1
|
Liu X, Yu F. New insights into the functions and regulations of MAP215/MOR1 and katanin, two conserved microtubule-associated proteins in Arabidopsis. PLANT SIGNALING & BEHAVIOR 2023; 18:2171360. [PMID: 36720201 PMCID: PMC9891169 DOI: 10.1080/15592324.2023.2171360] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Revised: 01/07/2023] [Accepted: 01/18/2023] [Indexed: 06/18/2023]
Abstract
Plant microtubules (MTs) form highly dynamic and distinct arrays throughout the cell cycle and are essential for cell and organ morphogenesis. A plethora of microtubule associated-proteins (MAPs), both conserved and plant-specific, ensure the dynamic response of MTs to internal and external cues. The MAP215 family MT polymerase/nucleation factor and the MT severing enzyme katanin are among the most conserved MAPs in eukaryotes. Recent studies have revealed unexpected functional and physical interactions between MICROTUBULE ORGANIZATION 1 (MOR1), the Arabidopsis homolog of MAP215, and KATANIN 1 (KTN1), the catalytic subunit of katanin. In this minireview, we provide a short overview on current understanding of the functions and regulations of MOR1 and katanin in cell morphogenesis and plant growth and development.
Collapse
Affiliation(s)
- Xiayan Liu
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, China
| | - Fei Yu
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, China
- Institute of Future Agriculture, Northwest A&F University, Yangling, Shaanxi, China
| |
Collapse
|
2
|
Wu Z, Zhang T, Li J, Chen S, Grin IR, Zharkov DO, Yu B, Li H. Genome-wide analysis of WD40 protein family and functional characterization of BvWD40-82 in sugar beet. FRONTIERS IN PLANT SCIENCE 2023; 14:1185440. [PMID: 37332716 PMCID: PMC10272600 DOI: 10.3389/fpls.2023.1185440] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Accepted: 05/10/2023] [Indexed: 06/20/2023]
Abstract
Sugar beet is one of the most important sugar crops in the world. It contributes greatly to the global sugar production, but salt stress negatively affects the crop yield. WD40 proteins play important roles in plant growth and response to abiotic stresses through their involvement in a variety of biological processes, such as signal transduction, histone modification, ubiquitination, and RNA processing. The WD40 protein family has been well-studied in Arabidopsis thaliana, rice and other plants, but the systematic analysis of the sugar beet WD40 proteins has not been reported. In this study, a total of 177 BvWD40 proteins were identified from the sugar beet genome, and their evolutionary characteristics, protein structure, gene structure, protein interaction network and gene ontology were systematically analyzed to understand their evolution and function. Meanwhile, the expression patterns of BvWD40s under salt stress were characterized, and a BvWD40-82 gene was hypothesized as a salt-tolerant candidate gene. Its function was further characterized using molecular and genetic methods. The result showed that BvWD40-82 enhanced salt stress tolerance in transgenic Arabidopsis seedlings by increasing the contents of osmolytes and antioxidant enzyme activities, maintaining intracellular ion homeostasis and increasing the expression of genes related to SOS and ABA pathways. The result has laid a foundation for further mechanistic study of the BvWD40 genes in sugar beet tolerance to salt stress, and it may inform biotechnological applications in improving crop stress resilience.
