osteoporosis and reviews the results of studies of epigenetic mechanisms on individual links of bone remodelling.
Collapse
Affiliation(s)
- B I Yalaev
- Institute of Biochemistry and Genetics - Subdivision of the Ufa Federal Research Center of the Russian Academy of Sciences, Ufa, Russia Saint Petersburg State University, St. Petersburg, Russia
| | - R I Khusainova
- Institute of Biochemistry and Genetics - Subdivision of the Ufa Federal Research Center of the Russian Academy of Sciences, Ufa, Russia Saint Petersburg State University, St. Petersburg, Russia Ufa University of Science and Technology, Ufa, Russia
| |
Collapse
|
9
|
Zhang W, Liu Y, Luo Y, Shu X, Pu C, Zhang B, Feng P, Xiong A, Kong Q. New insights into the role of long non-coding RNAs in osteoporosis. Eur J Pharmacol 2023; 950:175753. [PMID: 37119958 DOI: 10.1016/j.ejphar.2023.175753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 04/12/2023] [Accepted: 04/26/2023] [Indexed: 05/01/2023]
Abstract
Osteoporosis is a common disease in elderly individuals, and osteoporosis can easily lead to bone and hip fractures that seriously endanger the health of elderly individuals. At present, the treatment of osteoporosis is mainly anti-osteoporosis drugs, but there are side effects associated with anti-osteoporosis drugs. Therefore, it is very important to develop early diagnostic indicators and new therapeutic drugs for the prevention and treatment of osteoporosis. Long noncoding RNAs (lncRNAs), noncoding RNAs longer than 200 nucleotides, can be used as diagnostic markers for osteoporosis, and lncRNAs play an important role in the progression of osteoporosis. Many studies have shown that lncRNAs can be the target of osteoporosis. Therefore, herein, the role of lncRNAs in osteoporosis is summarized, aiming to provide some information for the prevention and treatment of osteoporosis.
Collapse
Affiliation(s)
- Weifei Zhang
- Department of Orthopedics, Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Yuheng Liu
- Department of Orthopedics, Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Yuanrui Luo
- Department of Orthopedics, Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Xiang Shu
- Hospital of Chengdu Office of People's Government of Tibetan Autonomous Region (Hospital.C.T.), Sichuan University, Chengdu, 610041, China
| | - Congmin Pu
- Hospital of Chengdu Office of People's Government of Tibetan Autonomous Region (Hospital.C.T.), Sichuan University, Chengdu, 610041, China
| | - Bin Zhang
- Department of Orthopedics, Hospital of Chengdu Office of People's Government of Tibetan Autonomous Region (Hospital.C.T.), Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Pin Feng
- Department of Orthopedics, Hospital of Chengdu Office of People's Government of Tibetan Autonomous Region (Hospital.C.T.), Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Ao Xiong
- Department of Bone and Joint Surgery, Peking University Shenzhen Hospital, Shenzhen, 518036, China.
| | - Qingquan Kong
- Department of Orthopedics, Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China; Department of Orthopedics, Hospital of Chengdu Office of People's Government of Tibetan Autonomous Region (Hospital.C.T.), Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
10
|
Chen Y, Sun Y, Xue X, Ma H. Comprehensive analysis of epigenetics mechanisms in osteoporosis. Front Genet 2023; 14:1153585. [PMID: 37056287 PMCID: PMC10087084 DOI: 10.3389/fgene.2023.1153585] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Accepted: 03/10/2023] [Indexed: 03/30/2023] Open
Abstract
Epigenetic modification pertains to the alteration of genetic-expression, which could be transferred to the next generations, without any alteration in the fundamental DNA sequence. Epigenetic modification could include various processes such as DNA methylation, histone alteration, non-coding RNAs (ncRNAs), and chromatin adjustment are among its primary operations. Osteoporosis is a metabolic disorder that bones become more fragile due to the decrease in mineral density, which could result in a higher risk of fracturing. Recently, as the investigation of the causal pathology of osteoporosis has been progressed, remarkable improvement has been made in epigenetic research. Recent literatures have illustrated that epigenetics is estimated to be one of the most contributing factors to the emergence and progression of osteoporosis. This dissertation primarily focuses on indicating the research progresses of epigenetic mechanisms and also the regulation of bone metabolism and the pathogenesis of osteoporosis in light of the significance of epigenetic mechanisms. In addition, it aims to provide new intelligence for the treatment of diseases related to bone metabolism.
Collapse
Affiliation(s)
- Yuzhu Chen
- The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Yumiao Sun
- The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Xiangyu Xue
- Harbin Medical University, Harbin, Heilongjiang, China
| | - Huanzhi Ma
- Department of Orthopedics, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
- *Correspondence: Huanzhi Ma,
| |
Collapse
|
11
|
Pan QF, Ouyang WW, Zhang MQ, He S, Yang SY, Zhang J. Chondroitin polymerizing factor predicts a poor prognosis and promotes breast cancer progression via the upstream TGF-β1/SMAD3 and JNK axis activation. J Cell Commun Signal 2023; 17:89-102. [PMID: 36042157 PMCID: PMC10030767 DOI: 10.1007/s12079-022-00684-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Accepted: 05/25/2022] [Indexed: 11/25/2022] Open
Abstract
Aberrant composition of glycans in the tumor microenvironment (TME) contributes to tumor progression and metastasis. Chondroitin polymerizing factor (CHPF) is a glycosyltransferase that catalyzes the biosynthesis of chondroitin sulfate (CS). It is also correlated to transforming growth factor-β1 (TGF-β1) expression, a crucial mediator in the interaction of cancer cells with TME. In this study, we investigated the association of CHPF expression with the clinicopathological features of breast cancer (BRCA), as well the oncogenic effect and the underling mechanisms of CHPF upon BRCA cells. We found that CHPF expression is significantly increased in human BRCA tissues, and it is positively associated with TGF-β expression (r = 0.7125). The high-expression of CHPF predicts a poor prognosis and is positively correlated with tumor mass, lymph node metastasis, clinical staging and HER-2 negative-expression. The mechanistic study revealed that it promotes BRCA cell proliferation, migration and invasion through TGF-β1-induced SMAD3 and JNK activation in vitro, JNK (SP600125) or SMAD3 (SIS3) inhibitor can remove the promotion of CHPF upon cell proliferation, migration and invasion in MDA-MB-231 cells, which is derived from triple-negative breast cancer (TNBC). Collectively, our finding suggested CHPF may function as an oncogene and is highly expressed in human BRCA tissues. Pharmacological blockade of the upstream of JNK or SMAD3 signaling may provide a novel therapeutic target for refractory TNBC patients with CHPF abnormal high-expression.
Collapse
Affiliation(s)
- Qiang-Feng Pan
- Department of Pathology, Guizhou Medical University, Guiyang, 550004, China
| | - Wei-Wei Ouyang
- Department of Oncology, The Affiliated Hospital of Guizhou Medical University, Guiyang, 550004, China
| | - Meng-Qi Zhang
- Department of Pathology, Guizhou Medical University, Guiyang, 550004, China
| | - Shuo He
- Department of Pathology, Guizhou Medical University, Guiyang, 550004, China
| | - Si-Yun Yang
- Department of Pathology, Guizhou Medical University, Guiyang, 550004, China
| | - Jun Zhang
- Department of Pathology, The Affiliated Hospital of Guizhou Medical University, Guiyang, 550004, China.
