1
|
Zhong L, Hou X, Tian Y, Fu X. Exercise and dietary interventions in the management of diabetic cardiomyopathy: mechanisms and implications. Cardiovasc Diabetol 2025; 24:159. [PMID: 40205621 PMCID: PMC11983742 DOI: 10.1186/s12933-025-02702-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Accepted: 03/22/2025] [Indexed: 04/11/2025] Open
Abstract
The global prevalence of diabetes is rapidly increasing, significantly raising the risk of various cardiovascular diseases. Among these, diabetic cardiomyopathy (DCM) is a distinct and critical complication characterized by ventricular hypertrophy and impaired myocardial contractility, ultimately progressing to heart failure and making it a leading cause of mortality among diabetic patients. Despite advances in pharmacological therapies, the effectiveness of managing cardiac dysfunction in DCM remains challenging. Consequently, exploring additional therapeutic strategies for the prevention and treatment of DCM is urgently needed. Beyond pharmacological approaches, lifestyle modifications, particularly exercise and dietary interventions, play a fundamental role in managing DCM due to their significant cardiovascular benefits in diabetic patients. This review synthesizes recent advancements in the field, elucidating the underlying mechanisms through which exercise and dietary interventions influence DCM pathophysiology. By integrating these strategies, we aim to facilitate the development of personalized exercise and dietary regimens that effectively mitigate or prevent DCM progression.
Collapse
Affiliation(s)
- Ling Zhong
- Department of Endocrinology and Metabolism, Department of Biotherapy, Laboratory of Diabetes and Metabolism Research, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Xiaojie Hou
- Department of Cardiovascular Surgery, Cardiovascular Surgery Research Laboratory, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Yan Tian
- Department of Endocrinology and Metabolism, Department of Biotherapy, Laboratory of Diabetes and Metabolism Research, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China.
| | - Xianghui Fu
- Department of Endocrinology and Metabolism, Department of Biotherapy, Laboratory of Diabetes and Metabolism Research, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China.
| |
Collapse
|
2
|
Mazaheri F, Hoseini R, Gharzi A. Vitamin D and exercise improve VEGF-B production and IGF-1 levels in diabetic rats: insights the role of miR-1 suppression. Sci Rep 2025; 15:1328. [PMID: 39779732 PMCID: PMC11711202 DOI: 10.1038/s41598-024-81230-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Accepted: 11/25/2024] [Indexed: 01/11/2025] Open
Abstract
BACKGROUND Type 2 Diabetes Mellitus (T2DM) is closely associated with the development of vascular damage in the heart. In this study, the researchers aimed to determine whether Aerobic Training (AT) and Vitamin D supplementation (Vit D) could alleviate heart complications and vascular damage caused by diabetes. The effects of an eight-week AT program and Vit D on the expression of miR-1, IGF-1 genes, and VEGF-B in the cardiomyocytes of rats with T2DM. METHODS This study was an experimental investigation. Fifty male Wistar rats were divided into 2 groups Non-Diabetic Obese Control (NC; n = 10), and diabetic (n = 40). The rats were then randomly divided into four groups: AT plus Vit D (AT + Vit D; n-=10), AT (n = 10), Vit D (Vit D; n = 10), and Control Diabetic (C; n = 10). The exercise groups underwent treadmill training for 8 weeks at an aerobic intensity equal to 50-60% of their maximal oxygen uptake (VO2max), which corresponded to a speed of 15-25 m/min at a 0% incline, for 30-60 min per day, 5 days per week. The Vit D and AT + Vit D groups received 5,000 international units (IU) of Vitamin D (combined with sesame oil) per week via a single-dose injection. Data were analyzed using one-way analysis of variance (ANOVA) followed by Tukey's post-hoc test for multiple comparisons among the groups. Paired data were analyzed using paired t-tests. RESULTS The results showed that BW, BMI, and FI significantly decreased in the AT + Vit D (p = 0.001 for all variables), AT (p = 0.001 for all variables), and Vit D (p = 0.001 for all variables) groups compared to baseline. In contrast, BW, BMI, and FI increased in the C (p = 0.001, p = 0.006, p = 0.020, respectively) and NC (p = 0.001 for all variables) groups. Significant differences were observed between the groups in terms of visceral fat, insulin, glucose, and HOMA-IR (p = 0.001 for all variables). Serum 25-hydroxyvitamin D levels varied significantly among the groups (p = 0.002). The AT + Vit D group showed significantly increased VEGF-B (p = 0.001 for both comparisons), upregulated IGF-1 (p = 0.001 for both comparisons), and downregulated miR-1 (p = 0.001 for both comparisons) compared to the AT and Vit D groups, respectively. CONCLUSIONS AT and Vit D increased the expression of IGF-1 and VEGF-B in the heart of T2DM rats while decreasing the expression of miR-1. These effects were more pronounced when AT and Vit D were combined. The study concludes that the combination of AT and Vit D has cardio-protective effects in T2DM rats, counteracting abnormal angiogenesis induced by diabetes. These effects are mediated, at least in part, by the upregulation of IGF-1 and VEGF-B, and the downregulation of miR-1.
Collapse
Affiliation(s)
- Fatemeh Mazaheri
- Department of Exercise Physiology, Faculty of Sport Sciences, Razi University, Kermanshah, Iran
| | - Rastegar Hoseini
- Department of Exercise Physiology, Faculty of Sport Sciences, Razi University, P.O.Box. 6714414971, Kermanshah, Iran.
| | - Ahmad Gharzi
- Department of Biology, Faculty of Science, Razi University, Kermanshah, Iran
| |
Collapse
|
3
|
Fu Y, Tang M, Duan Y, Pan Y, Liang M, Yuan J, Wang M, Laher I, Li S. MOTS-c regulates the ROS/TXNIP/NLRP3 pathway to alleviate diabetic cardiomyopathy. Biochem Biophys Res Commun 2024; 741:151072. [PMID: 39616938 DOI: 10.1016/j.bbrc.2024.151072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 11/06/2024] [Accepted: 11/25/2024] [Indexed: 12/11/2024]
Abstract
Chronic low-grade inflammation is a characteristic of diabetes, which often culminates in cardiovascular events including myocardial damage, thereby increasing the risk of debilitating cardiac complications. The mitochondria-derived peptide MOTS-c regulates glucose and lipid metabolism while improving insulin resistance, making it a potential candidate for the treatment of diabetes and cardiovascular diseases. We investigated the impact of MOTS-c on cardiac structure and inflammation in diabetic rats induced by a high-sugar-fat diet combined with low-dose streptozotocin (30 mg/kg, i.p.). Our results confirm that high glucose levels activate the nucleotide-binding oligomerization domain-like receptor protein 3 (NLRP3) inflammasome and increase reactive oxygen species (ROS), ultimately leading to myocardial injury. Furthermore, treatment with MOTS-c (0.5 mg/kg/day, i.p.) for 8 weeks reduced the expression of ROS/TXNIP/NLRP3 pathway proteins to inhibit the diabetic myocardial inflammatory response. These findings suggested that MOTS-c alleviates myocardial damage by inhibiting the ROS/TXNIP/NLRP3 pathway.
