1
|
Komal S, Gao Y, Wang ZM, Yu QW, Wang P, Zhang LR, Han SN. Epigenetic Regulation in Myocardial Fibroblasts and Its Impact on Cardiovascular Diseases. Pharmaceuticals (Basel) 2024; 17:1353. [PMID: 39458994 PMCID: PMC11510975 DOI: 10.3390/ph17101353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 09/24/2024] [Accepted: 10/02/2024] [Indexed: 10/28/2024] Open
Abstract
Myocardial fibroblasts play a crucial role in heart structure and function. In recent years, significant progress has been made in understanding the epigenetic regulation of myocardial fibroblasts, which is essential for cardiac development, homeostasis, and disease progression. In healthy hearts, cardiac fibroblasts (CFs) play a crucial role in synthesizing the extracellular matrix (ECM) when in a dormant state. However, under pathological and environmental stress, CFs transform into activated fibroblasts known as myofibroblasts. These myofibroblasts produce an excess of ECM, which promotes cardiac fibrosis. Although multiple molecular mechanisms are associated with CF activation and myocardial dysfunction, emerging evidence highlights the significant involvement of epigenetic regulation in this process. Epigenetics refers to the heritable changes in gene expression that occur without altering the DNA sequence. These mechanisms have emerged as key regulators of myocardial fibroblast function. This review focuses on recent advancements in the understanding of the role of epigenetic regulation and emphasizes the impact of epigenetic modifications on CF activation. Furthermore, we present perspectives and prospects for future research on epigenetic modifications and their implications for myocardial fibroblasts.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Sheng-Na Han
- Department of Pharmacology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450001, China; (S.K.); (Y.G.); (Z.-M.W.); (Q.-W.Y.); (P.W.); (L.-R.Z.)
| |
Collapse
|
2
|
Shi L, Lim JY, Kam LC. Improving regulatory T cell production through mechanosensing. J Biomed Mater Res A 2024; 112:1138-1148. [PMID: 38450935 PMCID: PMC11065567 DOI: 10.1002/jbm.a.37702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 02/19/2024] [Accepted: 02/26/2024] [Indexed: 03/08/2024]
Abstract
Induced Tregs (iTregs) have great promise in adoptive immunotherapy for treatment of autoimmune diseases. This report investigates the impacts of substrate stiffness on human Treg induction, providing a powerful yet simple approach to improving production of these cells. Conventional CD4+ human T cells were activated on materials of different elastic modulus and cultured under suppressive conditions. Enhanced Treg induction was observed on softer materials as early as 3 days following activation and persisted for multiple weeks. Substrate stiffness also affected epigenetic modification of Treg specific genes and Treg suppressive capacity. Tregs induced on substrates of an optimal stiffness balance quantity and suppressive quality.
Collapse
Affiliation(s)
- Lingting Shi
- Department of Biomedical Engineering, Columbia University, New York, NY, 10027, USA
| | - Jee Yoon Lim
- Department of Biological Sciences, Columbia University, New York, NY, 10027, USA
| | - Lance C. Kam
- Department of Biomedical Engineering, Columbia University, New York, NY, 10027, USA
| |
Collapse
|
3
|
Cardiac fibroblasts and mechanosensation in heart development, health and disease. Nat Rev Cardiol 2022; 20:309-324. [PMID: 36376437 DOI: 10.1038/s41569-022-00799-2] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/04/2022] [Indexed: 11/16/2022]
Abstract
The term 'mechanosensation' describes the capacity of cells to translate mechanical stimuli into the coordinated regulation of intracellular signals, cellular function, gene expression and epigenetic programming. This capacity is related not only to the sensitivity of the cells to tissue motion, but also to the decryption of tissue geometric arrangement and mechanical properties. The cardiac stroma, composed of fibroblasts, has been historically considered a mechanically passive component of the heart. However, the latest research suggests that the mechanical functions of these cells are an active and necessary component of the developmental biology programme of the heart that is involved in myocardial growth and homeostasis, and a crucial determinant of cardiac repair and disease. In this Review, we discuss the general concept of cell mechanosensation and force generation as potent regulators in heart development and pathology, and describe the integration of mechanical and biohumoral pathways predisposing the heart to fibrosis and failure. Next, we address the use of 3D culture systems to integrate tissue mechanics to mimic cardiac remodelling. Finally, we highlight the potential of mechanotherapeutic strategies, including pharmacological treatment and device-mediated left ventricular unloading, to reverse remodelling in the failing heart.