- Department of Pathology, Guizhou Medical University, Guiyang, 550004, China.
| |
Collapse
|
12
|
Wang X, Zou C, Li M, Hou C, Jiang W, Bian Z, Zhu L. METTL14 upregulates TCF1 through m6A mRNA methylation to stimulate osteogenic activity in osteoporosis. Hum Cell 2023; 36:178-194. [PMID: 36401086 DOI: 10.1007/s13577-022-00825-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Accepted: 11/11/2022] [Indexed: 11/21/2022]
Abstract
Alteration of N6-methyladenosine (m6A) is closely linked to spanning biological processes including osteoporosis (OP) development. This research focuses on the function of methyltransferase like 14 (METTL14) in bone turnover and its interaction with T cell factor 1 (TCF1). A mouse model of OP was established by ovariectomy (OVX). The bone mass parameters were evaluated by micro-CT analysis. Mouse MC3T3-E1 cells and mouse bone marrow macrophages (BMMs) were induced for osteogenic or osteoclastic differentiation, respectively, for in vitro experiments. The osteogenesis or osteoclasis activity was analyzed by measuring the biomarkers such as OPG, ALP, NFATC1, CTSK, RANKL, and TRAP. RT-qPCR and IHC assays identified reduced METTL14 expression in bone tissues of osteoporotic patients and ovariectomized mice. Artificial METTL14 overexpression increased bone mass of mice and promoted osteogenesis whereas suppressed osteoclasis both in vivo and in vitro. METTL14 promoted TCF1 expression through m6A mRNA methylation, and TCF1 increased the osteogenic activity by elevating the protein level of RUNX2, a key molecule linked to bone formation. In rescue experiments, TCF1 restored the RUNX2 level and osteogenic activity of cells suppressed by METTL14 silencing. In summary, this research demonstrates that METTL14 plays a protective role against OP by promoting the TCF1/RUNX2 axis.
Collapse
Affiliation(s)
- Xuepeng Wang
- Department of Orthopedics Surgery, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, 261 Huansha Road, Hangzhou, 310006, Zhejiang, People's Republic of China
| | - Chunchun Zou
- Department of Obstetrics and Gynecology, Hangzhou Third People's Hospital, Hangzhou, 310009, Zhejiang, People's Republic of China
| | - Maoqiang Li
- Department of Orthopedics Surgery, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, 261 Huansha Road, Hangzhou, 310006, Zhejiang, People's Republic of China
| | - Changju Hou
- Department of Orthopedics Surgery, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, 261 Huansha Road, Hangzhou, 310006, Zhejiang, People's Republic of China
| | - Wu Jiang
- Department of Orthopedics Surgery, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, 261 Huansha Road, Hangzhou, 310006, Zhejiang, People's Republic of China
| | - Zhenyu Bian
- Department of Orthopedics Surgery, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, 261 Huansha Road, Hangzhou, 310006, Zhejiang, People's Republic of China
| | - Liulong Zhu
- Department of Orthopedics Surgery, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, 261 Huansha Road, Hangzhou, 310006, Zhejiang, People's Republic of China.
| |
Collapse
|
13
|
Saranya I, Akshaya R, Selvamurugan N. Regulation of Wnt signaling by non-coding RNAs during osteoblast differentiation. Differentiation 2022; 128:57-66. [DOI: 10.1016/j.diff.2022.10.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 10/10/2022] [Accepted: 10/11/2022] [Indexed: 11/03/2022]
|
14
|
Notch4 affects the proliferation and differentiation of deer antler chondrocytes through the Smad3/lncRNA27785.1 axis. Cell Signal 2022; 98:110429. [DOI: 10.1016/j.cellsig.2022.110429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 07/21/2022] [Accepted: 07/27/2022] [Indexed: 11/22/2022]
|
15
|
Roohaninasab M, Yavari SF, Babazadeh M, Hagh RA, Pazoki M, Amrovani M. Evaluating the Role of lncRNAs in the Incidence of Cardiovascular Diseases in Androgenetic Alopecia Patients. Cardiovasc Toxicol 2022; 22:603-619. [PMID: 35507254 DOI: 10.1007/s12012-022-09742-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Accepted: 04/11/2022] [Indexed: 11/28/2022]
Abstract
Hair loss occurs in patients with Androgenetic Alopecia (AGA). The pattern of hair loss is different between men and women. The main cause of hair loss is increased cell apoptosis and decreased regeneration, proliferation and differentiation processes in hair follicles. Long Non-Coding RNAs (lncRNAs) are one of the most important molecules that regulate the processes of apoptosis, regeneration, proliferation and differentiation in hair follicles. Since studies have shown that lncRNAs can be effective in the development of cardiotoxicity and induction of cardiovascular disease (CVD); so effective lncRNAs in the regulation of regeneration, proliferation, differentiation and apoptosis of hair follicles can be involved in the development of CVD in AGA patients with. Therefore, this study investigated the lncRNAs involved in increasing apoptosis and reducing the processes of regeneration, proliferation and differentiation of hair follicles. The aim of the current study was to evaluate the role of lncRNAs as a risk factor in the incidence of CVD in AGA patients; it will help to design treatment strategies by targeting signaling pathways without any cardiotoxicity complications.
Collapse
Affiliation(s)
- Masoumeh Roohaninasab
- Department of Dermatology, Rasool Akram Medical Complex, Iran University of Medical Sciences, Sattarkhan St, Tehran, 1445613131, Iran
| | - Shadnaz Fakhteh Yavari
- Department of Tissue Engineering and Applied Cell Science, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Science, Tehran, Iran.,Parvaz Research Ideas Supporter Institute, Tehran, Iran
| | - Motahareh Babazadeh
- Department of Dermatology, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | | | - Mahboubeh Pazoki
- Department of Cardiology, Rasoul Akram General Hospital, Iran University of Medical Sciences, Tehran, Iran.
| | - Mehran Amrovani
- High Institute for Education and Research in Transfusion Medicine, Tehran, Iran.
| |
Collapse
|
16
|
Luo D, Li W, Xie C, Yin L, Su X, Chen J, Huang H. Capsaicin Attenuates Arterial Calcification Through Promoting SIRT6-Mediated Deacetylation and Degradation of Hif1α (Hypoxic-Inducible Factor-1 Alpha). Hypertension 2022; 79:906-917. [PMID: 35232219 DOI: 10.1161/hypertensionaha.121.18778] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND Sustained Hif1α (hypoxic-inducible factor-1 alpha) accumulation plays a central role in osteogenic transdifferentiation and subsequent calcification. Capsaicin, the potent agonist of TRPV1 (transient receptor potential vanilloid type 1), was found to mitigate hypoxic-related injury and reverse phenotypic switch of vascular smooth muscle cells. However, its role in arterial calcification and the underlying mechanisms remain unexplored. METHODS We used data from Multi-Ethnic Study of Atherosclerosis to examine the association of coronary artery calcification and chili consumption. Chronic kidney disease mice and high phosphate-induced vascular smooth muscle cells calcification models were established to investigate the anticalcification effect of capsaicin, evaluated by calcium deposition and changes in phenotype markers. RESULTS Chili consumption was negatively correlated with coronary artery calcification and conferred a smaller progression burden during follow-up. Capsaicin reduced calcium deposition and osteogenic transdifferentiation both in vivo and in vitro. Using siTRPV1 and capsazepine, the anticalcification effect of capsaicin was abrogated. Hif1α was increased in Pi-treated vascular smooth muscle cells and its degradation was accelerated by capsaicin. Retaining Hif1α stability using CoCl2 or MG132 abolished the protective effect of capsaicin. We further identified an increased expression of SIRT6 in response to capsaicin and confirmed the physical interaction between SIRT6 and Hif1α. Acetylated Hif1α was decreased, whereas hydroxylated Hif1α was increased under capsaicin treatment. Using immunohistochemistry analysis, we observed increased SIRT6 and reduced Hif1α in both SIRT6 transgenic and capsaicin-treated chronic kidney disease mice. CONCLUSIONS Capsaicin facilitates deacetylation and degradation of Hif1α by upregulating SIRT6, which inhibits osteogenic transdifferentiation and protects against arterial calcification. These data highlight a promising therapeutic target for the management of arterial calcification.
