1
|
Udugampolage NS, Frolova S, Taurino J, Pini A, Martelli F, Voellenkle C. Coding and Non-Coding Transcriptomic Landscape of Aortic Complications in Marfan Syndrome. Int J Mol Sci 2024; 25:7367. [PMID: 39000474 PMCID: PMC11242319 DOI: 10.3390/ijms25137367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 06/21/2024] [Accepted: 06/27/2024] [Indexed: 07/16/2024] Open
Abstract
Marfan syndrome (MFS) is a rare congenital disorder of the connective tissue, leading to thoracic aortic aneurysms (TAA) and dissection, among other complications. Currently, the most efficient strategy to prevent life-threatening dissection is preventive surgery. Periodic imaging applying complex techniques is required to monitor TAA progression and to guide the timing of surgical intervention. Thus, there is an acute demand for non-invasive biomarkers for diagnosis and prognosis, as well as for innovative therapeutic targets of MFS. Unraveling the intricate pathomolecular mechanisms underlying the syndrome is vital to address these needs. High-throughput platforms are particularly well-suited for this purpose, as they enable the integration of different datasets, such as transcriptomic and epigenetic profiles. In this narrative review, we summarize relevant studies investigating changes in both the coding and non-coding transcriptome and epigenome in MFS-induced TAA. The collective findings highlight the implicated pathways, such as TGF-β signaling, extracellular matrix structure, inflammation, and mitochondrial dysfunction. Potential candidates as biomarkers, such as miR-200c, as well as therapeutic targets emerged, like Tfam, associated with mitochondrial respiration, or miR-632, stimulating endothelial-to-mesenchymal transition. While these discoveries are promising, rigorous and extensive validation in large patient cohorts is indispensable to confirm their clinical relevance and therapeutic potential.
Collapse
Affiliation(s)
| | - Svetlana Frolova
- Molecular Cardiology Laboratory, IRCCS Policlinico San Donato, 20097 Milan, Italy; (S.F.); (C.V.)
- Department of Biosciences, University of Milan, 20122 Milan, Italy
| | - Jacopo Taurino
- Cardiovascular-Genetic Center, IRCCS Policlinico San Donato, 20097 Milan, Italy; (N.S.U.); (J.T.); (A.P.)
| | - Alessandro Pini
- Cardiovascular-Genetic Center, IRCCS Policlinico San Donato, 20097 Milan, Italy; (N.S.U.); (J.T.); (A.P.)
| | - Fabio Martelli
- Molecular Cardiology Laboratory, IRCCS Policlinico San Donato, 20097 Milan, Italy; (S.F.); (C.V.)
| | - Christine Voellenkle
- Molecular Cardiology Laboratory, IRCCS Policlinico San Donato, 20097 Milan, Italy; (S.F.); (C.V.)
| |
Collapse
|
2
|
Wei H, Xu Y, Lin L, Li Y, Zhu X. A review on the role of RNA methylation in aging-related diseases. Int J Biol Macromol 2024; 254:127769. [PMID: 38287578 DOI: 10.1016/j.ijbiomac.2023.127769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 10/26/2023] [Accepted: 10/27/2023] [Indexed: 01/31/2024]
Abstract
Senescence is the underlying mechanism of organism aging and is robustly regulated at the post-transcriptional level. This regulation involves the chemical modifications, of which the RNA methylation is the most common. Recently, a rapidly growing number of studies have demonstrated that methylation is relevant to aging and aging-associated diseases. Owing to the rapid development of detection methods, the understanding on RNA methylation has gone deeper. In this review, we summarize the current understanding on the influence of RNA modification on cellular senescence, with a focus on mRNA methylation in aging-related diseases, and discuss the emerging potential of RNA modification in diagnosis and therapy.