Collapse
|
4
|
Novel Therapies for the Treatment of Cardiac Fibrosis Following Myocardial Infarction. Biomedicines 2022; 10:biomedicines10092178. [PMID: 36140279 PMCID: PMC9496565 DOI: 10.3390/biomedicines10092178] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 08/17/2022] [Accepted: 08/22/2022] [Indexed: 12/03/2022] Open
Abstract
Cardiac fibrosis is a common pathological consequence of most myocardial diseases. It is associated with the excessive accumulation of extracellular matrix proteins as well as fibroblast differentiation into myofibroblasts in the cardiac interstitium. This structural remodeling often results in myocardial dysfunctions such as arrhythmias and impaired systolic function in patients with heart conditions, ultimately leading to heart failure and death. An understanding of the precise mechanisms of cardiac fibrosis is still limited due to the numerous signaling pathways, cells, and mediators involved in the process. This review article will focus on the pathophysiological processes associated with the development of cardiac fibrosis. In addition, it will summarize the novel strategies for anti-fibrotic therapies such as epigenetic modifications, miRNAs, and CRISPR technologies as well as various medications in cellular and animal models.
Collapse
|
5
|
Wang C, Yang J. Mechanical forces: The missing link between idiopathic pulmonary fibrosis and lung cancer. Eur J Cell Biol 2022; 101:151234. [DOI: 10.1016/j.ejcb.2022.151234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 05/05/2022] [Accepted: 05/05/2022] [Indexed: 11/25/2022] Open
|
6
|
Ferrari S, Pesce M. The Complex Interplay of Inflammation, Metabolism, Epigenetics, and Sex in Calcific Disease of the Aortic Valve. Front Cardiovasc Med 2022; 8:791646. [PMID: 35071359 PMCID: PMC8770423 DOI: 10.3389/fcvm.2021.791646] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Accepted: 11/30/2021] [Indexed: 12/20/2022] Open
Abstract
Calcification of the aortic valve is one of the most rapidly increasing pathologies in the aging population worldwide. Traditionally associated to cardiovascular risk conditions, this pathology is still relatively unaddressed on a molecular/cellular standpoint and there are no available treatments to retard its progression unless valve substitution. In this review, we will describe some of the most involved inflammatory players, the metabolic changes that may be responsible of epigenetic modifications and the gender-related differences in the onset of the disease. A better understanding of these aspects and their integration into a unique pathophysiology context is relevant to improve current therapies and patients management.
Collapse
Affiliation(s)
- Silvia Ferrari
- Unità di Ingegneria Tissutale Cardiovascolare, Centro Cardiologico Monzino, IRCCS, Milan, Italy
| | - Maurizio Pesce
- Unità di Ingegneria Tissutale Cardiovascolare, Centro Cardiologico Monzino, IRCCS, Milan, Italy
| |
Collapse
|
7
|
Iop L, Iliceto S, Civieri G, Tona F. Inherited and Acquired Rhythm Disturbances in Sick Sinus Syndrome, Brugada Syndrome, and Atrial Fibrillation: Lessons from Preclinical Modeling. Cells 2021; 10:3175. [PMID: 34831398 PMCID: PMC8623957 DOI: 10.3390/cells10113175] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 11/03/2021] [Accepted: 11/09/2021] [Indexed: 12/12/2022] Open
Abstract
Rhythm disturbances are life-threatening cardiovascular diseases, accounting for many deaths annually worldwide. Abnormal electrical activity might arise in a structurally normal heart in response to specific triggers or as a consequence of cardiac tissue alterations, in both cases with catastrophic consequences on heart global functioning. Preclinical modeling by recapitulating human pathophysiology of rhythm disturbances is fundamental to increase the comprehension of these diseases and propose effective strategies for their prevention, diagnosis, and clinical management. In silico, in vivo, and in vitro models found variable application to dissect many congenital and acquired rhythm disturbances. In the copious list of rhythm disturbances, diseases of the conduction system, as sick sinus syndrome, Brugada syndrome, and atrial fibrillation, have found extensive preclinical modeling. In addition, the electrical remodeling as a result of other cardiovascular diseases has also been investigated in models of hypertrophic cardiomyopathy, cardiac fibrosis, as well as arrhythmias induced by other non-cardiac pathologies, stress, and drug cardiotoxicity. This review aims to offer a critical overview on the effective ability of in silico bioinformatic tools, in vivo animal studies, in vitro models to provide insights on human heart rhythm pathophysiology in case of sick sinus syndrome, Brugada syndrome, and atrial fibrillation and advance their safe and successful translation into the cardiology arena.