Collapse
Affiliation(s)
- Dongling Luo
- Department of Cardiology, the Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, China (D.L., W.L., C.X., L.Y., H.H.)
| | - Wenxin Li
- Department of Cardiology, the Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, China (D.L., W.L., C.X., L.Y., H.H.)
| | - Changming Xie
- Department of Cardiology, the Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, China (D.L., W.L., C.X., L.Y., H.H.)
| | - Li Yin
- Department of Cardiology, the Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, China (D.L., W.L., C.X., L.Y., H.H.)
| | - Xiaoyan Su
- Department of Nephropathy, Tungwah Hospital of Sun Yat-sen University, Dongguan, China (X.S.)
| | - Jie Chen
- Department of Radiation Oncology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China (J.C.)
| | - Hui Huang
- Department of Cardiology, the Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, China (D.L., W.L., C.X., L.Y., H.H.)
| |
Collapse
|
17
|
Long noncoding RNA Lnc-DIF inhibits bone formation by sequestering miR-489-3p. iScience 2022; 25:103949. [PMID: 35265818 PMCID: PMC8898894 DOI: 10.1016/j.isci.2022.103949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2021] [Revised: 01/06/2022] [Accepted: 02/16/2022] [Indexed: 11/30/2022] Open
Abstract
Osteoporosis has become a high incident bone disease along with the aging of human population. Long noncoding RNAs (LncRNAs) play an important role in osteoporosis incidence. In this study, we screened out an LncRNA negatively correlated with osteoblast differentiation, which was therefore named Lnc-DIF (differentiation inhibiting factor). Functional analysis proved that Lnc-DIF inhibited bone formation. A special structure containing multiple 53 nucleotide repeats was found in the trailing end of Lnc-DIF. Our study suggested that this repeat sequence could sequester multiple miR-489-3p and inhibit bone formation through miR-489-3p/SMAD2 axis. Moreover, siRNA of Lnc-DIF would rescue bone formation in both aging and ovariectomized osteoporosis mice. This study revealed a kind of LncRNA that could function as a sponge and regulate multiple miRNAs. RNA therapy techniques that target these LncRNAs could manipulate its downstream miRNA-target pathway with significantly higher efficiency and specificity. This provided potential therapeutic insight for RNA-based therapy for osteoporosis. Identified LncRNA Lnc-DIF that inhibited bone formation Lnc-DIF sequestered multiple miR-489-3p by the repeat sequences on its trailing end Lnc-DIF repeat sequence inhibited bone formation via miR-489-3p/SMAD2 axis Lnc-DIF siRNA showed strong capability on rescuing osteoporosis
Collapse
|
18
|
Zhou W, Feng Q, Cheng M, Zhang D, Jin J, Zhang S, Bai Y, Xu J. LncRNA H19 sponges miR-103-3p to promote the high phosphorus-induced osteoblast phenotypic transition of vascular smooth muscle cells by upregulating Runx2. Cell Signal 2022; 91:110220. [DOI: 10.1016/j.cellsig.2021.110220] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2021] [Revised: 12/06/2021] [Accepted: 12/13/2021] [Indexed: 12/11/2022]
|
19
|
De la Fuente-Hernandez MA, Sarabia-Sanchez MA, Melendez-Zajgla J, Maldonado-Lagunas V. Role of lncRNAs into Mesenchymal Stromal Cell Differentiation. Am J Physiol Cell Physiol 2022; 322:C421-C460. [PMID: 35080923 DOI: 10.1152/ajpcell.00364.2021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Currently, findings support that 75% of the human genome is actively transcribed, but only 2% is translated into a protein, according to databases such as ENCODE (Encyclopedia of DNA Elements) [1]. The development of high-throughput sequencing technologies, computational methods for genome assembly and biological models have led to the realization of the importance of the previously unconsidered non-coding fraction of the genome. Along with this, noncoding RNAs have been shown to be epigenetic, transcriptional and post-transcriptional regulators in a large number of cellular processes [2]. Within the group of non-coding RNAs, lncRNAs represent a fascinating field of study, given the functional versatility in their mode of action on their molecular targets. In recent years, there has been an interest in learning about lncRNAs in MSC differentiation. The aim of this review is to address the signaling mechanisms where lncRNAs are involved, emphasizing their role in either stimulating or inhibiting the transition to differentiated cell. Specifically, the main types of MSC differentiation are discussed: myogenesis, osteogenesis, adipogenesis and chondrogenesis. The description of increasingly new lncRNAs reinforces their role as players in the well-studied field of MSC differentiation, allowing a step towards a better understanding of their biology and their potential application in the clinic.
Collapse
Affiliation(s)
- Marcela Angelica De la Fuente-Hernandez
- Facultad de Medicina, Posgrado en Ciencias Biológicas, Universidad Nacional Autónoma de México, Mexico City, Mexico.,Laboratorio de Epigenética, Instituto Nacional de Medicina Genómica, Mexico City, Mexico
| | - Miguel Angel Sarabia-Sanchez
- Facultad de Medicina, Posgrado en Ciencias Bioquímicas, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Jorge Melendez-Zajgla
- Laboratorio de Genómica Funcional del Cáncer, Instituto Nacional de Medicina Genómica, Mexico City, Mexico
| | | |
Collapse
|
20
|
The management of bone defect using long non-coding RNA as a potential biomarker for regulating the osteogenic differentiation process. Mol Biol Rep 2022; 49:2443-2453. [PMID: 34973122 PMCID: PMC8863721 DOI: 10.1007/s11033-021-07013-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2021] [Accepted: 11/24/2021] [Indexed: 02/07/2023]
Abstract
Tissue engineered bone brings hope to the treatment of bone defects, and the osteogenic differentiation of stem cells is the key link. Inducing osteogenic differentiation of stem cells may be a potential approach to promote bone regeneration. In recent years, lncRNA has been studied in the field increasingly, which is believed can regulate cell cycle, proliferation, metastasis, differentiation and immunity, participating in a variety of physiology and pathology processes. At present, it has been confirmed that certain lncRNAs regulate the osteogenesis of stem cells and take part in mediating signaling pathways including Wnt/β-catenin, MAPK, TGF-β/BMP, and Notch pathways. Here, we provided an overview of lncRNA, reviewed its researches in the osteogenic differentiation of stem cells, emphasized the importance of lncRNA in bone regeneration, and focused on the roles of lncRNA in signaling pathways, in order to make adequate preparations for applying lncRNA to bone tissue Engineering, letting it regulate the osteogenic differentiation of stem cells for bone regeneration.