Collapse
Affiliation(s)
- Hong Wei
- Reproductive Center, The Fourth Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu 212001, China; Department of Neurology, The Fourth Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu 212001, China; Central Laboratory of the Fourth Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu 212001, China
| | - Yuhao Xu
- Medical School, Jiangsu University, Zhenjiang, Jiangsu 212001, China
| | - Li Lin
- Reproductive Center, The Fourth Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu 212001, China; Central Laboratory of the Fourth Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu 212001, China
| | - Yuefeng Li
- Medical School, Jiangsu University, Zhenjiang, Jiangsu 212001, China.
| | - Xiaolan Zhu
- Reproductive Center, The Fourth Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu 212001, China; Central Laboratory of the Fourth Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu 212001, China.
| |
Collapse
|
3
|
Zhang Y, Wang R, Tan H, Wu K, Hu Y, Diao H, Wang D, Tang X, Leng M, Li X, Cai Z, Luo D, Shao X, Yan M, Chen Y, Rong X, Guo J. Fufang Zhenzhu Tiaozhi (FTZ) capsule ameliorates diabetes-accelerated atherosclerosis via suppressing YTHDF2-mediated m 6A modification of SIRT3 mRNA. JOURNAL OF ETHNOPHARMACOLOGY 2023; 317:116766. [PMID: 37343655 DOI: 10.1016/j.jep.2023.116766] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 06/04/2023] [Accepted: 06/08/2023] [Indexed: 06/23/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Fufang Zhenzhu TiaoZhi (FTZ), a Chinese medicinal decoction, has continuously been used to treat metabolic syndrome. Atherosclerosis is the main pathological basis of cardiovascular disease. The N6 methyladenosine (m6A) modification is a highly dynamic and reversible process involving a variety of important biological processes. AIM OF THE STUDY Here, we investigated the therapeutic effects and mechanism of FTZ in diabetes-accelerated atherosclerosis. MATERIALS AND METHODS Doppler ultrasonography was used to examine the carotid intima-media thickness and plaque area in diabetic atherosclerosis patients. HFD mice were injected with streptozotocin to induce diabetes. HE and Oil red O staining were used to assess the effect of FTZ on lipid deposition. HUVECs were induced with HG/ox-LDL as a model of diabetic atherosclerosis. Furthermore, application of m6A methylation level kit, qRT-PCR, Western blot, tunel staining, reactive oxygen species staining and mPTP staining were performed to analyze the detailed mechanism. RESULTS Clinical trials of FTZ have shown obvious effect of lowering blood glucose and blood lipids. These effects were reversed after FTZ intervention. Compared with the control, lipid deposition decreased significantly after FTZ administration. FTZ reduced endothelial cell apoptosis. At the same time, we found that FTZ reversed the increase of methylation reader YTHDF2 caused by ox-LDL treatment. Subsequently, we discovered that YTHDF2 degraded SIRT3 mRNA, leading to endothelial cell apoptosis and oxidative stress. CONCLUSION FTZ attenuated diabetes-accelerated atherosclerosis by decreasing blood glucose and serum lipids levels, and increased endothelial cell antioxidant capacity, inhibited endothelial cell apoptosis via inhibiting YTHDF2-mediated m6A modification of SIRT3 mRNA, which reduced mRNA degradation.
Collapse
Affiliation(s)
- Yue Zhang
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China, Institute of Chinese Medicine, Guangdong Pharmaceutical University, Guangdong TCM Key Laboratory for Metabolic Diseases, Guangzhou, 510006, China.
| | - Ruonan Wang
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China, Institute of Chinese Medicine, Guangdong Pharmaceutical University, Guangdong TCM Key Laboratory for Metabolic Diseases, Guangzhou, 510006, China.
| | - Huiling Tan
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China, Institute of Chinese Medicine, Guangdong Pharmaceutical University, Guangdong TCM Key Laboratory for Metabolic Diseases, Guangzhou, 510006, China.
| | - Kaili Wu
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China, Institute of Chinese Medicine, Guangdong Pharmaceutical University, Guangdong TCM Key Laboratory for Metabolic Diseases, Guangzhou, 510006, China.
| | - Yaju Hu
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China, Institute of Chinese Medicine, Guangdong Pharmaceutical University, Guangdong TCM Key Laboratory for Metabolic Diseases, Guangzhou, 510006, China.