Collapse
Affiliation(s)
- Zhirui Wu
- Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education & Heilongjiang Provincial Key Laboratory of Plant Genetic Engineering and Biological Fermentation Engineering for Cold Region & Key Laboratory of Molecular Biology, College of Heilongjiang Province & School of Life Sciences, Heilongjiang University, Harbin, China
| | - Tingyue Zhang
- Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education & Heilongjiang Provincial Key Laboratory of Plant Genetic Engineering and Biological Fermentation Engineering for Cold Region & Key Laboratory of Molecular Biology, College of Heilongjiang Province & School of Life Sciences, Heilongjiang University, Harbin, China
| | - Jinna Li
- Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education & Heilongjiang Provincial Key Laboratory of Plant Genetic Engineering and Biological Fermentation Engineering for Cold Region & Key Laboratory of Molecular Biology, College of Heilongjiang Province & School of Life Sciences, Heilongjiang University, Harbin, China
| | - Sixue Chen
- Department of Biology, University of Mississippi, Oxford, MS, United States
| | - Inga R. Grin
- Department of Natural Sciences, Novosibirsk State University, Novosibirsk, Russia
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | - Dmitry O. Zharkov
- Department of Natural Sciences, Novosibirsk State University, Novosibirsk, Russia
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | - Bing Yu
- Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education & Heilongjiang Provincial Key Laboratory of Plant Genetic Engineering and Biological Fermentation Engineering for Cold Region & Key Laboratory of Molecular Biology, College of Heilongjiang Province & School of Life Sciences, Heilongjiang University, Harbin, China
| | - Haiying Li
- Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education & Heilongjiang Provincial Key Laboratory of Plant Genetic Engineering and Biological Fermentation Engineering for Cold Region & Key Laboratory of Molecular Biology, College of Heilongjiang Province & School of Life Sciences, Heilongjiang University, Harbin, China
| |
Collapse
|
3
|
Shi K, Wang Y, Meng D, Zhang Y, Wang Y, An J. Cytosolic JNK-dependent microtubule reassembly protects Jurkat leukemia cells from selenite-induced apoptosis. J Trace Elem Med Biol 2023; 79:127214. [PMID: 37224747 DOI: 10.1016/j.jtemb.2023.127214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 05/12/2023] [Accepted: 05/17/2023] [Indexed: 05/26/2023]
Abstract
BACKGROUND Selenite at high dosage exhibits great potential in curing tumors. It has been shown that selenite inhibits tumor growth through regulation of microtubule dynamics, however, the exact underlying mechanisms remained to be fully elucidated. METHODS & RESULTS Western blots were carried out to evaluate expression level of different molecules. Our current study discovered that selenite induced microtubule disassembly, cell cycle arrest and finally resulted in apoptosis in Jurkat leukemia cells, while during this process disassembled tubulins were re-organized after long-term exposure to selenite. Furthermore, JNK was activated in the cytoplasm of selenite-treated Jurkat cells, and inhibition of JNK activity successfully prevented the process of microtubule re-assembly. Moreover, inactivation of JNK further enhanced selenite-induced cell cycle arrest and apoptosis. According to the results from cell counting-8 assay, blockage of microtubule re-assembly by colchicine further inhibited Jurkat cell viability after exposure to selenite. Experiments in a xenograft model also proved that selenite could alter JNK activity, destroy microtubule structure and inhibit cell division in vivo. Moreover, TP53, MAPT and YWHAZ were identified to be three most confident interactors that link JNK to microtubule assembly using PPIs analysis. CONCLUSION Our study indicated that cytosolic JNK-dependent microtubule re-organization took a protective function during selenite-induced apoptosis, while inhibition of this process would finally enhance the anti-tumor effect of selenite.
Collapse
Affiliation(s)
- Kejian Shi
- Department of Thoracic Surgery, Xuanwu Hospital, Capital Medical University, Beijing 100053, PR China; State Key Laboratory of Medical Molecular Biology, Department of Biochemistry and Molecular Biology, Institute of Basic Medicine Sciences & School of Basic Medicine, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100005, PR China
| | - Yang Wang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, PR China
| | - Di Meng
- College of Veterinary Medicine, China Agricultural University, Beijing 100083, PR China
| | - Yi Zhang
- Department of Thoracic Surgery, Xuanwu Hospital, Capital Medical University, Beijing 100053, PR China.
| | - Ying Wang
- National Center for Orthopaedics, Department of Molecular Orthopaedics, Beijing Research Institute of Traumatology and Orthopaedics, Beijing Jishuitan Hospital, Beijing 100035, PR China.
| | - Jiajia An
- Department of Clinical Laboratory, Binzhou Medical University Hospital, Binzhou 256603, PR China.