Collapse
Affiliation(s)
- Laura Iop
- Department of Cardiac Thoracic Vascular Sciences and Public Health, University of Padua, Via Giustiniani, 2, I-35124 Padua, Italy; (S.I.); (G.C.)
| | | | | | - Francesco Tona
- Department of Cardiac Thoracic Vascular Sciences and Public Health, University of Padua, Via Giustiniani, 2, I-35124 Padua, Italy; (S.I.); (G.C.)
| |
Collapse
|
8
|
Yeh CF, Chou C, Yang KC. Mechanotransduction in fibrosis: Mechanisms and treatment targets. CURRENT TOPICS IN MEMBRANES 2021; 87:279-314. [PMID: 34696888 DOI: 10.1016/bs.ctm.2021.07.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/29/2023]
Abstract
To perceive and integrate the environmental cues, cells and tissues sense and interpret various physical forces like shear, tensile, and compression stress. Mechanotransduction involves the sensing and translation of mechanical forces into biochemical and mechanical signals to guide cell fate and achieve tissue homeostasis. Disruption of this mechanical homeostasis by tissue injury elicits multiple cellular responses leading to pathological matrix deposition and tissue stiffening, and consequent evolution toward pro-inflammatory/pro-fibrotic phenotypes, leading to tissue/organ fibrosis. This review focuses on the molecular mechanisms linking mechanotransduction to fibrosis and uncovers the potential therapeutic targets to halt or resolve fibrosis.
Collapse
Affiliation(s)
- Chih-Fan Yeh
- Division of Cardiology, Department of Internal Medicine and Cardiovascular Center, National Taiwan University Hospital, Taipei, Taiwan; Department and Graduate Institute of Pharmacology, National Taiwan University College of Medicine, Taipei, Taiwan
| | - Caroline Chou
- Department and Graduate Institute of Pharmacology, National Taiwan University College of Medicine, Taipei, Taiwan; Washington University in St. Louis, St. Louis, MO, United States
| | - Kai-Chien Yang
- Division of Cardiology, Department of Internal Medicine and Cardiovascular Center, National Taiwan University Hospital, Taipei, Taiwan; Department and Graduate Institute of Pharmacology, National Taiwan University College of Medicine, Taipei, Taiwan; Research Center for Developmental Biology & Regenerative Medicine, National Taiwan University, Taipei, Taiwan; Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan.
| |
Collapse
|
9
|
Phosphoproteomic response of cardiac endothelial cells to ischemia and ultrasound. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2021; 1869:140683. [PMID: 34119693 DOI: 10.1016/j.bbapap.2021.140683] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 04/30/2021] [Accepted: 06/04/2021] [Indexed: 12/13/2022]
Abstract
Myocardial infarction and subsequent therapeutic interventions activate numerous intracellular cascades in every constituent cell type of the heart. Endothelial cells produce several protective compounds in response to therapeutic ultrasound, under both normoxic and ischemic conditions. How endothelial cells sense ultrasound and convert it to a beneficial biological response is not known. We adopted a global, unbiased phosphoproteomics approach aimed at understanding how endothelial cells respond to ultrasound. Here, we use primary cardiac endothelial cells to explore the cellular signaling events underlying the response to ischemia-like cellular injury and ultrasound exposure in vitro. Enriched phosphopeptides were analyzed with a high mass accuracy liquid chromatrography (LC) - tandem mass spectrometry (MS/MS) proteomic platform, yielding multiple alterations in both total protein levels and phosphorylation events in response to ischemic injury and ultrasound. Application of pathway algorithms reveals numerous protein networks recruited in response to ultrasound including those regulating RNA splicing, cell-cell interactions and cytoskeletal organization. Our dataset also permits the informatic prediction of potential kinases responsible for the modifications detected. Taken together, our findings begin to reveal the endothelial proteomic response to ultrasound and suggest potential targets for future studies of the protective effects of ultrasound in the ischemic heart.