Collapse
Affiliation(s)
- Yu Fu
- School of Sports Medicine and Health, Chengdu Sport University, Chengdu, China
| | - Mi Tang
- School of Physical Education, Xihua University, Chengdu, China
| | - Yimei Duan
- School of Physical Education, Sichuan Normal University, Chengdu, China
| | - Yanrong Pan
- School of Physical Education, Sichuan Minzu College, Kangding, China
| | - Min Liang
- College of Fundamental Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jinghan Yuan
- Regenerative Medicine Research Center, West China Hospital, Sichuan University, Chengdu, China
| | - Manda Wang
- School of Sport Science, Beijing Sport University, Beijing, China
| | - Ismail Laher
- Department of Pharmacology and Therapeutics, Medicine, University of British Columbia, Vancouver, Canada
| | - Shunchang Li
- School of Sports Medicine and Health, Chengdu Sport University, Chengdu, China.
| |
Collapse
|
4
|
Alivaisi E, Amini S, Haghani K, Ghaneialvar H, Keshavarzi F. Comparative effects of metformin and varying intensities of exercise on miR-133a expression in diabetic rats: Insights from machine learning analysis. Biochem Biophys Rep 2024; 40:101882. [PMID: 39649797 PMCID: PMC11625223 DOI: 10.1016/j.bbrep.2024.101882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 11/12/2024] [Accepted: 11/18/2024] [Indexed: 12/11/2024] Open
Abstract
This study investigated the effects of metformin, high-intensity interval training (HIIT), and moderate-intensity continuous training (MCT) on miR-133a expression in a diabetic rat model. miR-133a, a microRNA associated with skeletal muscle insulin resistance, served as a key indicator of treatment efficacy. Diabetic rats exhibited elevated miR-133a levels compared to healthy controls. Both HIIT and MCT, alone and in combination with metformin, significantly reduced miR-133a expression. Importantly, the combination of HIIT and metformin demonstrated the most potent effect, reducing miR-133a levels more than other treatments. We used the CatBoost algorithm to develop a predictive model for miR-133a expression based on metabolic parameters. The model accurately predicted miR-133a levels using body weight, blood glucose, insulin levels, and cholesterol metrics. The findings suggest a potential clinical strategy combining metformin and exercise, with miR-133a potentially serving as a biomarker for personalized diabetes management.
Collapse
Affiliation(s)
- Elahe Alivaisi
- Department of Biology, Sanandaj Branch, Islamic Azad University, Sanandaj, Iran
| | - Sabrieh Amini
- Department of Biology, Sanandaj Branch, Islamic Azad University, Sanandaj, Iran
| | - Karimeh Haghani
- Department of Clinical Biochemistry, School of Medicine, Ilam University of Medical Sciences, Ilam, Iran
| | - Hori Ghaneialvar
- Biotechnology and Medicinal Plants Research Center, Ilam University of Medical Sciences, Ilam, Iran
| | - Fatemeh Keshavarzi
- Department of Biology, Sanandaj Branch, Islamic Azad University, Sanandaj, Iran
| |
Collapse
|
5
|
Fouladi M, Mahmoudabady M, Gholamnezhad Z, Shabab S, Niazmand S, Salmani H. Impact of Endurance Exercise Training on Biomarkers of Aortic Endothelial Damage in Diabetic Rats. Cardiovasc Ther 2024; 2024:6025911. [PMID: 39742025 PMCID: PMC11251799 DOI: 10.1155/2024/6025911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/24/2023] [Revised: 04/09/2024] [Accepted: 05/07/2024] [Indexed: 01/03/2025] Open
Abstract
Given the heightened risk of diabetes-related cardiovascular events associated with inactivity, this study investigates the molecular mechanisms of vascular damage in streptozotocin (STZ)-induced diabetic rats. The aim is to elucidate the impact of different exercises (interval and continuous training) and metformin on biochemical parameters, aortic injury, oxidative stress, and inflammation to provide insights into potential therapeutic interventions for diabetes-associated vascular complications. Male Wistar rats were administered a single dose of STZ (60 mg/kg) to induce diabetes. Diabetic rats underwent either interval training or continuous training (40 min/day, 5 days/week, 6 weeks), received metformin (300 mg/kg), or a combination of metformin and exercise. After 6 weeks, biochemical parameters in serum and oxidative stress markers and mRNA expression of endothelial nitric oxide synthase (eNOS), lectin-like oxidized low-density lipoprotein receptor-1 (LOX-1), and intercellular adhesion molecule-1 (ICAM-1) in aorta tissue were assessed. Serum levels of fasting blood sugar (FBS), triglyceride (TG), total cholesterol (TC), low-density lipoprotein (LDL), TG/HDL, TC/HDL, and LDL/HDL ratios were significantly reduced in all treatment groups compared to the diabetes group. Both types of exercises, metformin, and exercise+metformin combinations, significantly reduced oxidative stress by decreasing malondialdehyde (MDA) and enhancing the antioxidant status in the aortic tissue compared to the diabetic group. In addition, in exercise groups, metformin, and combination groups, the expression of eNOS was significantly elevated, while LOX-1 and ICAM-1 expression significantly decreased compared to the diabetic group. In most cases, the combination of exercise and metformin (especially interval training) was more effective than exercise alone. It seems that exercise along with taking metformin can be considered as a therapeutic method by improving hyperglycemia and hyperlipidemia and reducing oxidative stress and vascular inflammatory responses, leading to ameliorating biomarkers function related to endothelial damage in experimental diabetes conditions.
Collapse
Affiliation(s)
- Mahtab Fouladi
- Department of PhysiologyFaculty of MedicineMashhad University of Medical Sciences, Mashhad, Iran
| | - Maryam Mahmoudabady
- Department of PhysiologyFaculty of MedicineMashhad University of Medical Sciences, Mashhad, Iran
- Applied Biomedical Research CenterMashhad University of Medical Sciences, Mashhad, Iran
| | - Zahra Gholamnezhad
- Department of PhysiologyFaculty of MedicineMashhad University of Medical Sciences, Mashhad, Iran
- Applied Biomedical Research CenterMashhad University of Medical Sciences, Mashhad, Iran
| | - Sadegh Shabab
- Department of PhysiologyFaculty of MedicineMashhad University of Medical Sciences, Mashhad, Iran
| | - Saeed Niazmand
- Department of PhysiologyFaculty of MedicineMashhad University of Medical Sciences, Mashhad, Iran
- Applied Biomedical Research CenterMashhad University of Medical Sciences, Mashhad, Iran
| | - Hossein Salmani
- Department of Physiology and PharmacologyFaculty of MedicineSabzevar University of Medical Sciences, Sabzevar, Iran
| |
Collapse
|
6
|
Wang S, Li J, Zhao Y. Construction and analysis of a network of exercise-induced mitochondria-related non-coding RNA in the regulation of diabetic cardiomyopathy. PLoS One 2024; 19:e0297848. [PMID: 38547044 PMCID: PMC10977711 DOI: 10.1371/journal.pone.0297848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Accepted: 01/09/2024] [Indexed: 04/02/2024] Open
Abstract
Diabetic cardiomyopathy (DCM) is a major factor in the development of heart failure. Mitochondria play a crucial role in regulating insulin resistance, oxidative stress, and inflammation, which affect the progression of DCM. Regular exercise can induce altered non-coding RNA (ncRNA) expression, which subsequently affects gene expression and protein function. The mechanism of exercise-induced mitochondrial-related non-coding RNA network in the regulation of DCM remains unclear. This study seeks to construct an innovative exercise-induced mitochondrial-related ncRNA network. Bioinformatic analysis of RNA sequencing data from an exercise rat model identified 144 differentially expressed long non-coding RNA (lncRNA) with cutoff criteria of p< 0.05 and fold change ≥1.0. GSE6880 and GSE4745 were the differentially expressed mRNAs from the left ventricle of DCM rat that downloaded from the GEO database. Combined with the differentially expressed mRNA and MitoCarta 3.0 dataset, the mitochondrial located gene Pdk4 was identified as a target gene. The miRNA prediction analysis using miRanda and TargetScan confirmed that 5 miRNAs have potential to interact with the 144 lncRNA. The novel lncRNA-miRNA-Pdk4 network was constructed for the first time. According to the functional protein association network, the newly created exercise-induced ncRNA network may serve as a promising diagnostic marker and therapeutic target, providing a fresh perspective to understand the molecular mechanism of different exercise types for the prevention and treatment of diabetic cardiomyopathy.