| |
Collapse
|
4
|
Hsiao AS, Huang JY. Microtubule Regulation in Plants: From Morphological Development to Stress Adaptation. Biomolecules 2023; 13:biom13040627. [PMID: 37189374 DOI: 10.3390/biom13040627] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 03/09/2023] [Accepted: 03/25/2023] [Indexed: 04/03/2023] Open
Abstract
Microtubules (MTs) are essential elements of the eukaryotic cytoskeleton and are critical for various cell functions. During cell division, plant MTs form highly ordered structures, and cortical MTs guide the cell wall cellulose patterns and thus control cell size and shape. Both are important for morphological development and for adjusting plant growth and plasticity under environmental challenges for stress adaptation. Various MT regulators control the dynamics and organization of MTs in diverse cellular processes and response to developmental and environmental cues. This article summarizes the recent progress in plant MT studies from morphological development to stress responses, discusses the latest techniques applied, and encourages more research into plant MT regulation.
Collapse
|
5
|
Colin L, Ruhnow F, Zhu JK, Zhao C, Zhao Y, Persson S. The cell biology of primary cell walls during salt stress. THE PLANT CELL 2023; 35:201-217. [PMID: 36149287 PMCID: PMC9806596 DOI: 10.1093/plcell/koac292] [Citation(s) in RCA: 38] [Impact Index Per Article: 38.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Accepted: 09/20/2022] [Indexed: 06/16/2023]
Abstract
Salt stress simultaneously causes ionic toxicity, osmotic stress, and oxidative stress, which directly impact plant growth and development. Plants have developed numerous strategies to adapt to saline environments. Whereas some of these strategies have been investigated and exploited for crop improvement, much remains to be understood, including how salt stress is perceived by plants and how plants coordinate effective responses to the stress. It is, however, clear that the plant cell wall is the first contact point between external salt and the plant. In this context, significant advances in our understanding of halotropism, cell wall synthesis, and integrity surveillance, as well as salt-related cytoskeletal rearrangements, have been achieved. Indeed, molecular mechanisms underpinning some of these processes have recently been elucidated. In this review, we aim to provide insights into how plants respond and adapt to salt stress, with a special focus on primary cell wall biology in the model plant Arabidopsis thaliana.
Collapse
Affiliation(s)
- Leia Colin
- Department of Plant and Environmental Sciences, University of Copenhagen, 1871 Frederiksberg C, Denmark
| | - Felix Ruhnow
- Department of Plant and Environmental Sciences, University of Copenhagen, 1871 Frederiksberg C, Denmark
| | - Jian-Kang Zhu
- School of Life Sciences, Institute of Advanced Biotechnology, Southern University of Science and Technology, Shenzhen 518055, China
| | - Chunzhao Zhao
- Shanghai Center for Plant Stress Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Yang Zhao
- Shanghai Center for Plant Stress Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | | |
Collapse
|
6
|
Kumar S, Jeevaraj T, Yunus MH, Chakraborty S, Chakraborty N. The plant cytoskeleton takes center stage in abiotic stress responses and resilience. PLANT, CELL & ENVIRONMENT 2023; 46:5-22. [PMID: 36151598 DOI: 10.1111/pce.14450] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 09/16/2022] [Accepted: 09/20/2022] [Indexed: 06/16/2023]
Abstract
Stress resilience behaviours in plants are defensive mechanisms that develop under adverse environmental conditions to promote growth, development and yield. Over the past decades, improving stress resilience, especially in crop species, has been a focus of intense research for global food security and economic growth. Plants have evolved specific mechanisms to sense external stress and transmit information to the cell interior and generate appropriate responses. Plant cytoskeleton, comprising microtubules and actin filaments, takes a center stage in stress-induced signalling pathways, either as a direct target or as a signal transducer. In the past few years, it has become apparent that the function of the plant cytoskeleton and other associated proteins are not merely limited to elementary processes of cell growth and proliferation, but they also function in stress response and resilience. This review summarizes recent advances in the role of plant cytoskeleton and associated proteins in abiotic stress management. We provide a thorough overview of the mechanisms that plant cells employ to withstand different abiotic stimuli such as hypersalinity, dehydration, high temperature and cold, among others. We also discuss the crucial role of the plant cytoskeleton in organellar positioning under the influence of high light intensity.