Collapse
|
21
|
Yu X, Rong PZ, Song MS, Shi ZW, Feng G, Chen XJ, Shi L, Wang CH, Pang QJ. lncRNA SNHG1 induced by SP1 regulates bone remodeling and angiogenesis via sponging miR-181c-5p and modulating SFRP1/Wnt signaling pathway. Mol Med 2021; 27:141. [PMID: 34732133 PMCID: PMC8565074 DOI: 10.1186/s10020-021-00392-2] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Accepted: 10/02/2021] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND We aimed to investigate the functions and underlying mechanism of lncRNA SNHG1 in bone differentiation and angiogenesis in the development of osteoporosis. METHODS The differential gene or proteins expressions were measured by qPCR or western blot assays, respectively. The targeted relationships among molecular were confirmed through luciferase reporter, RIP and ChIP assays, respectively. Alkaline phosphatase (ALP), alizarin red S (ARS) and TRAP staining were performed to measure the osteoblast/osteoclast differentiation of BMSCs. The viability, migration and angiogenesis in BM-EPCs were validated by CCK-8, clone formation, transwell and tube formation assays, respectively. Western blot and immunofluorescence detected the cytosolic/nuclear localization of β-catenin. Ovariectomized (OVX) mice were established to confirm the findings in vitro. RESULTS SNHG1 was enhanced and miR-181c-5p was decreased in serum and femoral tissue from OVX mice. SNHG1 directly inhibited miR-181c-5p to activate Wnt3a/β-catenin signaling by upregulating SFRP1. In addition, knockdown of SNHG1 promoted the osteogenic differentiation of BMSCs by increasing miR-181c-5p. In contrast, SNHG1 overexpression advanced the osteoclast differentiation of BMSCs and inhibited the angiogenesis of BM-EPCs, whereas these effects were all reversed by miR-181c-5p overexpression. In vivo experiments indicated that SNHG1 silencing alleviated osteoporosis through stimulating osteoblastogenesis and inhibiting osteoclastogenesis by modulating miR-181c-5p. Importantly, SNHG1 could be induced by SP1 in BMSCs. CONCLUSIONS Collectively, SP1-induced SNHG1 modulated SFRP1/Wnt/β-catenin signaling pathway via sponging miR-181c-5p, thereby inhibiting osteoblast differentiation and angiogenesis while promoting osteoclast formation. Further, SNHG1 silence might provide a potential treatment for osteoporosis.
Collapse
Affiliation(s)
- Xiao Yu
- Department of Orthopedics, HwaMei Hospital, University of Chinese Academy of Sciences, Ningbo, 315000, Zhejiang Province, China
- Ningbo Institute of Life and Health Industry, University of Chinese Academy of Sciences, No. 41 Xibei Street, Ningbo, 315000, Zhejiang Province, China
| | - Peng-Ze Rong
- Ningbo University School of Medicine, Ningbo, 315211, Zhejiang Province, China
| | - Meng-Sheng Song
- Ningbo University School of Medicine, Ningbo, 315211, Zhejiang Province, China
| | - Ze-Wen Shi
- Ningbo University School of Medicine, Ningbo, 315211, Zhejiang Province, China
| | - Gong Feng
- Ningbo University School of Medicine, Ningbo, 315211, Zhejiang Province, China
| | - Xian-Jun Chen
- Department of Orthopedics, HwaMei Hospital, University of Chinese Academy of Sciences, Ningbo, 315000, Zhejiang Province, China
- Ningbo Institute of Life and Health Industry, University of Chinese Academy of Sciences, No. 41 Xibei Street, Ningbo, 315000, Zhejiang Province, China
| | - Lin Shi
- Department of Orthopedics, HwaMei Hospital, University of Chinese Academy of Sciences, Ningbo, 315000, Zhejiang Province, China
- Ningbo Institute of Life and Health Industry, University of Chinese Academy of Sciences, No. 41 Xibei Street, Ningbo, 315000, Zhejiang Province, China
| | - Cheng-Hao Wang
- Department of Orthopedics, HwaMei Hospital, University of Chinese Academy of Sciences, Ningbo, 315000, Zhejiang Province, China
- Ningbo Institute of Life and Health Industry, University of Chinese Academy of Sciences, No. 41 Xibei Street, Ningbo, 315000, Zhejiang Province, China
| | - Qing-Jiang Pang
- Department of Orthopedics, HwaMei Hospital, University of Chinese Academy of Sciences, Ningbo, 315000, Zhejiang Province, China.
- Ningbo Institute of Life and Health Industry, University of Chinese Academy of Sciences, No. 41 Xibei Street, Ningbo, 315000, Zhejiang Province, China.
| |
Collapse
|
22
|
Xu Y, Ma J, Xu G, Ma D. Recent advances in the epigenetics of bone metabolism. J Bone Miner Metab 2021; 39:914-924. [PMID: 34250565 DOI: 10.1007/s00774-021-01249-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Accepted: 07/03/2021] [Indexed: 12/22/2022]
Abstract
Osteoporosis is a common form of metabolic bone disease that is costly to treat and is primarily diagnosed on the basis of bone mineral density. As the influences of genetic lesions and environmental factors are increasingly studied in the pathological development of osteoporosis, regulated epigenetics are emerging as the important pathogenesis mechanisms in osteoporosis. Recently, osteoporosis genome-wide association studies and multi-omics technologies have revealed that susceptibility loci and the misregulation of epigenetic modifiers are key factors in osteoporosis. Over the past decade, extensive studies have demonstrated epigenetic mechanisms, such as DNA methylation, histone/chromatin modifications, and non-coding RNAs, as potential contributing factors in osteoporosis that affect disease initiation and progression. Herein, we review recent advances in epigenetics in osteoporosis, with a focus on exploring the underlying mechanisms and potential diagnostic/prognostic biomarker applications for osteoporosis.
Collapse
Affiliation(s)
- Yuexin Xu
- Key Laboratory of Metabolism and Molecular Medicine, Ministry of Education, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Jing Ma
- Department of Facial Plastic and Reconstructive Surgery, ENT Institute, Eye and ENT Hospital, Fudan University, Shanghai, China
| | - Guohua Xu
- Department of Orthopedic Surgery, The Spine Surgical Center, Changzheng Hospital, Second Military Medical University, Shanghai, 20000, China.
| | - Duan Ma
- Key Laboratory of Metabolism and Molecular Medicine, Ministry of Education, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai, China.
| |
Collapse
|
23
|
Tang JZ, Zhao GY, Zhao JZ, Di DH, Wang B. lncRNA IGF2-AS promotes the osteogenic differentiation of bone marrow mesenchymal stem cells by sponging miR-3,126-5p to upregulate KLK4. J Gene Med 2021; 23:e3372. [PMID: 34101307 DOI: 10.1002/jgm.3372] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 05/29/2021] [Accepted: 06/04/2021] [Indexed: 12/27/2022] Open
Abstract
BACKGROUND Osteoporosis (OP) is a bone disease characterized by reduced amount and quality of bone. This study was designed to explore the role and mechanism of lncRNA IGF2-AS in the osteogenic differentiation of bone marrow mesenchymal stem cells (BMSCs). METHODS Human lncRNA and miRNA microarray analyses were performed to measure the differential expression levels of lncRNAs and miRNAs in undifferentiated and osteogenically differentiated BMSCs. lncRNA IGF2-AS, miR-3,126-5p, and KLK4 levels were measured by real-time quantitative polymerase chain reaction (RT-qPCR). Osteogenic differentiation of BMSCs was assessed by alkaline phosphatase (ALP) staining and Alizarin Red staining (ARS). Protein levels of osterix (Osx), osteocalcin (OCN), and runt-related transcription factor 2 (RUNX2) were examined by RT-PCR and western blot assays. The binding relationship between miR-3,126-5p and lncRNA IGF2-AS or KLK4 was predicted by TargetScan (http://www.targetscan.org/vert_72/) and then verified with a dual-luciferase reporter assay. RESULTS lncRNA IGF2-AS and KLK4 were highly expressed and miR-3,126-5p was weakly expressed in osteogenically differentiated BMSCs. Moreover, lncRNA IGF2-AS overexpression enhanced the osteogenic differentiation of BMSCs. In contrast, lncRNA IGF2-AS knockdown showed the opposite trend. Moreover, miR-3,126-5p overexpression abolished the lncRNA IGF2-AS-mediated osteogenic differentiation of BMSCs. lncRNA IGF2-AS functions as a sponge of miR-3,126-5p to regulate KLK4 expression. CONCLUSION lncRNA IGF2-AS enhances the osteogenic differentiation of BMSCs by modulating the miR-3,126-5p/KLK4 axis, suggesting a promising therapeutic target for bone-related diseases.