Collapse
Affiliation(s)
- Shuo Wang
- Tianjin Key Laboratory of Exercise Physiology and Sports Medicine, Tianjin University of Sport, Tianjin, China
| | - Jiacong Li
- Tianjin Key Laboratory of Exercise Physiology and Sports Medicine, Tianjin University of Sport, Tianjin, China
| | - Yungang Zhao
- Tianjin Key Laboratory of Exercise Physiology and Sports Medicine, Tianjin University of Sport, Tianjin, China
| |
Collapse
|
7
|
Rami M, Ahmadi Hekmatikar A, Rahdar S, Marashi SS, Daud DMA. Highlighting the effects of high-intensity interval training on the changes associated with hypertrophy, apoptosis, and histological proteins of the heart of old rats with type 2 diabetes. Sci Rep 2024; 14:7133. [PMID: 38531890 DOI: 10.1038/s41598-024-57119-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 03/14/2024] [Indexed: 03/28/2024] Open
Abstract
T2DM is known to cause disturbances in glucose homeostasis and negative changes in the heart muscle, while aging and diabetes are recognized risk factors for CVD. Given this, our study aims to investigate a method for controlling and managing CVDs induced by T2DM in elderly populations. To achieve this, we categorized 40 rats into 5 groups, including HAD (n = 8), HA (n = 8), AD (n = 8), AHT (n = 8), and ADT (n = 8). The exercise protocol consisted of eight weeks of HIIT (three sessions per week) performed at 90-95% of maximal speed. Following cardiac tissue extraction, we assessed the levels of IGF-1, PI3K, and AKT proteins using Western blot technique, and analyzed the histopathological variations of the heart tissue using H&E, Sudan Black, and Masson's trichrome tissue staining. The histological findings from our study demonstrated that T2DM had a significant impact on the development of pathological hypertrophy and fibrosis in the heart tissue of elderly individuals. However, HIIT not only effectively controlled pathological hypertrophy and fibrosis, but also induced physiological hypertrophy in the AHT and ADT groups compared to the HA and AD groups. Results from Sudan Black staining indicated that there was an increase in lipid droplet accumulation in the cytoplasm of cardiomyocytes and their nuclei in the HA and AD groups, while the accumulation of lipid droplets decreased significantly in the AHT and ADT groups. In both the AHT group and the ADT group, a single HIIT session led to a reduction in collagen fiber accumulation and fibrotic frameworks. Our research also revealed that diabetes caused a significant elevation in the levels of IGF-1, PI3K, and AKT proteins, but after eight weeks of HIIT, the levels of these proteins decreased significantly in the training groups. Overall, our findings suggest that HIIT may be a suitable non-pharmacological approach for improving histological and physiological changes in elderly individuals with T2DM. However, we recommend further research to examine the impact of HIIT training on both healthy and diseased elderly populations.
Collapse
Affiliation(s)
- Mohammad Rami
- Department of Sport Physiology, Faculty of Sport Sciences, Shahid Chamran University of Ahvaz, Ahvaz, Iran.
| | - Amirhossein Ahmadi Hekmatikar
- Department of Physical Education and Sport Sciences, Faculty of Humanities, Tarbiat Modares University, Tehran, 10600, Iran
| | - Samaneh Rahdar
- Department of Basic Sciences, Histology Section, Faculty of Veterinary Medicine, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| | - Sayed Shafa Marashi
- Department of Sport Physiology, Faculty of Sport Sciences, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| | - D Maryama Awang Daud
- Health Through Exercise and Active Living (HEAL) Research Unit, Faculty of Medicine and Health Sciences, Universiti Malaysia Sabah, Kota Kinabalu, 88400, Sabah, Malaysia.
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, University Malaysia Sabah, Jalan UMS, Kota Kinabalu, 88450, Sabah, Malaysia.
| |
Collapse
|
8
|
Quaiyoom A, Kumar R. An Overview of Diabetic Cardiomyopathy. Curr Diabetes Rev 2024; 20:e121023222139. [PMID: 37842898 DOI: 10.2174/0115733998255538231001122639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 08/13/2023] [Accepted: 08/17/2023] [Indexed: 10/17/2023]
Abstract
Diabetic cardiomyopathy (DCM) is a myocardial disorder that is characterised by structural and functional abnormalities of the heart muscle in the absence of hypertension, valvular heart disease, congenital heart defects, or coronary artery disease (CAD). After witnessing a particular form of cardiomyopathy in diabetic individuals, Rubler et al. came up with the moniker diabetic cardiomyopathy in 1972. Four stages of DCM are documented, and the American College of Cardiology/American Heart Association Stage and New York Heart Association Class for HF have some overlap. Diabetes is linked to several distinct forms of heart failure. Around 40% of people with heart failure with preserved ejection fraction (HFpEF) have diabetes, which is thought to be closely associated with the pathophysiology of HFpEF. Diabetes and HF are uniquely associated in a bidirectional manner. When compared to the general population without diabetes, those with diabetes have a risk of heart failure that is up to four times higher. A biomarker is a trait that is reliably measured and assessed as a predictor of healthy biological activities, pathological processes, or pharmacologic responses to a clinical treatment. Several biomarker values have been discovered to be greater in patients with diabetes than in control subjects among those who have recently developed heart failure. Myocardial fibrosis and hypertrophy are the primary characteristics of DCM, and structural alterations in the diabetic myocardium are often examined by non-invasive, reliable, and reproducible procedures. An invasive method called endomyocardial biopsy (EMB) is most often used to diagnose many cardiac illnesses.
Collapse
Affiliation(s)
- Abdul Quaiyoom
- Department of Pharmacy Practice, ISF College of Pharmacy, Moga, India
| | - Ranjeet Kumar
- Department of Pharmacy Practice, ISF College of Pharmacy, Moga, India
| |
Collapse
|
9
|
Yang Z, Liu Y, Li Z, Feng S, Lin S, Ge Z, Fan Y, Wang Y, Wang X, Mao J. Coronary microvascular dysfunction and cardiovascular disease: Pathogenesis, associations and treatment strategies. Biomed Pharmacother 2023; 164:115011. [PMID: 37321056 DOI: 10.1016/j.biopha.2023.115011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 06/09/2023] [Accepted: 06/11/2023] [Indexed: 06/17/2023] Open
Abstract
Coronary microvascular dysfunction (CMD) is a high-risk factor for a variety of cardiovascular events. Due to its complex aetiology and concealability, knowledge of the pathophysiological mechanism of CMD is still limited at present, which greatly restricts its clinical diagnosis and treatment. Studies have shown that CMD is closely related to a variety of cardiovascular diseases, can aggravate the occurrence and development of cardiovascular diseases, and is closely related to a poor prognosis in patients with cardiovascular diseases. Improving coronary microvascular remodelling and increasing myocardial perfusion might be promising strategies for the treatment of cardiovascular diseases. In this paper, the pathogenesis and functional assessment of CMD are reviewed first, along with the relationship of CMD with cardiovascular diseases. Then, the latest strategies for the treatment of CMD and cardiovascular diseases are summarized. Finally, urgent scientific problems in CMD and cardiovascular diseases are highlighted and future research directions are proposed to provide prospective insights for the prevention and treatment of CMD and cardiovascular diseases in the future.