Collapse
|
10
|
Ferrari S, Pesce M. Stiffness and Aging in Cardiovascular Diseases: The Dangerous Relationship between Force and Senescence. Int J Mol Sci 2021; 22:3404. [PMID: 33810253 PMCID: PMC8037660 DOI: 10.3390/ijms22073404] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 03/22/2021] [Accepted: 03/23/2021] [Indexed: 02/07/2023] Open
Abstract
Biological aging is a process associated with a gradual decline in tissues' homeostasis based on the progressive inability of the cells to self-renew. Cellular senescence is one of the hallmarks of the aging process, characterized by an irreversible cell cycle arrest due to reactive oxygen species (ROS) production, telomeres shortening, chronic inflammatory activation, and chromatin modifications. In this review, we will describe the effects of senescence on tissue structure, extracellular matrix (ECM) organization, and nucleus architecture, and see how these changes affect (are affected by) mechano-transduction. In our view, this is essential for a deeper understanding of the progressive pathological evolution of the cardiovascular system and its relationship with the detrimental effects of risk factors, known to act at an epigenetic level.
Collapse
Affiliation(s)
- Silvia Ferrari
- Unità di Ingegneria Tissutale Cardiovascolare, Centro cardiologico Monzino, Istituto di Ricovero e Cura a Carattere Scientifico(IRCCS), 20138 Milan, Italy;
- PhD Program in Translational Medicine, Department of Molecular Medicine, Università degli studi di Pavia, 27100 Pavia, Italy
| | - Maurizio Pesce
- Unità di Ingegneria Tissutale Cardiovascolare, Centro cardiologico Monzino, Istituto di Ricovero e Cura a Carattere Scientifico(IRCCS), 20138 Milan, Italy;
| |
Collapse
|
11
|
Gong Z, Ye Q, Wu JW, Zhou JL, Kong XY, Ma LK. UCHL1 inhibition attenuates cardiac fibrosis via modulation of nuclear factor-κB signaling in fibroblasts. Eur J Pharmacol 2021; 900:174045. [PMID: 33745956 DOI: 10.1016/j.ejphar.2021.174045] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 02/17/2021] [Accepted: 03/16/2021] [Indexed: 01/05/2023]
Abstract
The ubiquitin-proteasome system (UPS) plays an essential role in cellular homeostasis and myocardial function. Ubiquitin carboxy-terminal hydrolase 1 (UCHL1) is involved in cardiac remodeling, but its underlying mechanisms are largely unknown. Here, we observed that the UCHL1 was significantly up-regulated in angiotensin II-infused heart and primary cardiac fibroblast (CF). Systemic administration of the UCHL1 inhibitor LDN57444 significantly ameliorated cardiac fibrosis and improved cardiac function induced by angiotensin II. Also, LDN57444 inhibited CF cell proliferation as well as attenuated collagen I, and CTGF gene expression in the presence of Ang II. Mechanistically, UCHL1 promotes angiotensin II-induced fibrotic responses by way of activating nuclear factor kappa B (NF-κB) signaling. Moreover, suppression of the NF-κB pathway interfered with UCHL1 overexpression-mediated fibrotic responses. Besides, the chromatin immunoprecipitation assay demonstrated that NF-κB can bind to the UCHL1 promoter and trigger its transcription in cardiac fibroblasts. These findings suggest that UCHL1 positively regulates cardiac fibrosis by modulating NF-κB signaling pathway and identify UCHL1 could be a new treatment strategy for cardiac fibrosis.
Collapse
Affiliation(s)
- Zheng Gong
- Provincial Hospital of Anhui Medical University, Hefei, 230000, Anhui, PR China
| | - Qing Ye
- The First Hospital of University of Science and Technology of China, Hefei, 230000, Anhui, PR China
| | - Jia-Wei Wu
- The First Hospital of University of Science and Technology of China, Hefei, 230000, Anhui, PR China
| | - Jun-Ling Zhou
- The First Hospital of University of Science and Technology of China, Hefei, 230000, Anhui, PR China
| | - Xiang-Yong Kong
- The First Hospital of University of Science and Technology of China, Hefei, 230000, Anhui, PR China
| | - Li-Kun Ma
- Provincial Hospital of Anhui Medical University, Hefei, 230000, Anhui, PR China; The First Hospital of University of Science and Technology of China, Hefei, 230000, Anhui, PR China.