Collapse
Affiliation(s)
- Jia Zhu Tang
- Department of Joint Surgery, Affiliated Hospital of Jiangsu University, Zhen Jiang, Jiangsu Province, China
| | - Guo Yang Zhao
- Department of Joint Surgery, Affiliated Hospital of Jiangsu University, Zhen Jiang, Jiangsu Province, China
| | - Jian Zhong Zhao
- Department of Joint Surgery, Affiliated Hospital of Jiangsu University, Zhen Jiang, Jiangsu Province, China
| | - Dong Hua Di
- Department of Joint Surgery, Affiliated Hospital of Jiangsu University, Zhen Jiang, Jiangsu Province, China
| | - Bo Wang
- Department of Joint Surgery, Affiliated Hospital of Jiangsu University, Zhen Jiang, Jiangsu Province, China
| |
Collapse
|
24
|
Abstract
Osteoporosis is a common bone disease characterized by low bone mass and deterioration of bone microstructure, which predisposes to higher risks of bone fragility and bone fracture. Long non-coding RNAs (lncRNAs) are a class of RNAs with a length of > 200 nucleotides without protein-coding function, which control the expression of genes and affect multiple biological processes. Accumulating evidence suggests that lncRNAs are widely involved in the molecular mechanisms of osteoporosis. This review aims to summarize the function and underlying mechanism of lncRNAs involved in the development of osteoporosis, and how it contributes to osteoblast and osteoclast function. This knowledge will shed new light on the modulation and potential treatment of osteoporosis.
Collapse
Affiliation(s)
- Yinxi He
- Department of Orthopaedic Trauma, The Third Hospital of Shijiazhuang, Shijiazhuang, 050000, Hebei, People's Republic of China
| | - Yanxia Chen
- Department of Endocrinology, The Second Hospital of Hebei Medical University, 215 Hepingxi Road, Shijiazhuang, 050000, Hebei, People's Republic of China.
| |
Collapse
|
25
|
Aurilia C, Donati S, Palmini G, Miglietta F, Iantomasi T, Brandi ML. The Involvement of Long Non-Coding RNAs in Bone. Int J Mol Sci 2021; 22:ijms22083909. [PMID: 33920083 PMCID: PMC8069547 DOI: 10.3390/ijms22083909] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Revised: 04/02/2021] [Accepted: 04/08/2021] [Indexed: 12/18/2022] Open
Abstract
A harmonious balance between osteoblast and osteoclast activity guarantees optimal bone formation and resorption, pathological conditions affecting the bone may arise. In recent years, emerging evidence has shown that epigenetic mechanisms play an important role during osteoblastogenesis and osteoclastogenesis processes, including long non-coding RNAs (lncRNAs). These molecules are a class of ncRNAs with lengths exceeding 200 nucleotides not translated into protein, that have attracted the attention of the scientific community as potential biomarkers to use for the future development of novel diagnostic and therapeutic approaches for several pathologies, including bone diseases. This review aims to provide an overview of the lncRNAs and their possible molecular mechanisms in the osteoblastogenesis and osteoclastogenesis processes. The deregulation of their expression profiles in common diseases associated with an altered bone turnover is also described. In perspective, lncRNAs could be considered potential innovative molecular biomarkers to help with earlier diagnosis of bone metabolism-related disorders and for the development of new therapeutic strategies.
Collapse
Affiliation(s)
- Cinzia Aurilia
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, 50134 Florence, Italy; (C.A.); (S.D.); (G.P.); (F.M.); (T.I.)
| | - Simone Donati
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, 50134 Florence, Italy; (C.A.); (S.D.); (G.P.); (F.M.); (T.I.)
| | - Gaia Palmini
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, 50134 Florence, Italy; (C.A.); (S.D.); (G.P.); (F.M.); (T.I.)
| | - Francesca Miglietta
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, 50134 Florence, Italy; (C.A.); (S.D.); (G.P.); (F.M.); (T.I.)
| | - Teresa Iantomasi
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, 50134 Florence, Italy; (C.A.); (S.D.); (G.P.); (F.M.); (T.I.)
| | - Maria Luisa Brandi
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, 50134 Florence, Italy; (C.A.); (S.D.); (G.P.); (F.M.); (T.I.)
- Fondazione Italiana Ricerca sulle Malattie dell’Osso (FIRMO Onlus), 50141 Florence, Italy
- Correspondence:
| |
Collapse
|
26
|
Xu X, Yang J, Ye Y, Chen G, Zhang Y, Wu H, Song Y, Feng M, Feng X, Chen X, Wang X, Lin X, Bai X, Shen J. SPTBN1 Prevents Primary Osteoporosis by Modulating Osteoblasts Proliferation and Differentiation and Blood Vessels Formation in Bone. Front Cell Dev Biol 2021; 9:653724. [PMID: 33816505 PMCID: PMC8017174 DOI: 10.3389/fcell.2021.653724] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Accepted: 02/26/2021] [Indexed: 12/15/2022] Open
Abstract
Osteoporosis is a common systemic skeletal disorder that leads to increased bone fragility and increased risk of fracture. Although βII-Spectrin (SPTBN1) has been reported to be involved in the development of various human cancers, the function and underlying molecular mechanisms of SPTBN1 in primary osteoporosis remain unclear. In this study, we first established a primary osteoporosis mouse model of senile osteoporosis and postmenopausal osteoporosis. The results showed that the expression of SPTBN1 was significantly downregulated in primary osteoporosis mice model compared with the control group. Furthermore, silencing of SPTBN1 led to a decrease in bone density, a small number of trabecular bones, wider gap, decreased blood volume fraction and number of blood vessels, as well as downregulation of runt-related transcription factor 2 (Runx2), Osterix (Osx), Osteocalcin (Ocn), and vascular endothelial growth factor (VEGF) in primary osteoporosis mice model compared with the control group. Besides, the silencing of SPTBN1 inhibited the growth and induced apoptosis of mouse pre-osteoblast MC3T3-E1 cells compared with the negative control group. Moreover, the silencing of SPTBN1 significantly increased the expression of TGF-β, Cxcl9, and the phosphorylation level STAT1 and Smad3 in MC3T3-E1 cells compared with the control group. As expected, overexpression of SPTBN1 reversed the effect of SPTBN1 silencing in the progression of primary osteoporosis both in vitro and in vivo. Taken together, these results suggested that SPTBN1 suppressed primary osteoporosis by facilitating the proliferation, differentiation, and inhibition of apoptosis in osteoblasts via the TGF-β/Smad3 and STAT1/Cxcl9 pathways. Besides, overexpression of SPTBN1 promoted the formation of blood vessels in bone by regulating the expression of VEGF. This study, therefore, provided SPTBN1 as a novel therapeutic target for osteoporosis.