Collapse
Affiliation(s)
- Zhihua Yang
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China; Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China.
| | - Yangxi Liu
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China.
| | - Zhenzhen Li
- Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China.
| | - Shaoling Feng
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China.
| | - Shanshan Lin
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China.
| | - Zhao Ge
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China.
| | - Yujian Fan
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China.
| | - Yi Wang
- Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China.
| | - Xianliang Wang
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China.
| | - Jingyuan Mao
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China.
| |
Collapse
|
10
|
Petronilho A, Gois MDO, Sakaguchi C, Frade MCM, Roscani MG, Catai AM. Effects of Physical Exercise on Left Ventricular Function in Type 2 Diabetes Mellitus: A Systematic Review. INTERNATIONAL JOURNAL OF CARDIOVASCULAR SCIENCES 2023. [DOI: 10.36660/ijcs.20220020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2023] Open
|
11
|
Jin L, Geng L, Ying L, Shu L, Ye K, Yang R, Liu Y, Wang Y, Cai Y, Jiang X, Wang Q, Yan X, Liao B, Liu J, Duan F, Sweeney G, Woo CWH, Wang Y, Xia Z, Lian Q, Xu A. FGF21-Sirtuin 3 Axis Confers the Protective Effects of Exercise Against Diabetic Cardiomyopathy by Governing Mitochondrial Integrity. Circulation 2022; 146:1537-1557. [PMID: 36134579 DOI: 10.1161/circulationaha.122.059631] [Citation(s) in RCA: 112] [Impact Index Per Article: 37.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
BACKGROUND Exercise is an effective nonpharmacological strategy to alleviate diabetic cardiomyopathy (DCM) through poorly defined mechanisms. FGF21 (fibroblast growth factor 21), a peptide hormone with pleiotropic benefits on cardiometabolic homeostasis, has been identified as an exercise responsive factor. This study aims to investigate whether FGF21 signaling mediates the benefits of exercise on DCM, and if so, to elucidate the underlying mechanisms. METHODS The global or hepatocyte-specific FGF21 knockout mice, cardiomyocyte-selective β-klotho (the obligatory co-receptor for FGF21) knockout mice, and their wild-type littermates were subjected to high-fat diet feeding and injection of streptozotocin to induce DCM, followed by a 6-week exercise intervention and assessment of cardiac functions. Cardiac mitochondrial structure and function were assessed by electron microscopy, enzymatic assays, and measurements of fatty acid oxidation and ATP production. Human induced pluripotent stem cell-derived cardiomyocytes were used to investigate the receptor and postreceptor signaling pathways conferring the protective effects of FGF21 against toxic lipids-induced mitochondrial dysfunction. RESULTS Treadmill exercise markedly induced cardiac expression of β-klotho and significantly attenuated diabetes-induced cardiac dysfunction in wild-type mice, accompanied by reduced mitochondrial damage and increased activities of mitochondrial enzymes in hearts. However, such cardioprotective benefits of exercise were largely abrogated in mice with global or hepatocyte-selective ablation of FGF21, or cardiomyocyte-specific deletion of β-klotho. Mechanistically, exercise enhanced the cardiac actions of FGF21 to induce the expression of the mitochondrial deacetylase SIRT3 by AMPK-evoked phosphorylation of FOXO3, thereby reversing diabetes-induced hyperacetylation and functional impairments of a cluster of mitochondrial enzymes. FGF21 prevented toxic lipids-induced mitochondrial dysfunction and oxidative stress by induction of the AMPK/FOXO3/SIRT3 signaling axis in human induced pluripotent stem cell-derived cardiomyocytes. Adeno-associated virus-mediated restoration of cardiac SIRT3 expression was sufficient to restore the responsiveness of diabetic FGF21 knockout mice to exercise in amelioration of mitochondrial dysfunction and DCM. CONCLUSIONS The FGF21-SIRT3 axis mediates the protective effects of exercise against DCM by preserving mitochondrial integrity and represents a potential therapeutic target for DCM. REGISTRATION URL: https://www. CLINICALTRIALS gov; Unique identifier: NCT03240978.
Collapse
Affiliation(s)
- Leigang Jin
- State Key Laboratory of Pharmaceutical Biotechnology (L.J., L.G., L.Y., L.S., R.Y., Y.L., Yao Wang, Y.C., X.J., Q.W., X.Y., B.L., C.W.H.W., Yu Wang, Z.X., Q.L., A.X.), University of Hong Kong, China.,Department of Medicine (L.J., L.G., L.S., R.Y., Y.L., Yao Wang, X.J., Q.W., X.Y., J.L., Z.X., Q.L., A.X.), University of Hong Kong, China.,Department of Pharmacology and Pharmacy (L.J., L.Y., B.L., C.W.H.W., Yu Wang, A.X.), University of Hong Kong, China
| | - Leiluo Geng
- State Key Laboratory of Pharmaceutical Biotechnology (L.J., L.G., L.Y., L.S., R.Y., Y.L., Yao Wang, Y.C., X.J., Q.W., X.Y., B.L., C.W.H.W., Yu Wang, Z.X., Q.L., A.X.), University of Hong Kong, China.,Department of Medicine (L.J., L.G., L.S., R.Y., Y.L., Yao Wang, X.J., Q.W., X.Y., J.L., Z.X., Q.L., A.X.), University of Hong Kong, China
| | - Lei Ying
- State Key Laboratory of Pharmaceutical Biotechnology (L.J., L.G., L.Y., L.S., R.Y., Y.L., Yao Wang, Y.C., X.J., Q.W., X.Y., B.L., C.W.H.W., Yu Wang, Z.X., Q.L., A.X.), University of Hong Kong, China.,Department of Pharmacology and Pharmacy (L.J., L.Y., B.L., C.W.H.W., Yu Wang, A.X.), University of Hong Kong, China
| | - Lingling Shu
- State Key Laboratory of Pharmaceutical Biotechnology (L.J., L.G., L.Y., L.S., R.Y., Y.L., Yao Wang, Y.C., X.J., Q.W., X.Y., B.L., C.W.H.W., Yu Wang, Z.X., Q.L., A.X.), University of Hong Kong, China.,Department of Medicine (L.J., L.G., L.S., R.Y., Y.L., Yao Wang, X.J., Q.W., X.Y., J.L., Z.X., Q.L., A.X.), University of Hong Kong, China
| | - Kevin Ye
- Department of Biomedical Physiology and Kinesiology, Simon Fraser University, Burnaby, Canada (K.Y.)
| | - Ranyao Yang
- State Key Laboratory of Pharmaceutical Biotechnology (L.J., L.G., L.Y., L.S., R.Y., Y.L., Yao Wang, Y.C., X.J., Q.W., X.Y., B.L., C.W.H.W., Yu Wang, Z.X., Q.L., A.X.), University of Hong Kong, China.,Department of Medicine (L.J., L.G., L.S., R.Y., Y.L., Yao Wang, X.J., Q.W., X.Y., J.L., Z.X., Q.L., A.X.), University of Hong Kong, China
| | - Yan Liu
- State Key Laboratory of Pharmaceutical Biotechnology (L.J., L.G., L.Y., L.S., R.Y., Y.L., Yao Wang, Y.C., X.J., Q.W., X.Y., B.L., C.W.H.W., Yu Wang, Z.X., Q.L., A.X.), University of Hong Kong, China.,Department of Medicine (L.J., L.G., L.S., R.Y., Y.L., Yao Wang, X.J., Q.W., X.Y., J.L., Z.X., Q.L., A.X.), University of Hong Kong, China
| | - Yao Wang
- State Key Laboratory of Pharmaceutical Biotechnology (L.J., L.G., L.Y., L.S., R.Y., Y.L., Yao Wang, Y.C., X.J., Q.W., X.Y., B.L., C.W.H.W., Yu Wang, Z.X., Q.L., A.X.), University of Hong Kong, China.,Department of Medicine (L.J., L.G., L.S., R.Y., Y.L., Yao Wang, X.J., Q.W., X.Y., J.L., Z.X., Q.L., A.X.), University of Hong Kong, China
| | - Yin Cai
- State Key Laboratory of Pharmaceutical Biotechnology (L.J., L.G., L.Y., L.S., R.Y., Y.L., Yao Wang, Y.C., X.J., Q.W., X.Y., B.L., C.W.H.W., Yu Wang, Z.X., Q.L., A.X.), University of Hong Kong, China.,Department of Health Technology and Informatics, Hong Kong Polytechnic University, China (Y.C.)