| |
Collapse
|
12
|
López-Carrasco A, Martín-Vañó S, Burgos-Panadero R, Monferrer E, Berbegall AP, Fernández-Blanco B, Navarro S, Noguera R. Impact of extracellular matrix stiffness on genomic heterogeneity in MYCN-amplified neuroblastoma cell line. J Exp Clin Cancer Res 2020; 39:226. [PMID: 33109237 PMCID: PMC7592549 DOI: 10.1186/s13046-020-01729-1] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Accepted: 10/07/2020] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Increased tissue stiffness is a common feature of malignant solid tumors, often associated with metastasis and poor patient outcomes. Vitronectin, as an extracellular matrix anchorage glycoprotein related to a stiff matrix, is present in a particularly increased quantity and specific distribution in high-risk neuroblastoma. Furthermore, as cells can sense and transform the proprieties of the extracellular matrix into chemical signals through mechanotransduction, genotypic changes related to stiffness are possible. METHODS We applied high density SNPa and NGS techniques to in vivo and in vitro models (orthotropic xenograft vitronectin knock-out mice and 3D bioprinted hydrogels with different stiffness) using two representative neuroblastoma cell lines (the MYCN-amplified SK-N-BE(2) and the ALK-mutated SH-SY5Y), to discern how tumor genomics patterns and clonal heterogeneity of the two cell lines are affected. RESULTS We describe a remarkable subclonal selection of genomic aberrations in SK-N-BE(2) cells grown in knock-out vitronectin xenograft mice that also emerged when cultured for long times in stiff hydrogels. In particular, we detected an enlarged subclonal cell population with chromosome 9 aberrations in both models. Similar abnormalities were found in human high-risk neuroblastoma with MYCN amplification. The genomics of the SH-SY5Y cell line remained stable when cultured in both models. CONCLUSIONS Focus on heterogeneous intratumor segmental chromosome aberrations and mutations, as a mirror image of tumor microenvironment, is a vital area of future research.
Collapse
Affiliation(s)
- Amparo López-Carrasco
- Department of Pathology, Medical School, University of Valencia/INCLIVA, Valencia, Spain
- CIBERONC, Madrid, Spain
| | - Susana Martín-Vañó
- Department of Pathology, Medical School, University of Valencia/INCLIVA, Valencia, Spain
- CIBERONC, Madrid, Spain
| | - Rebeca Burgos-Panadero
- Department of Pathology, Medical School, University of Valencia/INCLIVA, Valencia, Spain
- CIBERONC, Madrid, Spain
| | - Ezequiel Monferrer
- Department of Pathology, Medical School, University of Valencia/INCLIVA, Valencia, Spain
- CIBERONC, Madrid, Spain
| | - Ana P Berbegall
- Department of Pathology, Medical School, University of Valencia/INCLIVA, Valencia, Spain
- CIBERONC, Madrid, Spain
| | | | - Samuel Navarro
- Department of Pathology, Medical School, University of Valencia/INCLIVA, Valencia, Spain
- CIBERONC, Madrid, Spain
| | - Rosa Noguera
- Department of Pathology, Medical School, University of Valencia/INCLIVA, Valencia, Spain.
- CIBERONC, Madrid, Spain.
| |
Collapse
|
13
|
Harnessing Mechanosensation in Next Generation Cardiovascular Tissue Engineering. Biomolecules 2020; 10:biom10101419. [PMID: 33036467 PMCID: PMC7599461 DOI: 10.3390/biom10101419] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 10/06/2020] [Accepted: 10/07/2020] [Indexed: 12/11/2022] Open
Abstract
The ability of the cells to sense mechanical cues is an integral component of ”social” cell behavior inside tissues with a complex architecture. Through ”mechanosensation” cells are in fact able to decrypt motion, geometries and physical information of surrounding cells and extracellular matrices by activating intracellular pathways converging onto gene expression circuitries controlling cell and tissue homeostasis. Additionally, only recently cell mechanosensation has been integrated systematically as a crucial element in tissue pathophysiology. In the present review, we highlight some of the current efforts to assess the relevance of mechanical sensing into pathology modeling and manufacturing criteria for a next generation of cardiovascular tissue implants.