Collapse
Affiliation(s)
- Xuejuan Xu
- Department of Endocrinology, The First People's Hospital of Foshan, Foshan, China.,Department of Endocrinology, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China.,The Third Subcommittee on Clinical Medicine, Southern Medical University, Guangzhou, China
| | - Jiayi Yang
- Department of Endocrinology, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China
| | - Yanshi Ye
- Department of Endocrinology, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China
| | - Guoqiang Chen
- Department of Endocrinology, The First People's Hospital of Foshan, Foshan, China
| | - Yinhua Zhang
- Department of Endocrinology, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China
| | - Hangtian Wu
- Department of Orthopaedics and Traumatology, Nanfang Hospital of Southern Medical University, Guangzhou, China
| | - Yuqian Song
- Department of Endocrinology, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China
| | - Meichen Feng
- Department of Endocrinology, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China
| | - Xiaoting Feng
- Department of Endocrinology, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China
| | - Xingying Chen
- Department of Endocrinology, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China
| | - Xiao Wang
- Shunde Hospital of Southern Medical University (The First People's Hospital of Shunde), Foshan, China
| | - Xu Lin
- Department of Endocrinology, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China
| | - Xiaochun Bai
- Department of Endocrinology, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China.,The Third Subcommittee on Clinical Medicine, Southern Medical University, Guangzhou, China
| | - Jie Shen
- Department of Endocrinology, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China.,Shunde Hospital of Southern Medical University (The First People's Hospital of Shunde), Foshan, China
| |
Collapse
|
27
|
A Novel Long Noncoding RNA, Lnc-OAD, Is Required for Bone Morphogenetic Protein 2- (BMP-2-) Induced Osteoblast Differentiation. BIOMED RESEARCH INTERNATIONAL 2021; 2021:6697749. [PMID: 33816629 PMCID: PMC7987440 DOI: 10.1155/2021/6697749] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 12/08/2020] [Accepted: 03/03/2021] [Indexed: 01/16/2023]
Abstract
Long noncoding RNAs (lncRNAs) play very important roles in cell differentiation. Our recent study has demonstrated that a novel lncRNA named lnc-OAD modulated 3T3-L1 adipocyte differentiation. In the present study, we examined the roles of lnc-OAD in bone morphogenetic protein 2- (BMP-2-) induced osteoblast differentiation. Lnc-OAD expression was increased during BMP-2-induced osteoblast differentiation in C3H10T1/2 mesenchymal stem cells and MC3T3-E1 preosteoblast cells. Knockdown of lnc-OAD expression by specific siRNA remarkably decreased early osteoblast differentiation. In addition, stable knockdown of lnc-OAD by lentivirus vector also significantly inhibited late osteoblast differentiation and matrix mineralization in vitro. Conversely, stably overexpressed lnc-OAD with lentiviral vector accelerated osteoblast differentiation. Mechanistically, knockdown of lnc-OAD reduced significantly the phosphorylation of AKT and the expression of Osterix induced by BMP-2, while overexpression of lnc-OAD enhanced the phosphorylation of AKT and the expression of Osterix. Taken together, our study suggests that lnc-OAD plays an important role in modulating BMP-2-induced osteoblast differentiation via, at least in part, regulating the AKT-Osterix signaling axis.
Collapse
|
28
|
Chen Q, Gu M, Cai ZK, Zhao H, Sun SC, Liu C, Zhan M, Chen YB, Wang Z. TGF-β1 promotes epithelial-to-mesenchymal transition and stemness of prostate cancer cells by inducing PCBP1 degradation and alternative splicing of CD44. Cell Mol Life Sci 2021; 78:949-962. [PMID: 32440711 PMCID: PMC11072728 DOI: 10.1007/s00018-020-03544-5] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2019] [Revised: 03/16/2020] [Accepted: 04/27/2020] [Indexed: 12/20/2022]
Abstract
CD44 is a marker of cancer stem cell (CSC) in many types of tumors. Alternative splicing of its 20 exons generates various CD44 isoforms that have different tissue specific expression and functions, including the CD44 standard isoform (CD44s) encoded by the constant exons and the CD44 variant isoforms (CD44v) with variant exon insertions. Switching between the CD44v and CD44s isoforms plays pivotal roles in tumor progression. Here we reported a novel mechanism of CD44 alternative splicing induced by TGF-β1 and its connection to enhanced epithelial-to-mesenchymal transition (EMT) and stemness in human prostate cancer cells. TGF-β1 treatment increased the expression of CD44s and N-cadherin while decreased the expression of CD44v and E-cadherin in DU-145 prostate cancer cells. Other EMT markers and cancer stem cell markers were also upregulated after TGF-β1 treatment. RNAi knockdown of CD44 reversed the phenotype, which could be rescued by overexpressing CD44s but not CD44v, indicating the alternatively spliced isoform CD44s mediated the activity of TGF-β1 treatment. Mechanistically, TGF-β1 treatment induced the phosphorylation, poly-ubiquitination, and degradation of PCBP1, a well-characterized RNA binding protein known to regulate CD44 splicing. RNAi knockdown of PCBP1 was able to mimic TGF-β1 treatment to increase the expression of CD44s, as well as the EMT and cancer stem cell markers. In vitro and in vivo experiments were performed to show that CD44s promoted prostate cancer cell migration, invasion, and tumor initiation. Taken together, we defined a mechanism by which TGF-β1 induces CD44 alternative splicing and promotes prostate cancer progression.
Collapse
Affiliation(s)
- Qi Chen
- Department of Urology, Shanghai Ninth People's Hospital, School of Medicine, Shanghai Jiao Tong University, 639 Zhizaoju Road, Shanghai, 200011, China
| | - Meng Gu
- Department of Urology, Shanghai Ninth People's Hospital, School of Medicine, Shanghai Jiao Tong University, 639 Zhizaoju Road, Shanghai, 200011, China
| | - Zhi-Kang Cai
- Department of Urology, Shanghai Ninth People's Hospital, School of Medicine, Shanghai Jiao Tong University, 639 Zhizaoju Road, Shanghai, 200011, China
| | - Hu Zhao
- Department of Urology, Guanyun People's Hospital, Lianyungang, China
| | - Shi-Cheng Sun
- Department of Urology, Guanyun People's Hospital, Lianyungang, China
| | - Chong Liu
- Department of Urology, Shanghai Ninth People's Hospital, School of Medicine, Shanghai Jiao Tong University, 639 Zhizaoju Road, Shanghai, 200011, China
| | - Ming Zhan
- Department of Urology, Shanghai Ninth People's Hospital, School of Medicine, Shanghai Jiao Tong University, 639 Zhizaoju Road, Shanghai, 200011, China
| | - Yan-Bo Chen
- Department of Urology, Shanghai Ninth People's Hospital, School of Medicine, Shanghai Jiao Tong University, 639 Zhizaoju Road, Shanghai, 200011, China.
| | - Zhong Wang
- Department of Urology, Shanghai Ninth People's Hospital, School of Medicine, Shanghai Jiao Tong University, 639 Zhizaoju Road, Shanghai, 200011, China.
| |
Collapse
|
29
|
Involvement of the long noncoding RNA H19 in osteogenic differentiation and bone regeneration. Stem Cell Res Ther 2021; 12:74. [PMID: 33478579 PMCID: PMC7819155 DOI: 10.1186/s13287-021-02149-4] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Accepted: 01/06/2021] [Indexed: 12/13/2022] Open
Abstract
Osteogenic differentiation and bone regeneration are complex processes involving multiple genes and multiple steps. In this review, we summarize the effects of the long noncoding RNA (lncRNA) H19 on osteogenic differentiation. Osteogenic differentiation includes matrix secretion and calcium mineralization as hallmarks of osteoblast differentiation and the absorption of calcium and phosphorus as hallmarks of osteoclast differentiation. Mesenchymal stem cells (MSCs) form osteoprogenitor cells, pre-osteoblasts, mature osteoblasts, and osteocytes through induction and differentiation. lncRNAs regulate the expression of coding genes and play essential roles in osteogenic differentiation and bone regeneration. The lncRNA H19 is known to have vital roles in osteogenic induction. This review highlights the role of H19 as a novel target for osteogenic differentiation and the promotion of bone regeneration.
