1
|
Chen X, Liu F, Li B, Wang Y, Yuan L, Yin A, Chen Q, Hu W, Yao Y, Zhang M, Wu Y, Chen K. Neuropathy-associated Fars2 deficiency affects neuronal development and potentiates neuronal apoptosis by impairing mitochondrial function. Cell Biosci 2022; 12:103. [PMID: 35794642 PMCID: PMC9258231 DOI: 10.1186/s13578-022-00838-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Accepted: 06/23/2022] [Indexed: 11/22/2022] Open
Abstract
Background Neurodegenerative diseases encompass an extensive and heterogeneous group of nervous system disorders which are characterized by progressive degeneration and death of neurons. Many lines of evidence suggest the participation of mitochondria dysfunction in these diseases. Mitochondrial phenylalanyl-tRNA synthetase, encoded by FARS2, catalyzes the transfer of phenylalanine to its cognate tRNA for protein synthesis. As a member of mt-aaRSs genes, FARS2 missense homozygous mutation c.424G > T (p.D142Y) found in a Chinese consanguineous family first built the relationship between pure hereditary spastic paraplegia (HSP) and FARS2 gene. More FARS2 variations were subsequently found to cause heterogeneous group of neurologic disorders presenting three main phenotypic manifestations: infantile-onset epileptic mitochondrial encephalopathy, later-onset spastic paraplegia and juvenile onset refractory epilepsy. Studies showed that aminoacylation activity is frequently disrupt in cases with FARS2 mutations, indicating a loss-of-function mechanism. However, the underlying pathogenesis of neuropathy-associated Fars2 deficiency is still largely unknown. Results Early gestation lethality of global Fars2 knockout mice was observed prior to neurogenesis. The conditional Fars2 knockout-mouse model delayed lethality to late-gestation, resulting in a thinner cortex and an enlarged ventricle which is consist with the MRI results revealing cortical atrophy and reduced cerebral white matter volume in FARS2-deficient patients. Delayed development of neurite outgrowth followed by neuronal apoptosis was confirmed in Fars2-knockdown mouse primary cultured neurons. Zebrafish, in which fars2 was knocked down, exhibited aberrant motor neuron function including reduced locomotor capacity which well restored the spastic paraplegia phenotype of FARS2-deficient patients. Altered mitochondrial protein synthesis and reduced levels of oxidative phosphorylation complexes were detected in Fars2-deficient samples. And thus, reduced ATP, total NAD levels and mitochondrial membrane potential, together with increased ROS production, revealed mitochondrial dysfunction both in vitro and in vivo. Dctn3 is a potential downstream molecule in responds to Fars2 deficient in neurons, which may provide some evidence for the development of pathogenesis study and therapeutic schedule. Conclusions The Fars2 deficiency genetic models developed in this study cover the typical clinical manifestations in FARS2 patients, and help clarify how neuropathy-associated Fars2 deficiency, by damaging the mitochondrial respiratory chain and impairing mitochondrial function, affects neuronal development and potentiates neuronal cell apoptosis. Supplementary Information The online version contains supplementary material available at 10.1186/s13578-022-00838-y.
Collapse
Affiliation(s)
- Xihui Chen
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Air Force Medical University, Xi'an, Shaanxi, People's Republic of China.,Shaanxi Provincial Key Laboratory of Clinic Genetics, Air Force Medical University, Xi'an, Shaanxi, People's Republic of China
| | - Fangfang Liu
- Department of Neurobiology, School of Basic Medicine, Air Force Medical University, Xi'an, Shaanxi, People's Republic of China
| | - Bowen Li
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Air Force Medical University, Xi'an, Shaanxi, People's Republic of China.,Shaanxi Provincial Key Laboratory of Clinic Genetics, Air Force Medical University, Xi'an, Shaanxi, People's Republic of China
| | - Yufeng Wang
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Air Force Medical University, Xi'an, Shaanxi, People's Republic of China.,Shaanxi Provincial Key Laboratory of Clinic Genetics, Air Force Medical University, Xi'an, Shaanxi, People's Republic of China.,Medical Genetics, Yan'an University, Yan'an, Shaanxi, People's Republic of China
| | - Lijuan Yuan
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Air Force Medical University, Xi'an, Shaanxi, People's Republic of China.,Shaanxi Provincial Key Laboratory of Clinic Genetics, Air Force Medical University, Xi'an, Shaanxi, People's Republic of China.,Department of General Surgery, Tangdu Hospital, Air Force Medical University, Xi'an, Shaanxi, People's Republic of China
| | - Anan Yin
- Department of Neurosurgery, Xijing Institute of Clinical Neuroscience, Department of Plastic surgery, Xijing Hospital, Air Force Medical University, Xi'an, Shaanxi, People's Republic of China
| | - Qi Chen
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Air Force Medical University, Xi'an, Shaanxi, People's Republic of China.,Shaanxi Provincial Key Laboratory of Clinic Genetics, Air Force Medical University, Xi'an, Shaanxi, People's Republic of China
| | - Weihong Hu
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Air Force Medical University, Xi'an, Shaanxi, People's Republic of China.,Shaanxi Provincial Key Laboratory of Clinic Genetics, Air Force Medical University, Xi'an, Shaanxi, People's Republic of China.,Medical Genetics, Yan'an University, Yan'an, Shaanxi, People's Republic of China
| | - Yan Yao
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Air Force Medical University, Xi'an, Shaanxi, People's Republic of China.,Shaanxi Provincial Key Laboratory of Clinic Genetics, Air Force Medical University, Xi'an, Shaanxi, People's Republic of China.,Medical Genetics, Yan'an University, Yan'an, Shaanxi, People's Republic of China
| | - Mengjie Zhang
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Air Force Medical University, Xi'an, Shaanxi, People's Republic of China.,Shaanxi Provincial Key Laboratory of Clinic Genetics, Air Force Medical University, Xi'an, Shaanxi, People's Republic of China.,Medical Genetics, Yan'an University, Yan'an, Shaanxi, People's Republic of China
| | - YuanMing Wu
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Air Force Medical University, Xi'an, Shaanxi, People's Republic of China. .,Shaanxi Provincial Key Laboratory of Clinic Genetics, Air Force Medical University, Xi'an, Shaanxi, People's Republic of China.