| | - Xue Jiang
- State Key Laboratory of Pharmaceutical Biotechnology (L.J., L.G., L.Y., L.S., R.Y., Y.L., Yao Wang, Y.C., X.J., Q.W., X.Y., B.L., C.W.H.W., Yu Wang, Z.X., Q.L., A.X.), University of Hong Kong, China.,Department of Medicine (L.J., L.G., L.S., R.Y., Y.L., Yao Wang, X.J., Q.W., X.Y., J.L., Z.X., Q.L., A.X.), University of Hong Kong, China
| | - Qin Wang
- State Key Laboratory of Pharmaceutical Biotechnology (L.J., L.G., L.Y., L.S., R.Y., Y.L., Yao Wang, Y.C., X.J., Q.W., X.Y., B.L., C.W.H.W., Yu Wang, Z.X., Q.L., A.X.), University of Hong Kong, China.,Department of Medicine (L.J., L.G., L.S., R.Y., Y.L., Yao Wang, X.J., Q.W., X.Y., J.L., Z.X., Q.L., A.X.), University of Hong Kong, China
| | - Xingqun Yan
- State Key Laboratory of Pharmaceutical Biotechnology (L.J., L.G., L.Y., L.S., R.Y., Y.L., Yao Wang, Y.C., X.J., Q.W., X.Y., B.L., C.W.H.W., Yu Wang, Z.X., Q.L., A.X.), University of Hong Kong, China.,Department of Medicine (L.J., L.G., L.S., R.Y., Y.L., Yao Wang, X.J., Q.W., X.Y., J.L., Z.X., Q.L., A.X.), University of Hong Kong, China
| | - Boya Liao
- State Key Laboratory of Pharmaceutical Biotechnology (L.J., L.G., L.Y., L.S., R.Y., Y.L., Yao Wang, Y.C., X.J., Q.W., X.Y., B.L., C.W.H.W., Yu Wang, Z.X., Q.L., A.X.), University of Hong Kong, China.,Department of Pharmacology and Pharmacy (L.J., L.Y., B.L., C.W.H.W., Yu Wang, A.X.), University of Hong Kong, China
| | - Jie Liu
- Department of Medicine (L.J., L.G., L.S., R.Y., Y.L., Yao Wang, X.J., Q.W., X.Y., J.L., Z.X., Q.L., A.X.), University of Hong Kong, China.,Cord Blood Bank, Guangzhou Institute of Eugenics and Perinatology, Women and Children's Medical Center, Guangzhou Medical University, China (J.L., F.D., Q.L.)
| | - Fuyu Duan
- Cord Blood Bank, Guangzhou Institute of Eugenics and Perinatology, Women and Children's Medical Center, Guangzhou Medical University, China (J.L., F.D., Q.L.)
| | - Gary Sweeney
- Department of Biology, York University, Toronto, Canada (G.S.)
| | - Connie Wai Hong Woo
- State Key Laboratory of Pharmaceutical Biotechnology (L.J., L.G., L.Y., L.S., R.Y., Y.L., Yao Wang, Y.C., X.J., Q.W., X.Y., B.L., C.W.H.W., Yu Wang, Z.X., Q.L., A.X.), University of Hong Kong, China.,Department of Pharmacology and Pharmacy (L.J., L.Y., B.L., C.W.H.W., Yu Wang, A.X.), University of Hong Kong, China
| | - Yu Wang
- State Key Laboratory of Pharmaceutical Biotechnology (L.J., L.G., L.Y., L.S., R.Y., Y.L., Yao Wang, Y.C., X.J., Q.W., X.Y., B.L., C.W.H.W., Yu Wang, Z.X., Q.L., A.X.), University of Hong Kong, China.,Department of Pharmacology and Pharmacy (L.J., L.Y., B.L., C.W.H.W., Yu Wang, A.X.), University of Hong Kong, China
| | - Zhengyuan Xia
- State Key Laboratory of Pharmaceutical Biotechnology (L.J., L.G., L.Y., L.S., R.Y., Y.L., Yao Wang, Y.C., X.J., Q.W., X.Y., B.L., C.W.H.W., Yu Wang, Z.X., Q.L., A.X.), University of Hong Kong, China.,Department of Medicine (L.J., L.G., L.S., R.Y., Y.L., Yao Wang, X.J., Q.W., X.Y., J.L., Z.X., Q.L., A.X.), University of Hong Kong, China.,Department of Anesthesiology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China (Z.X.)
| | - Qizhou Lian
- State Key Laboratory of Pharmaceutical Biotechnology (L.J., L.G., L.Y., L.S., R.Y., Y.L., Yao Wang, Y.C., X.J., Q.W., X.Y., B.L., C.W.H.W., Yu Wang, Z.X., Q.L., A.X.), University of Hong Kong, China.,Department of Medicine (L.J., L.G., L.S., R.Y., Y.L., Yao Wang, X.J., Q.W., X.Y., J.L., Z.X., Q.L., A.X.), University of Hong Kong, China.,Cord Blood Bank, Guangzhou Institute of Eugenics and Perinatology, Women and Children's Medical Center, Guangzhou Medical University, China (J.L., F.D., Q.L.)
| | - Aimin Xu
- State Key Laboratory of Pharmaceutical Biotechnology (L.J., L.G., L.Y., L.S., R.Y., Y.L., Yao Wang, Y.C., X.J., Q.W., X.Y., B.L., C.W.H.W., Yu Wang, Z.X., Q.L., A.X.), University of Hong Kong, China.,Department of Medicine (L.J., L.G., L.S., R.Y., Y.L., Yao Wang, X.J., Q.W., X.Y., J.L., Z.X., Q.L., A.X.), University of Hong Kong, China.,Department of Pharmacology and Pharmacy (L.J., L.Y., B.L., C.W.H.W., Yu Wang, A.X.), University of Hong Kong, China
| |
Collapse
|
12
|
Wang T, Li J, Li H, Zhong X, Wang L, Zhao S, Liu X, Huang Z, Wang Y. Aerobic Exercise Inhibited P2X7 Purinergic Receptors to Improve Cardiac Remodeling in Mice With Type 2 Diabetes. Front Physiol 2022; 13:828020. [PMID: 35711309 PMCID: PMC9197582 DOI: 10.3389/fphys.2022.828020] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Accepted: 04/26/2022] [Indexed: 11/13/2022] Open
Abstract
Background: Diabetic cardiomyopathy (DCM), the main complication of diabetes mellitus, presents as cardiac dysfunction by ventricular remodeling. In addition, the inhibition of P2X7 purinergic receptors (P2X7R) alleviates cardiac fibrosis and apoptosis in Type 1 diabetes. However, whether exercise training improves cardiac remodeling by regulating P2X7R remains unknown. Methods: Db/db mice spontaneously induced with type 2 diabetes and high-fat diet (HFD) and mice with streptozotocin (STZ)-induced type 2 diabetes mice were treated by 12-week treadmill training. Cardiac functions were observed by two-dimensional echocardiography. Hematoxylin-eosin staining, Sirius red staining and transmission electron microscopy were respectively used to detect cardiac morphology, fibrosis and mitochondria. In addition, real-time polymerase chain reaction and Western Blot were used to detect mRNA and protein levels. Results: Studying the hearts of db/db mice and STZ-induced mice, we found that collagen deposition and the number of disordered cells significantly increased compared with the control group. However, exercise markedly reversed these changes, and the same tendency was observed in the expression of MMP9, COL-I, and TGF-β, which indicated cardiac fibrotic and hypertrophic markers, including ANP and MyHC expression. In addition, the increased Caspase-3 level and the ratio of Bax/Bcl2 were reduced by exercise training, and similar results were observed in the TUNEL test. Notably, the expression of P2X7R was greatly upregulated in the hearts of db/db mice and HFD + STZ-induced DM mice and downregulated by aerobic exercise. Moreover, we indicated that P2X7R knock out significantly reduced the collagen deposition and disordered cells in the DM group. Furthermore, the apoptosis levels and TUNEL analysis were greatly inhibited by exercise or in the P2X7R-/- group in DM. We found significant differences between the P2X7R-/- + DM + EX group and DM + EX group in myocardial tissue apoptosis and fibrosis, in which the former is significantly milder. Moreover, compared with the P2X7R-/- + DM group, the P2X7R-/- + DM + EX group represented a lower level of cardiac fibrosis. The expression levels of TGF-β at the protein level and TGF-β and ANP at the genetic level were evidently decreased in the P2X7R-/- + DM + EX group. Conclusion: Aerobic exercise reversed cardiac remodeling in diabetic mice at least partly through inhibiting P2X7R expression in cardiomyocytes.