Collapse
|
30
|
Ai L, Yi W, Chen L, Wang H, Huang Q. Xian-Ling-Gu-Bao protects osteoporosis through promoting osteoblast differentiation by targeting miR-100-5p/KDM6B/RUNX2 axis. In Vitro Cell Dev Biol Anim 2021; 57:3-9. [PMID: 33398630 DOI: 10.1007/s11626-020-00530-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Accepted: 11/10/2020] [Indexed: 10/22/2022]
Affiliation(s)
- Liang Ai
- Guangzhou University of Chinese Medicine, Guangzhou, 510006, China.,Department of Traditional Chinese Medicine, Sun Yat-Sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510000, China
| | - Weimin Yi
- Department of Traditional Chinese Medicine, Sun Yat-Sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510000, China
| | - Liudan Chen
- Department of Traditional Chinese Medicine, Sun Yat-Sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510000, China
| | - Haibin Wang
- Department of Orthopedics, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 510405, China.
| | - Qihui Huang
- Department of Traditional Chinese Medicine, Sun Yat-Sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510000, China.
| |
Collapse
|
31
|
Yin C, Tian Y, Yu Y, Li D, Miao Z, Su P, Zhao Y, Wang X, Pei J, Zhang K, Qian A. Long noncoding RNA AK039312 and AK079370 inhibits bone formation via miR-199b-5p. Pharmacol Res 2021; 163:105230. [PMID: 33031910 DOI: 10.1016/j.phrs.2020.105230] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 09/29/2020] [Accepted: 09/30/2020] [Indexed: 12/14/2022]
Abstract
Osteoporosis caused by aging and menopause had become an emerging threat to human health. The reduction of osteoblast differentiation has been considered to be an essential cause of osteoporosis. Osteoblast differentiation could be regulated by LncRNAs, and increasing evidences have proved that LncRNAs may be adopted as potential therapeutic targets for osteoporosis. However, reports on rescue effects of LncRNAs in vivo are relatively limited. In this study, two LncRNAs (AK039312 and AK079370) were screened as osteogenic related LncRNAs. Both AK039312 and AK079370 could inhibit osteoblast differentiation and bone formation through suppressing osteogenic transcription factors. This inhibitory effect was achieved via binding and sequestering miR-199b-5p, and enhanced GSK-3β which further inhibited wnt/β-catenin pathway. Moreover, the siRNAs of AK039312 and AK079370 significantly alleviated postmenopausal osteoporosis, and the combination of si-AK039312 and si-AK079370 was more efficient than applying one si-LncRNA alone. This study has provided new insights for the therapy of osteoporosis.
Collapse
Affiliation(s)
- Chong Yin
- Lab for Bone Metabolism, Xi'an Key Laboratory of Special Medicine and Health Engineering, Key Lab for Space Biosciences and Biotechnology, Research Center for Special Medicine and Health Systems Engineering, NPU-UAB Joint Laboratory for Bone Metabolism, School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi, China
| | - Ye Tian
- Lab for Bone Metabolism, Xi'an Key Laboratory of Special Medicine and Health Engineering, Key Lab for Space Biosciences and Biotechnology, Research Center for Special Medicine and Health Systems Engineering, NPU-UAB Joint Laboratory for Bone Metabolism, School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi, China
| | - Yang Yu
- Tianjin Key Laboratory on Technologies Enabling Development Clinical Therapeutics and Diagnostics (Theranostics), School of Pharmacy, Tianjin Medical University, Tianjin, China
| | - Dijie Li
- Lab for Bone Metabolism, Xi'an Key Laboratory of Special Medicine and Health Engineering, Key Lab for Space Biosciences and Biotechnology, Research Center for Special Medicine and Health Systems Engineering, NPU-UAB Joint Laboratory for Bone Metabolism, School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi, China
| | - Zhiping Miao
- Lab for Bone Metabolism, Xi'an Key Laboratory of Special Medicine and Health Engineering, Key Lab for Space Biosciences and Biotechnology, Research Center for Special Medicine and Health Systems Engineering, NPU-UAB Joint Laboratory for Bone Metabolism, School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi, China
| | - Peihong Su
- Lab for Bone Metabolism, Xi'an Key Laboratory of Special Medicine and Health Engineering, Key Lab for Space Biosciences and Biotechnology, Research Center for Special Medicine and Health Systems Engineering, NPU-UAB Joint Laboratory for Bone Metabolism, School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi, China
| | - Yipu Zhao
- Lab for Bone Metabolism, Xi'an Key Laboratory of Special Medicine and Health Engineering, Key Lab for Space Biosciences and Biotechnology, Research Center for Special Medicine and Health Systems Engineering, NPU-UAB Joint Laboratory for Bone Metabolism, School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi, China
| | - Xue Wang
- Lab for Bone Metabolism, Xi'an Key Laboratory of Special Medicine and Health Engineering, Key Lab for Space Biosciences and Biotechnology, Research Center for Special Medicine and Health Systems Engineering, NPU-UAB Joint Laboratory for Bone Metabolism, School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi, China
| | - Jiawei Pei
- Lab for Bone Metabolism, Xi'an Key Laboratory of Special Medicine and Health Engineering, Key Lab for Space Biosciences and Biotechnology, Research Center for Special Medicine and Health Systems Engineering, NPU-UAB Joint Laboratory for Bone Metabolism, School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi, China
| | - Kewen Zhang
- Lab for Bone Metabolism, Xi'an Key Laboratory of Special Medicine and Health Engineering, Key Lab for Space Biosciences and Biotechnology, Research Center for Special Medicine and Health Systems Engineering, NPU-UAB Joint Laboratory for Bone Metabolism, School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi, China
| | - Airong Qian
- Lab for Bone Metabolism, Xi'an Key Laboratory of Special Medicine and Health Engineering, Key Lab for Space Biosciences and Biotechnology, Research Center for Special Medicine and Health Systems Engineering, NPU-UAB Joint Laboratory for Bone Metabolism, School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi, China.
| |
Collapse
|
32
|
Kim KT, Lee YS, Han I. The Role of Epigenomics in Osteoporosis and Osteoporotic Vertebral Fracture. Int J Mol Sci 2020; 21:E9455. [PMID: 33322579 PMCID: PMC7763330 DOI: 10.3390/ijms21249455] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Revised: 12/06/2020] [Accepted: 12/08/2020] [Indexed: 12/29/2022] Open
Abstract
Osteoporosis is a complex multifactorial condition of the musculoskeletal system. Osteoporosis and osteoporotic vertebral fracture (OVF) are associated with high medical costs and can lead to poor quality of life. Genetic factors are important in determining bone mass and structure, as well as any predisposition for bone degradation and OVF. However, genetic factors are not enough to explain osteoporosis development and OVF occurrence. Epigenetics describes a mechanism for controlling gene expression and cellular processes without altering DNA sequences. The main mechanisms in epigenetics are DNA methylation, histone modifications, and non-coding RNAs (ncRNAs). Recently, alterations in epigenetic mechanisms and their activity have been associated with osteoporosis and OVF. Here, we review emerging evidence that epigenetics contributes to the machinery that can alter DNA structure, gene expression, and cellular differentiation during physiological and pathological bone remodeling. A progressive understanding of normal bone metabolism and the role of epigenetic mechanisms in multifactorial osteopathy can help us better understand the etiology of the disease and convert this information into clinical practice. A deep understanding of these mechanisms will help in properly coordinating future individual treatments of osteoporosis and OVF.