Collapse
Affiliation(s)
- Sunil Kumar
- Stress Biology, National Institute of Plant Genome Research, New Delhi, India
| | - Theboral Jeevaraj
- Stress Biology, National Institute of Plant Genome Research, New Delhi, India
| | - Mohd H Yunus
- Stress Biology, National Institute of Plant Genome Research, New Delhi, India
| | - Subhra Chakraborty
- Stress Biology, National Institute of Plant Genome Research, New Delhi, India
| | | |
Collapse
|
7
|
Chen G, Xuan W, Zhao P, Yao X, Peng C, Tian Y, Ye J, Wang B, He J, Chi W, Yu J, Ge Y, Li J, Dai Z, Xu D, Wang C, Wan J. OsTUB1 confers salt insensitivity by interacting with Kinesin13A to stabilize microtubules and ion transporters in rice. THE NEW PHYTOLOGIST 2022; 235:1836-1852. [PMID: 35643887 DOI: 10.1111/nph.18282] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Accepted: 05/15/2022] [Indexed: 06/15/2023]
Abstract
Salt stress is one of the major environmental factors limiting plant growth and development. Although microtubule (MT) organization is known to be involved in response to salt stress, few tubulin genes have been identified that confer salt insensitivity in plants. In this study, we identified a MT encoding gene, OsTUB1, that increased the survival rate of rice plants under salt stress by stabilizing MT organization and ion transporters. We found that OsTUB1 interacted with Kinesin13A protein, which was essential for OsTUB1-regulated MT organization under salt stress. Further molecular evidence revealed that a OsTUB1-Kinesin13A complex protected rice from salt stress by sustaining membrane-localized Na+ transporter OsHKT1;5, a key regulator of ionic homeostasis. Our results shed light on the function of tubulin and kinesin in regulating MT organization and stabilizing Na+ transporters and Na+ flux at the plasma membrane in rice. The identification of the OsTUB1-Kinesin13A complex provides novel genes for salt insensitivity rice breeding in areas with high soil salinity.
Collapse
Affiliation(s)
- Gaoming Chen
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Jiangsu Collaborative Innovation Centre for Modern Crop Production, Nanjing Agricultural University, Nanjing, 210095, China
- Southern Japonica Rice R&D Corporation Ltd, Key Laboratory of Biology, Genetics and Breeding of Japonica Rice in the Mid-lower Yangtze River, Ministry of Agriculture, Nanjing, 210095, China
| | - Wei Xuan
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Jiangsu Collaborative Innovation Centre for Modern Crop Production, Nanjing Agricultural University, Nanjing, 210095, China
- MOA Key Laboratory of Plant Nutrition and Fertilization in Lower-Middle Reaches of the Yangtze River, Nanjing Agricultural University, Nanjing, 210095, China
| | - Pingzhi Zhao
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Xiangmei Yao
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Chao Peng
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Jiangsu Collaborative Innovation Centre for Modern Crop Production, Nanjing Agricultural University, Nanjing, 210095, China
- Southern Japonica Rice R&D Corporation Ltd, Key Laboratory of Biology, Genetics and Breeding of Japonica Rice in the Mid-lower Yangtze River, Ministry of Agriculture, Nanjing, 210095, China
| | - Yunlu Tian
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Jiangsu Collaborative Innovation Centre for Modern Crop Production, Nanjing Agricultural University, Nanjing, 210095, China
- Southern Japonica Rice R&D Corporation Ltd, Key Laboratory of Biology, Genetics and Breeding of Japonica Rice in the Mid-lower Yangtze River, Ministry of Agriculture, Nanjing, 210095, China
| | - Jian Ye
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Baoxiang Wang
- Lianyungang Academy of Agricultural Science, Lianyungang, Jiangsu Province, 222000, China
| | - Jun He
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Jiangsu Collaborative Innovation Centre for Modern Crop Production, Nanjing Agricultural University, Nanjing, 210095, China
- Southern Japonica Rice R&D Corporation Ltd, Key Laboratory of Biology, Genetics and Breeding of Japonica Rice in the Mid-lower Yangtze River, Ministry of Agriculture, Nanjing, 210095, China
| | - Wenchao Chi
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Jiangsu Collaborative Innovation Centre for Modern Crop Production, Nanjing Agricultural University, Nanjing, 210095, China