| | - Kun Chen
- Department of Anatomy, Histology and Embryology and K.K. Leung Brain Research Centre, School of Basic Medicine, Air Force Medical University, Xi'an, Shaanxi, People's Republic of China.
| |
Collapse
|
2
|
Montano E, Pollice A, Lucci V, Falco G, Affinito O, La Mantia G, Vivo M, Angrisano T. Pancreatic Progenitor Commitment Is Marked by an Increase in Ink4a/Arf Expression. Biomolecules 2021; 11:biom11081124. [PMID: 34439790 PMCID: PMC8392192 DOI: 10.3390/biom11081124] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Revised: 07/20/2021] [Accepted: 07/28/2021] [Indexed: 01/06/2023] Open
Abstract
The identification of the molecular mechanisms controlling early cell fate decisions in mammals is of paramount importance as the ability to determine specific lineage differentiation represents a significant opportunity for new therapies. Pancreatic Progenitor Cells (PPCs) constitute a regenerative reserve essential for the maintenance and regeneration of the pancreas. Besides, PPCs represent an excellent model for understanding pathological pancreatic cellular remodeling. Given the lack of valid markers of early endoderm, the identification of new ones is of fundamental importance. Both products of the Ink4a/Arf locus, in addition to being critical cell-cycle regulators, appear to be involved in several disease pathologies. Moreover, the locus' expression is epigenetically regulated in ES reprogramming processes, thus constituting the ideal candidates to modulate PPCs homeostasis. In this study, starting from mouse embryonic stem cells (mESCs), we analyzed the early stages of pancreatic commitment. By inducing mESCs commitment to the pancreatic lineage, we observed that both products of the Cdkn2a locus, Ink4a and Arf, mark a naïve pancreatic cellular state that resembled PPC-like specification. Treatment with epi-drugs suggests a role for chromatin remodeling in the CDKN2a (Cycline Dependent Kinase Inhibitor 2A) locus regulation in line with previous observations in other cellular systems. Our data considerably improve the comprehension of pancreatic cellular ontogeny, which could be critical for implementing pluripotent stem cells programming and reprogramming toward pancreatic lineage commitment.
Collapse
Affiliation(s)
- Elena Montano
- Department of Biology, University of Naples “Federico II”, 80147 Naples, Italy; (E.M.); (A.P.); (V.L.); (G.F.); (G.L.M.)
| | - Alessandra Pollice
- Department of Biology, University of Naples “Federico II”, 80147 Naples, Italy; (E.M.); (A.P.); (V.L.); (G.F.); (G.L.M.)
| | - Valeria Lucci
- Department of Biology, University of Naples “Federico II”, 80147 Naples, Italy; (E.M.); (A.P.); (V.L.); (G.F.); (G.L.M.)
- Department of Nuclear Medicine, IRCCS—Referral Cancer Center of Basilicata (CROB), 85028 Rionero in Vulture, Italy
| | - Geppino Falco
- Department of Biology, University of Naples “Federico II”, 80147 Naples, Italy; (E.M.); (A.P.); (V.L.); (G.F.); (G.L.M.)
- Department of Nuclear Medicine, IRCCS—Referral Cancer Center of Basilicata (CROB), 85028 Rionero in Vulture, Italy
- Biogem Scarl, Istituto di Ricerche Genetiche “Gaetano Salvatore”, 83031 Ariano Irpino, Italy
| | | | - Girolama La Mantia
- Department of Biology, University of Naples “Federico II”, 80147 Naples, Italy; (E.M.); (A.P.); (V.L.); (G.F.); (G.L.M.)
| | - Maria Vivo
- Department of Chemistry and Biology, University of Salerno, 84084 Fisciano, Italy
- Correspondence: (M.V.); (T.A.); Tel.: +39-081-679721 (T.A.)
| | - Tiziana Angrisano
- Department of Biology, University of Naples “Federico II”, 80147 Naples, Italy; (E.M.); (A.P.); (V.L.); (G.F.); (G.L.M.)
- Correspondence: (M.V.); (T.A.); Tel.: +39-081-679721 (T.A.)
| |
Collapse
|