Collapse
Affiliation(s)
- Kyoung-Tae Kim
- Department of Neurosurgery, School of Medicine, Kyungpook National University, Daegu 41944, Korea; (K.-T.K.); (Y.-S.L.)
- Department of Neurosurgery, Kyungpook National University Hospital, Daegu 41944, Korea
| | - Young-Seok Lee
- Department of Neurosurgery, School of Medicine, Kyungpook National University, Daegu 41944, Korea; (K.-T.K.); (Y.-S.L.)
- Department of Neurosurgery, Kyungpook National University Chilgok Hospital, Daegu 41944, Korea
| | - Inbo Han
- Department of Neurosurgery, CHA University School of medicine, CHA Bundang Medical Center, Seongnam-si, Gyeonggi-do 13496, Korea
| |
Collapse
|
33
|
Patil S, Dang K, Zhao X, Gao Y, Qian A. Role of LncRNAs and CircRNAs in Bone Metabolism and Osteoporosis. Front Genet 2020; 11:584118. [PMID: 33281877 PMCID: PMC7691603 DOI: 10.3389/fgene.2020.584118] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Accepted: 09/30/2020] [Indexed: 02/06/2023] Open
Abstract
Bone is a mechanosensitive organ that provides strength and support. Many bone cells, various pathways, and signaling molecules coordinate bone metabolism and also determine the course of bone diseases, such as osteoporosis, osteonecrosis, osteopenia, etc. Osteoporosis is caused by increased bone resorption and reduced bone formation due to the changes in the level of different proteins and RNAs in osteoclast or/and osteoblasts. The available therapeutic interventions can significantly reduce bone resorption or enhance bone formation, but their prolonged use has deleterious side effects. Therefore, the use of non-coding RNAs as therapeutics has emerged as an interesting field of research. Despite advancements in the molecular field, not much is known about the role of long non-coding RNAs (lncRNAs) and circular RNAs (circRNAs) in bone homeostasis and osteoporosis. Therefore, in this article, we summarize the role of lncRNAs and circRNAs in different bone cells and osteoporosis so that it might help in the development of osteoporotic therapeutics.
Collapse
Affiliation(s)
- Suryaji Patil
- Lab for Bone Metabolism, Xi'an Key Laboratory of Special Medicine and Health Engineering, Key Lab for Space Biosciences and Biotechnology, Research Center for Special Medicine and Health Systems Engineering, NPU-UAB Joint Laboratory for Bone Metabolism, School of Life Sciences, Northwestern Polytechnical University, Xi'an, China
| | - Kai Dang
- Lab for Bone Metabolism, Xi'an Key Laboratory of Special Medicine and Health Engineering, Key Lab for Space Biosciences and Biotechnology, Research Center for Special Medicine and Health Systems Engineering, NPU-UAB Joint Laboratory for Bone Metabolism, School of Life Sciences, Northwestern Polytechnical University, Xi'an, China
| | - Xin Zhao
- School of Pharmacy, Shaanxi Institute of International Trade & Commerce, Xi'an, China
| | - Yongguang Gao
- Lab for Bone Metabolism, Xi'an Key Laboratory of Special Medicine and Health Engineering, Key Lab for Space Biosciences and Biotechnology, Research Center for Special Medicine and Health Systems Engineering, NPU-UAB Joint Laboratory for Bone Metabolism, School of Life Sciences, Northwestern Polytechnical University, Xi'an, China.,Department of Chemistry, Tangshan Normal University, Tangshan, China
| | - Airong Qian
- Lab for Bone Metabolism, Xi'an Key Laboratory of Special Medicine and Health Engineering, Key Lab for Space Biosciences and Biotechnology, Research Center for Special Medicine and Health Systems Engineering, NPU-UAB Joint Laboratory for Bone Metabolism, School of Life Sciences, Northwestern Polytechnical University, Xi'an, China
| |
Collapse
|
34
|
The roles of miRNA, lncRNA and circRNA in the development of osteoporosis. Biol Res 2020; 53:40. [PMID: 32938500 PMCID: PMC7493179 DOI: 10.1186/s40659-020-00309-z] [Citation(s) in RCA: 171] [Impact Index Per Article: 34.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2020] [Accepted: 09/07/2020] [Indexed: 02/08/2023] Open
Abstract
Osteoporosis is a common metabolic bone disease, influenced by genetic and environmental factors, that increases bone fragility and fracture risk and, therefore, has a serious adverse effect on the quality of life of patients. However, epigenetic mechanisms involved in the development of osteoporosis remain unclear. There is accumulating evidence that epigenetic modifications may represent mechanisms underlying the links of genetic and environmental factors with increased risk of osteoporosis and bone fracture. Some RNAs, such as microRNAs (miRNAs), long non-coding RNAs (lncRNAs), and circular RNAs (circRNAs), have been shown to be epigenetic regulators with significant involvement in the control of gene expression, affecting multiple biological processes, including bone metabolism. This review summarizes the results of recent studies on the mechanisms of miRNA-, lncRNA-, and circRNA-mediated osteoporosis associated with osteoblasts and osteoclasts. Deeper insights into the roles of these three classes of RNA in osteoporosis could provide unique opportunities for developing novel diagnostic and therapeutic approaches to this disease.
Collapse
|
35
|
Zhao W, Wang G, Zhou C, Zhao Q. The regulatory roles of long noncoding RNAs in osteoporosis. Am J Transl Res 2020; 12:5882-5907. [PMID: 33042467 PMCID: PMC7540091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Accepted: 08/01/2020] [Indexed: 06/11/2023]
Abstract
Osteoporosis is a common metabolic bone disease characterized by low bone mineral density (BMD) and microarchitectural deterioration of bone tissue, which leads to decreased bone strength and increased fracture risk. Osteoporosis mainly results from a disruption of the balance between bone formation mediated by osteoblasts and bone resorption mediated by osteoclasts. At present, the molecular mechanisms underlying osteoporosis are still not fully understood. Long noncoding RNAs (lncRNAs) are RNA molecules that exceed 200 nucleotides (nt) in length and have limited or no protein-coding capacity. Over the past decade, numerous lncRNAs have been demonstrated to participate in multiple biological processes and to play essential roles in the pathogenesis of various diseases. In this review, we summarize recent progress in research on lncRNAs in osteoporosis and mainly focus on their regulatory roles in osteogenesis and osteoclastogenesis. Moreover, we briefly discuss the potential clinical applications of lncRNAs in osteoporosis.
Collapse
Affiliation(s)
- Weisong Zhao
- Department of Orthopaedics, Shanghai Bone Tumor Institute, Shanghai General Hospital, Shanghai Jiao Tong University School of MedicineShanghai 200080, China
- First Clinical College, Xinxiang Medical UniversityXinxiang 453000, Henan, China
| | - Gangyang Wang
- Department of Orthopaedics, Shanghai Bone Tumor Institute, Shanghai General Hospital, Shanghai Jiao Tong University School of MedicineShanghai 200080, China
| | - Chenghao Zhou
- Department of Orthopaedics, Shanghai Bone Tumor Institute, Shanghai General Hospital, Shanghai Jiao Tong University School of MedicineShanghai 200080, China
| | - Qinghua Zhao
- Department of Orthopaedics, Shanghai Bone Tumor Institute, Shanghai General Hospital, Shanghai Jiao Tong University School of MedicineShanghai 200080, China
| |
Collapse
|