Collapse
Affiliation(s)
- Ting Wang
- The Key Laboratory of Cardiovascular Disease of Wenzhou, Department of Cardiology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Jianmin Li
- Department of Pathology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Hui Li
- Department of Ultrasound, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Xin Zhong
- The Key Laboratory of Cardiovascular Disease of Wenzhou, Department of Cardiology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Luya Wang
- The Key Laboratory of Cardiovascular Disease of Wenzhou, Department of Cardiology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Shujue Zhao
- Department of Pathology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Xuesheng Liu
- The Key Laboratory of Cardiovascular Disease of Wenzhou, Department of Cardiology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Zhouqing Huang
- The Key Laboratory of Cardiovascular Disease of Wenzhou, Department of Cardiology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Yonghua Wang
- Department of Physical Education, Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
13
|
Seyydi SM, Tofighi A, Rahmati M, Tolouei Azar J. Exercise and Urtica Dioica extract ameliorate mitochondrial function and the expression of cardiac muscle Nuclear Respiratory Factor 2 and Peroxisome proliferator-activated receptor Gamma Coactivator 1-alpha in STZ-induced diabetic rats. Gene 2022; 822:146351. [PMID: 35189251 DOI: 10.1016/j.gene.2022.146351] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 01/30/2022] [Accepted: 02/15/2022] [Indexed: 02/07/2023]
Abstract
INTRODUCTION Diabetes mellitus can affect and disrupt the levels of PGC1α and NRF2 proteins in the mitochondrial biogenesis pathway. Considering the anti-diabetic properties of Urtica Dioica extract and exercise, this study aimed to investigate the beneficial effects of Urtica Dioica extract and endurance activity on PGC1α and NRF2 protein levels in the streptozotocin-induced diabetic rat heart tissue. MATERIALS AND METHODS 58 male Wistar rats were divided into five groups (N = 12) including: healthy control (HC), diabetes control (DC), diabetes Urtica Dioica (D-UD), diabetes exercise training (DT), and diabetes exercise training Urtica Dioica (DT-UD). Diabetes was induced intraperitoneally by STZ (45 mg/kg) injection. Two weeks after the induction of diabetes, the rats were stimulated to carry out the exercise (moderate intensity/5day/week) and the gavage of UD extract (50 mg/kg/day) was administered to the rats for six weeks. In this study, the western blotting method was used to measure the levels of PGC1α and NRF2 proteins. Moreover, cardiography was used to evaluate the functional parameters of the heart (ejection fraction & fractional shortening). Finally, the bioluminescence and ELISA methods were used to determine the content of adenosine triphosphate and citrate synthase. RESULTS The cardiac function parameters, the mitochondrial ATP and the CS content in DC group mice were impaired in comparison with the other study groups and showed a decreasing trend (P < 0.001). The treatment with EX + UD extract was able to minimize the rate of these disorders and acted as a protector of mitochondrial function. There were significant differences in the expression levels of NRF2 (F = 17.7, P = 0.001) and PGC-1α (F = 43.7, P = 0.001) mitochondrial proteins among the different groups. The levels of these proteins were significantly reduced in the DC group in comparison with the HC group (P < 0.001). The treatment with EX or UD extract increased the expression of PGC-1α and NRF2 proteins in the heart muscle of animals in the DT and D-UD groups in comparison with the DC group (P < 0.05). Moreover, the expression of these proteins was more pronounced in the DT-UD group. There was not a significant difference between the DT-UD group and the HC group regarding the expression of these proteins (P > 0.05). CONCLUSIONS The results of this study showed that treatment with EX and UD extract could treat the disorders which were caused by diabetes in the parameters of cardiac function. Moreover, it was able to improve the expression of the levels of proteins which were involved in mitochondrial biogenesis and its function. Finally, this kind of treatment could attract more attention to the roles of EX and UD extract in the prevention of cardiovascular complications in future studies.
Collapse
Affiliation(s)
- Seyyedeh Masoumeh Seyydi
- Department of Exercise Physiology and Corrective Movements, Faculty of Sports Sciences, Urmia University, Urmia, Iran
| | - Asghar Tofighi
- Department of Exercise Physiology and Corrective Movements, Faculty of Sports Sciences, Urmia University, Urmia, Iran.
| | - Masoud Rahmati
- Department of Physical Education and Sport Sciences, Faculty of Literature and Human Sciences, Lorestan University, Khorramabad, Iran
| | - Javad Tolouei Azar
- Department of Exercise Physiology and Corrective Movements, Faculty of Sports Sciences, Urmia University, Urmia, Iran
| |
Collapse
|
14
|
Wake AD. Protective effects of physical activity against health risks associated with type 1 diabetes: "Health benefits outweigh the risks". World J Diabetes 2022; 13:161-184. [PMID: 35432757 PMCID: PMC8984568 DOI: 10.4239/wjd.v13.i3.161] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/11/2021] [Revised: 12/08/2021] [Accepted: 02/20/2022] [Indexed: 02/06/2023] Open
Abstract
The magnitude of diabetes mellitus (DM) has increased in recent decades, where the number of cases and the proportion of the disease have been gradually increasing over the past few decades. The chronic complications of DM affect many organ systems and account for the majority of morbidity and mortality associated with the disease. The prevalence of type 1 DM (T1DM) is increasing globally, and it has a very significant burden on countries and at an individual level. T1DM is a chronic illness that requires ongoing medical care and patient self-management to prevent complications. This study aims to discuss the health benefits of physical activity (PA) in T1DM patients. The present review article was performed following a comprehensive literature search. The search was conducted using the following electronic databases: "Cochrane Library", Web of Science, PubMed, HINARI, EMBASE, Google for grey literature, Scopus, African journals Online, and Google Scholar for articles published up to June 21, 2021. The present review focused on the effects of PA on many outcomes such as blood glucose (BG) control, physical fitness, endothelial function, insulin sensitivity, well-being, the body defense system, blood lipid profile, insulin resistance, cardiovascular diseases (CVDs), insulin requirements, blood pressure (BP), and mortality. It was found that many studies recommended the use of PA for the effective management of T1DM. PA is a component of comprehensive lifestyle modifications, which is a significant approach for the management of T1DM. It provides several health benefits, such as improving BG control, physical fitness, endothelial function, insulin sensitivity, well-being, and the body defense system. Besides this, it reduces the blood lipid profile, insulin resistance, CVDs, insulin requirements, BP, and mortality. Overall, PA has significant and essential protective effects against the health risks associated with T1DM. Even though PA has several health benefits for patients with T1DM, these patients are not well engaged in PA due to barriers such as a fear of exercise-induced hypoglycemia in particular. However, several effective strategies have been identified to control exercise-induced hypoglycemia in these patients. Finally, the present review concludes that PA should be recommended for the management of patients with T1DM due to its significant health benefits and protective effects against associated health risks. It also provides suggestions for the future direction of research in this field.