Collapse
|
14
|
Fu J, Wu B, Zhong S, Deng W, Lin F. miR-29a-3p suppresses hepatic fibrosis pathogenesis by modulating hepatic stellate cell proliferation via targeting PIK3R3 gene expression. Biochem Biophys Res Commun 2020; 529:922-929. [PMID: 32819600 DOI: 10.1016/j.bbrc.2020.06.102] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Accepted: 06/21/2020] [Indexed: 02/06/2023]
Abstract
OBJECTIVE Hepatic stellate cells (HSC) activation and proliferation mediated the pathogenic development of hepatic fibrosis (HF). However, the underlying mechanisms remain poorly understood. In this study, we aimed to investigate the miR-29a-3p and its effects on PIK3R3 expression in HF pathogenesis. METHODS LX-2 cells treated with TGF-β1 was used as the in vitro HF model. The expression of microRNAs and proteins in LX-2 cells were detected by quantitative RT-PCR and western blotting. Then, miR-29a-3p expression in LX-2 cells were altered via transfection with specific mimics or inhibitors, followed by cell proliferation measured through CCK-8, Edu staining and colony formation. The dual luciferase reporter assay was done to assess binding of miR-29a-3p with PIK3R3 gene sequences. Moreover, PIK3R3 gene overexpression in LX-2 cell was realized through transfection with recombinant pcDNA3.0-PIK3R3 plasmids. RESULTS Successful establishment of cellular HF model was validated through the increased Col-I and a-SMA expression in TGF-β1-treated LX-2 cells shown by qRT-PCR and Western blot. In such model, miR-29a-3p expression in LX-2 cells showed the greatest decrease among four candidate microRNAs in response to TGF-β1 treatment. Also, miR-29a-3p directly binds with the 3' UTR region of the PIK3R3 gene to suppress its expression in LX-2 cells. Furthermore, PIK3R3 gene overexpression effectively abrogated the changes of LX-2 cell proliferation, AKT phosphorylation and Col-I and a-SMA expression caused by miR-29a-3p mimics. CONCLUSION MiR-29a-3p regulates hepatic stellate cell proliferation and hepatic fibrosis pathogenesis by targeting PIK3R3 expression and modulating the PI-3K/AKT signaling.
Collapse
Affiliation(s)
- Juan Fu
- Department of Infectious Disease, Hainan General Hospital, Haikou, China.
| | - Biao Wu
- Department of Infectious Disease, Hainan General Hospital, Haikou, China
| | - Shaohua Zhong
- Department of Infectious Disease, Hainan General Hospital, Haikou, China
| | - Wei Deng
- Department of Oral and Maxillofacial Surgery, Hainan General Hospital, Haikou, Hainan, China
| | - Feng Lin
- Department of Infectious Disease, Hainan General Hospital, Haikou, China
| |
Collapse
|
15
|
Haftbaradaran Esfahani P, Knöll R. Cell shape: effects on gene expression and signaling. Biophys Rev 2020; 12:895-901. [PMID: 32671813 PMCID: PMC7429604 DOI: 10.1007/s12551-020-00722-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Accepted: 07/02/2020] [Indexed: 02/06/2023] Open
Abstract
The perception of biophysical forces (mechanosensation) and their conversion into chemical signals (mechanotransduction) are fundamental biological processes. They are connected to hypertrophic and atrophic cellular responses, and defects in these processes have been linked to various diseases, especially in the cardiovascular system. Although cardiomyocytes generate, and are exposed to, considerable hemodynamic forces that affect their shapes, until recently, we did not know whether cell shape affects gene expression. However, new single-cell trapping strategies, followed by single-cell RNA sequencing, to profile the transcriptomes of individual cardiomyocytes of defined geometrical morphotypes have been developed that are characteristic for either normal or pathological (afterload or preload) conditions. This paper reviews the recent literature with regard to cell shape and the transcriptome and provides an overview of this newly emerging field, which has far-reaching implications for both biology, disease, and possibly therapy.
Collapse
Affiliation(s)
- Payam Haftbaradaran Esfahani
- ICMC (Integrated Cardio Metabolic Centre), Myocardial Genetics, Heart and Vascular Theme, Karolinska Institutet, University Hospital, Novum, Hiss A, våning 7, Hälsovägen 7-9, 141 57, Huddinge, Sweden
| | - Ralph Knöll
- ICMC (Integrated Cardio Metabolic Centre), Myocardial Genetics, Heart and Vascular Theme, Karolinska Institutet, University Hospital, Novum, Hiss A, våning 7, Hälsovägen 7-9, 141 57, Huddinge, Sweden. .,Bioscience Cardiovascular, Research and Early Development, Cardiovascular, Renal and Metabolism (CVRM), BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden.
| |
Collapse
|