- Southern Japonica Rice R&D Corporation Ltd, Key Laboratory of Biology, Genetics and Breeding of Japonica Rice in the Mid-lower Yangtze River, Ministry of Agriculture, Nanjing, 210095, China
| | - Jun Yu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Jiangsu Collaborative Innovation Centre for Modern Crop Production, Nanjing Agricultural University, Nanjing, 210095, China
- Southern Japonica Rice R&D Corporation Ltd, Key Laboratory of Biology, Genetics and Breeding of Japonica Rice in the Mid-lower Yangtze River, Ministry of Agriculture, Nanjing, 210095, China
| | - Yuwei Ge
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Jiangsu Collaborative Innovation Centre for Modern Crop Production, Nanjing Agricultural University, Nanjing, 210095, China
- Southern Japonica Rice R&D Corporation Ltd, Key Laboratory of Biology, Genetics and Breeding of Japonica Rice in the Mid-lower Yangtze River, Ministry of Agriculture, Nanjing, 210095, China
| | - Jin Li
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Jiangsu Collaborative Innovation Centre for Modern Crop Production, Nanjing Agricultural University, Nanjing, 210095, China
- Southern Japonica Rice R&D Corporation Ltd, Key Laboratory of Biology, Genetics and Breeding of Japonica Rice in the Mid-lower Yangtze River, Ministry of Agriculture, Nanjing, 210095, China
| | - Zhaoyang Dai
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Jiangsu Collaborative Innovation Centre for Modern Crop Production, Nanjing Agricultural University, Nanjing, 210095, China
- Southern Japonica Rice R&D Corporation Ltd, Key Laboratory of Biology, Genetics and Breeding of Japonica Rice in the Mid-lower Yangtze River, Ministry of Agriculture, Nanjing, 210095, China
| | - Dayong Xu
- Lianyungang Academy of Agricultural Science, Lianyungang, Jiangsu Province, 222000, China
| | - Chunming Wang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Jiangsu Collaborative Innovation Centre for Modern Crop Production, Nanjing Agricultural University, Nanjing, 210095, China
- Southern Japonica Rice R&D Corporation Ltd, Key Laboratory of Biology, Genetics and Breeding of Japonica Rice in the Mid-lower Yangtze River, Ministry of Agriculture, Nanjing, 210095, China
| | - Jianmin Wan
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Jiangsu Collaborative Innovation Centre for Modern Crop Production, Nanjing Agricultural University, Nanjing, 210095, China
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| |
Collapse
|
8
|
Yang P, Jin J, Zhang J, Wang D, Bai X, Xie W, Hu T, Zhao X, Mao T, Qin T. MDP25 mediates the fine-tuning of microtubule organization in response to salt stress. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2022; 64:1181-1195. [PMID: 35436387 DOI: 10.1111/jipb.13264] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Accepted: 04/16/2022] [Indexed: 06/14/2023]
Abstract
Microtubules are dynamic cytoskeleton structures playing fundamental roles in plant responses to salt stress. The precise mechanisms by which microtubule organization is regulated under salt stress are largely unknown. Here, we report that Arabidopsis thaliana MICROTUBULE-DESTABILIZING PROTEIN 25 (MDP25; also known as PLASMA MEMBRANE-ASSOCIATED CATION-BINDING PROTEIN 1 (PCaP1)) helps regulate microtubule organization. Under salt treatment, elevated cytosolic Ca2+ concentration caused MDP25 to partially dissociate from the plasma membrane, promoting microtubule depolymerization. When Ca2+ signaling was blocked by BAPTA-AM or LaCl3 , microtubule depolymerization in wild-type and MDP25-overexpressing cells was slower, while there was no obvious change in mdp25 cells. Knockout of MDP25 improved microtubule reassembly and was conducive to microtubule integrity under long-term salt treatment and microtubule recovery after salt stress. Moreover, mdp25 seedlings exhibited a higher survival rate under salt stress. The presence microtubule-disrupting reagent oryzalin or microtubule-stabilizing reagent paclitaxel differentially affected the survival rates of different genotypes under salt stress. MDP25 promoted microtubule instability by affecting the catastrophe and rescue frequencies, shrinkage rate and time in pause phase at the microtubule plus-end and the depolymerization rate at the microtubule minus-end. These findings reveal a role for MDP25 in regulating microtubule organization under salt treatment by affecting microtubule dynamics.