Collapse
Affiliation(s)
- Addisu Dabi Wake
- Department of Nursing, College of Health Sciences, Arsi University, Asella 193/4, Ethiopia
| |
Collapse
|
15
|
Bistara DN, Susanti S, Setianto B, Wardani EM, Krisnawati DI, Satiti NP. Cycling to Regulate Random Blood Glucose Levels in Individuals with Diabetes. Open Access Maced J Med Sci 2022. [DOI: 10.3889/oamjms.2021.7821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
BACKGROUND: In Indonesia, the four pillars of diabetes management include health education, food planning, physical exercise, and drug adherence. However, the most common imprudence in those four pillars was ignoring physical activity. Cycling has become a new social activity and a lifestyle among the community during the COVID-19 pandemic. It is an aerobic exercise that increases insulin receptor sensitivity.
AIM: This study aims to analyze the effect of cycling on Random Blood Glucose (RBG) levels in individuals with diabetes.
METHODOLOGY: This paper used a quasi-experiment pre-post test design with the control group. It utilized total sampling with 60 respondents. The independent variable was cycling using a dynamic bicycle. Meanwhile, the dependent variable was RBG levels with a glucometer as the instrument. The procedure in the intervention group was cycling using a dynamic bicycle twice a week with a distance of 2–3 kilometers each session. The data analysis used a paired T-test and independent sample T-test.
RESULTS: After cycling, the independent T-test result was p = 0.00 (p < 0.05). Thus, there was a difference in the mean RBG levels between the intervention and control groups after cycling. There was a decrease in mean RBG levels in the intervention group (206.67 ± 69.887 in pre-test and 114.60 ± 30.395 in post-test). In addition, the paired T-test resulted in p = 0.00 (p < 0.05). Thus, there was a difference in the intervention group’s mean RBG levels before and after cycling
CONCLUSION: Cycling can lower RBG levels in individuals with diabetes.
Collapse
|
16
|
Gao J, Pan X, Li G, Chatterjee E, Xiao J. Physical Exercise Protects Against Endothelial Dysfunction in Cardiovascular and Metabolic Diseases. J Cardiovasc Transl Res 2021; 15:604-620. [PMID: 34533746 PMCID: PMC8447895 DOI: 10.1007/s12265-021-10171-3] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Accepted: 09/02/2021] [Indexed: 12/16/2022]
Abstract
Increasing evidence shows that endothelial cells play critical roles in maintaining vascular homeostasis, regulating vascular tone, inhibiting inflammatory response, suppressing lipid leakage, and preventing thrombosis. The damage or injury of endothelial cells induced by physical, chemical, and biological risk factors is a leading contributor to the development of mortal cardiovascular and cerebrovascular diseases. However, the underlying mechanism of endothelial injury remains to be elucidated. Notably, no drugs effectively targeting and mending injured vascular endothelial cells have been approved for clinical practice. There is an urgent need to understand pathways important for repairing injured vasculature that can be targeted with novel therapies. Exercise training-induced protection to endothelial injury has been well documented in clinical trials, and the underlying mechanism has been explored in animal models. This review mainly summarizes the protective effects of exercise on vascular endothelium and the recently identified potential therapeutic targets for endothelial dysfunction.
Collapse
Affiliation(s)
- Juan Gao
- Institute of Geriatrics (Shanghai University), Affiliated Nantong Hospital of Shanghai University (The Sixth People's Hospital of Nantong), School of Medicine, Shanghai University, Nantong, 226011, China.,Cardiac Regeneration and Ageing Lab, Institute of Cardiovascular Sciences, Shanghai Engineering Research Center of Organ Repair, School of Life Science, Shanghai University, 333 Nan Chen Road, Shanghai, 200444, China
| | - Xue Pan
- Institute of Geriatrics (Shanghai University), Affiliated Nantong Hospital of Shanghai University (The Sixth People's Hospital of Nantong), School of Medicine, Shanghai University, Nantong, 226011, China.,Cardiac Regeneration and Ageing Lab, Institute of Cardiovascular Sciences, Shanghai Engineering Research Center of Organ Repair, School of Life Science, Shanghai University, 333 Nan Chen Road, Shanghai, 200444, China
| | - Guoping Li
- Cardiovascular Division of the Massachusetts General Hospital and Harvard Medical School, Boston, MA, 02114, USA
| | - Emeli Chatterjee
- Cardiovascular Division of the Massachusetts General Hospital and Harvard Medical School, Boston, MA, 02114, USA
| | - Junjie Xiao
- Institute of Geriatrics (Shanghai University), Affiliated Nantong Hospital of Shanghai University (The Sixth People's Hospital of Nantong), School of Medicine, Shanghai University, Nantong, 226011, China. .,Cardiac Regeneration and Ageing Lab, Institute of Cardiovascular Sciences, Shanghai Engineering Research Center of Organ Repair, School of Life Science, Shanghai University, 333 Nan Chen Road, Shanghai, 200444, China.
| |
Collapse
|
17
|
Yang L, Li DX, Cao BQ, Liu SJ, Xu DH, Zhu XY, Liu YJ. Exercise training ameliorates early diabetic kidney injury by regulating the H 2 S/SIRT1/p53 pathway. FASEB J 2021; 35:e21823. [PMID: 34396581 DOI: 10.1096/fj.202100219r] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2021] [Revised: 07/05/2021] [Accepted: 07/15/2021] [Indexed: 12/29/2022]
Abstract
Exercise training exerts protective effects against diabetic nephropathy. This study aimed to investigate whether exercise training could attenuate diabetic renal injury via regulating endogenous hydrogen sulfide (H2 S) production. First, C57BL/6 mice were allocated into the control, diabetes, exercise, and diabetes + exercise groups. Diabetes was induced by intraperitoneal injection of streptozotocin (STZ). Treadmill exercise continued for four weeks. Second, mice was allocated into the control, diabetes, H2 S and diabetes + H2 S groups. H2 S donor sodium hydrosulfide (NaHS) was intraperitoneally injected once daily for four weeks. STZ-induced diabetic mice exhibited glomerular hypertrophy, tissue fibrosis and increased urine albumin levels, urine protein- and albumin-to-creatinine ratios, which were relieved by exercise training. Diabetic renal injury was associated with apoptotic cell death, as evidenced by the enhanced caspase-3 activity, the increased TdT-mediated dUTP nick-end labeling -positive cells and the reduced expression of anti-apoptotic proteins, all of which were attenuated by exercise training. Exercise training enhanced renal sirtuin 1 (SIRT1) expression in diabetic mice, accompanied by an inhibition of the p53-#ediated pro-apoptotic pathway. Furthermore, exercise training restored the STZ-mediated downregulation of cystathionine-β-synthase (CBS) and cystathionine-γ-lyase (CSE) and the reduced renal H2 S production. NaHS treatment restored SIRT1 expression, inhibited the p53-mediated pro-apoptotic pathway and attenuated diabetes-associated apoptosis and renal injury. In high glucose-treated MPC5 podocytes, NaHS treatment inhibited the p53-mediated pro-apoptotic pathway and podocyte apoptosis in a SIRT1-dependent manner. Collectively, exercise training upregulated CBS/CSE expression and enhanced the endogenous H2 S production in renal tissues, thereby contributing to the modulation of the SIRT1/p53 apoptosis pathway and improvement of diabetic nephropathy.