Collapse
Affiliation(s)
- Peizhi Yang
- College of Grassland Agriculture, Northwest A&F University, Yangling, 712100, China
| | - Jingwei Jin
- College of Grassland Agriculture, Northwest A&F University, Yangling, 712100, China
| | - Jingru Zhang
- College of Grassland Agriculture, Northwest A&F University, Yangling, 712100, China
| | - Dan Wang
- College of Grassland Agriculture, Northwest A&F University, Yangling, 712100, China
| | - Xuechun Bai
- College of Grassland Agriculture, Northwest A&F University, Yangling, 712100, China
| | - Wenfei Xie
- College of Grassland Agriculture, Northwest A&F University, Yangling, 712100, China
| | - Tianming Hu
- College of Grassland Agriculture, Northwest A&F University, Yangling, 712100, China
| | - Xuan Zhao
- Research Center of Chinese Jujube, Hebei Agricultural University, Baoding, 071001, China
- College of Horticulture, Hebei Agricultural University, Baoding, 071001, China
| | - Tonglin Mao
- State Key Laboratory of Plant Physiology and Biochemistry, Department of Plant Sciences, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Tao Qin
- College of Grassland Agriculture, Northwest A&F University, Yangling, 712100, China
| |
Collapse
|
9
|
Wang Y, Impa SM, Sunkar R, Jagadish SVK. The neglected other half - role of the pistil in plant heat stress responses. PLANT, CELL & ENVIRONMENT 2021; 44:2200-2210. [PMID: 33866576 DOI: 10.1111/pce.14067] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 04/05/2021] [Accepted: 04/08/2021] [Indexed: 05/26/2023]
Abstract
Heat stress coinciding with reproductive stage leads to a significant loss in reproductive organs viability, resulting in lower seed-set and crop productivity. Successful fertilization and seed formation are determined by the viability of male and female reproductive organs. The impact of heat stress on the male reproductive organ (pollen) is studied more often compared to the female reproductive organ (pistil). This is attributed to easier accessibility of the pollen coupled with the notion that the pistil's role in fertilization and seed-set under heat stress is negligible. However, depending on species and developmental stages, recent studies reveal varying degrees of sensitivity of the pistil to heat stress. Remarkably, in some cases, the vulnerability of the pistil is even greater than the pollen. This article summarizes the current knowledge of the impact of heat stress on three critical stages of pistil for successful seed-set, that is, female reproductive organ development (gametogenesis), pollen-pistil interactions including pollen capture on stigma and pollen tube growth in style, as well as fertilization and early embryogenesis. Further, future research directions are suggested to unravel molecular basis of heat stress tolerance in pistil, which is critical for sustaining crop yields under predicted warming scenarios.
Collapse
Affiliation(s)
- Yuanyuan Wang
- Department of Agronomy, Kansas State University, Manhattan, Kansas, USA
- College of Agronomy and Biotechnology, China Agricultural University, Beijing, China
| | - S M Impa
- Department of Agronomy, Kansas State University, Manhattan, Kansas, USA
| | - Ramanjulu Sunkar
- Department of Biochemistry and Molecular Biology, Oklahoma State University, Stillwater, Oklahoma, USA
| | | |
Collapse
|