Collapse
Affiliation(s)
- Lu Yang
- School of Kinesiology, The Key Laboratory of Exercise and Health Sciences of Ministry of Education, Shanghai University of Sport, Shanghai, China
| | - Dong-Xia Li
- School of Kinesiology, The Key Laboratory of Exercise and Health Sciences of Ministry of Education, Shanghai University of Sport, Shanghai, China
| | - Bu-Qing Cao
- Department of Physiology, Navy Medical University, Shanghai, China.,Department of Laboratory Medicine, Ruikang Hospital, Guangxi University of Chinese Medicine, Nanning, China
| | - Shu-Juan Liu
- State Key Laboratory of Space Medicine Fundamentals and Application, China Astronaut Research and Training Center, Beijing, China
| | - Dan-Hong Xu
- School of Kinesiology, The Key Laboratory of Exercise and Health Sciences of Ministry of Education, Shanghai University of Sport, Shanghai, China
| | - Xiao-Yan Zhu
- Department of Physiology, Navy Medical University, Shanghai, China
| | - Yu-Jian Liu
- School of Kinesiology, The Key Laboratory of Exercise and Health Sciences of Ministry of Education, Shanghai University of Sport, Shanghai, China
| |
Collapse
|
18
|
Bowman PRT, Smith GL, Gould GW. Run for your life: can exercise be used to effectively target GLUT4 in diabetic cardiac disease? PeerJ 2021; 9:e11485. [PMID: 34113491 PMCID: PMC8162245 DOI: 10.7717/peerj.11485] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2021] [Accepted: 04/27/2021] [Indexed: 12/25/2022] Open
Abstract
The global incidence, associated mortality rates and economic burden of diabetes are now such that it is considered one of the most pressing worldwide public health challenges. Considerable research is now devoted to better understanding the mechanisms underlying the onset and progression of this disease, with an ultimate aim of improving the array of available preventive and therapeutic interventions. One area of particular unmet clinical need is the significantly elevated rate of cardiomyopathy in diabetic patients, which in part contributes to cardiovascular disease being the primary cause of premature death in this population. This review will first consider the role of metabolism and more specifically the insulin sensitive glucose transporter GLUT4 in diabetic cardiac disease, before addressing how we may use exercise to intervene in order to beneficially impact key functional clinical outcomes.
Collapse
Affiliation(s)
- Peter R T Bowman
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, United Kingdom
| | - Godfrey L Smith
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Gwyn W Gould
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, United Kingdom
| |
Collapse
|
19
|
Adams JA, Uryash A, Lopez JR, Sackner MA. The Endothelium as a Therapeutic Target in Diabetes: A Narrative Review and Perspective. Front Physiol 2021; 12:638491. [PMID: 33708143 PMCID: PMC7940370 DOI: 10.3389/fphys.2021.638491] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2020] [Accepted: 01/29/2021] [Indexed: 12/18/2022] Open
Abstract
Diabetes has reached worldwide epidemic proportions, and threatens to be a significant economic burden to both patients and healthcare systems, and an important driver of cardiovascular mortality and morbidity. Improvement in lifestyle interventions (which includes increase in physical activity via exercise) can reduce diabetes and cardiovascular disease mortality and morbidity. Encouraging a population to increase physical activity and exercise is not a simple feat particularly in individuals with co-morbidities (obesity, heart disease, stroke, peripheral vascular disease, and those with cognitive and physical limitations). Translation of the physiological benefits of exercise within that vulnerable population would be an important step for improving physical activity goals and a stopgap measure to exercise. In large part many of the beneficial effects of exercise are due to the introduction of pulsatile shear stress (PSS) to the vascular endothelium. PSS is a well-known stimulus for endothelial homeostasis, and induction of a myriad of pathways which include vasoreactivity, paracrine/endocrine function, fibrinolysis, inflammation, barrier function, and vessel growth and formation. The endothelial cell mediates the balance between vasoconstriction and relaxation via the major vasodilator endothelial derived nitric oxide (eNO). eNO is critical for vasorelaxation, increasing blood flow, and an important signaling molecule that downregulates the inflammatory cascade. A salient feature of diabetes, is endothelial dysfunction which is characterized by a reduction of the bioavailability of vasodilators, particularly nitric oxide (NO). Cellular derangements in diabetes are also related to dysregulation in Ca2+ handling with increased intracellular Ca2+overload, and oxidative stress. PSS increases eNO bioavailability, reduces inflammatory phenotype, decreases intracellular Ca2+ overload, and increases antioxidant capacity. This narrative review and perspective will outline four methods to non-invasively increase PSS; Exercise (the prototype for increasing PSS), Enhanced External Counterpulsation (EECP), Whole Body Vibration (WBV), Passive Simulated Jogging and its predicate device Whole Body Periodic Acceleration, and will discuss current knowledge on their use in diabetes.
Collapse
Affiliation(s)
- Jose A Adams
- Division of Neonatology, Mount Sinai Medical Center, Miami Beach, FL, United States
| | - Arkady Uryash
- Division of Neonatology, Mount Sinai Medical Center, Miami Beach, FL, United States
| | - Jose R Lopez
- Department of Research, Mount Sinai Medical Center, Miami Beach, FL, United States
| | - Marvin A Sackner
- Department of Medicine, Mount Sinai Medical Center, Miami Beach, FL, United States
| |
Collapse
|
20
|
Wake AD. Antidiabetic Effects of Physical Activity: How It Helps to Control Type 2 Diabetes. Diabetes Metab Syndr Obes 2020; 13:2909-2923. [PMID: 32884317 PMCID: PMC7443456 DOI: 10.2147/dmso.s262289] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Accepted: 07/01/2020] [Indexed: 12/15/2022] Open
Abstract
Despite the improvements in clinical care of the patients, research updates, and public health interventions, there is still an increase in the prevalence, incidence, and mortality because of diabetes mellitus (DM). DM is a public health problem in both developed and developing countries. It has increased alarmingly, putting this disease in the dimension of an epidemic. Diabetes is associated with several complications which increase the risk of many serious health problems on the other side. Therefore, this review was aimed to discuss the antidiabetic effects of physical activity (PA) on type 2 DM (T2DM) by summarizing the significant studies on this topic. This review found that several studies have recommended the utilization of PA for the effective management of T2DM. PA is a non-pharmacologic therapy which is a significant strategy for the management of T2DM and is an appropriate lifestyle modification approach to be practiced by these patients. The studies showed that PA has antidiabetic effects which are evidenced by its substantial role in improving the blood glucose (BG) levels of the individuals with T2DM where it helps them to control their levels of glucose in the blood. It plays a significant role in glycemic control of this disease by lowering the BG levels through possible mechanisms such as decreasing insulin resistance, increasing production of glucose transporter type 4 (GLUT-4), lowering visceral adipose tissue (VAT), increasing pancreatic β-cell functions, using glucose for energy, and so on. In turn, the controlled glycemia helps to prevent the complications associated with uncontrolled T2DM and this would further improve the overall health of the patients and the burden on the health professionals as well. Finally, this review concludes that PA is the cornerstone in the management of T2DM. It also suggests that more attention is needed to its significance in the prevention, glycemic control, and its role in the management of the morbidity and mortality associated with T2DM. Practical PA recommendations and suggestions for the future direction of research in this area are also provided.
Collapse
Affiliation(s)
- Addisu Dabi Wake
- Nursing Department, College of Health Sciences, Arsi University, Assela, Oromia, Ethiopia
| |
Collapse
|
21
|
Can We Prevent Mitochondrial Dysfunction and Diabetic Cardiomyopathy in Type 1 Diabetes Mellitus? Pathophysiology and Treatment Options. Int J Mol Sci 2020; 21:ijms21082852. [PMID: 32325880 PMCID: PMC7215501 DOI: 10.3390/ijms21082852] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Revised: 03/29/2020] [Accepted: 04/17/2020] [Indexed: 12/15/2022] Open
Abstract
Type 1 diabetes mellitus is a disease involving changes to energy metabolism. Chronic hyperglycemia is a major cause of diabetes complications. Hyperglycemia induces mechanisms that generate the excessive production of reactive oxygen species, leading to the development of oxidative stress. Studies with animal models have indicated the involvement of mitochondrial dysfunction in the pathogenesis of diabetic cardiomyopathy. In the current review, we aimed to collect scientific reports linking disorders in mitochondrial functioning with the development of diabetic cardiomyopathy in type 1 diabetes mellitus. We also aimed to present therapeutic approaches counteracting the development of mitochondrial dysfunction and diabetic cardiomyopathy in type 1 diabetes mellitus.
Collapse
|