| | - Hongtao Diao
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China, Institute of Chinese Medicine, Guangdong Pharmaceutical University, Guangdong TCM Key Laboratory for Metabolic Diseases, Guangzhou, 510006, China.
| | - Dongwei Wang
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China, Institute of Chinese Medicine, Guangdong Pharmaceutical University, Guangdong TCM Key Laboratory for Metabolic Diseases, Guangzhou, 510006, China.
| | - Xinyuan Tang
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China, Institute of Chinese Medicine, Guangdong Pharmaceutical University, Guangdong TCM Key Laboratory for Metabolic Diseases, Guangzhou, 510006, China.
| | - Mingyang Leng
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China, Institute of Chinese Medicine, Guangdong Pharmaceutical University, Guangdong TCM Key Laboratory for Metabolic Diseases, Guangzhou, 510006, China.
| | - Xu Li
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China, Institute of Chinese Medicine, Guangdong Pharmaceutical University, Guangdong TCM Key Laboratory for Metabolic Diseases, Guangzhou, 510006, China.
| | - Zhenlu Cai
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China, Institute of Chinese Medicine, Guangdong Pharmaceutical University, Guangdong TCM Key Laboratory for Metabolic Diseases, Guangzhou, 510006, China.
| | - Duosheng Luo
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China, Institute of Chinese Medicine, Guangdong Pharmaceutical University, Guangdong TCM Key Laboratory for Metabolic Diseases, Guangzhou, 510006, China.
| | - Xiaoqi Shao
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China, Institute of Chinese Medicine, Guangdong Pharmaceutical University, Guangdong TCM Key Laboratory for Metabolic Diseases, Guangzhou, 510006, China.
| | - Meiling Yan
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China, Institute of Chinese Medicine, Guangdong Pharmaceutical University, Guangdong TCM Key Laboratory for Metabolic Diseases, Guangzhou, 510006, China.
| | - Yingyu Chen
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China, Institute of Chinese Medicine, Guangdong Pharmaceutical University, Guangdong TCM Key Laboratory for Metabolic Diseases, Guangzhou, 510006, China; The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, 510080, China.
| | - Xianglu Rong
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China, Institute of Chinese Medicine, Guangdong Pharmaceutical University, Guangdong TCM Key Laboratory for Metabolic Diseases, Guangzhou, 510006, China.
| | - Jiao Guo
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China, Institute of Chinese Medicine, Guangdong Pharmaceutical University, Guangdong TCM Key Laboratory for Metabolic Diseases, Guangzhou, 510006, China.
| |
Collapse
|
4
|
Farsetti A, Illi B, Gaetano C. How epigenetics impacts on human diseases. Eur J Intern Med 2023; 114:15-22. [PMID: 37277249 DOI: 10.1016/j.ejim.2023.05.036] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 05/29/2023] [Accepted: 05/30/2023] [Indexed: 06/07/2023]
Abstract
Epigenetics is a rapidly growing field of biology that studies the changes in gene expression that are not due to alterations in the DNA sequence but rather the chemical modifications of DNA and its associated proteins. Epigenetic mechanisms can profoundly influence gene expression, cell differentiation, tissue development, and disease susceptibility. Understanding epigenetic changes is essential to elucidate the mechanisms underlying the increasingly recognized role of environmental and lifestyle factors in health and disease and the intergenerational transmission of phenotypes. Recent studies suggest epigenetics may be critical in various diseases, from cardiovascular disease and cancer to neurodevelopmental and neurodegenerative disorders. Epigenetic modifications are potentially reversible and could provide new therapeutic avenues for treating these diseases using epigenetic modulators. Moreover, epigenetics provide insight into disease pathogenesis and biomarkers for disease diagnosis and risk stratification. Nevertheless, epigenetic interventions have the potential for unintended consequences and may potentially lead to increased risks of unexpected outcomes, such as adverse drug reactions, developmental abnormalities, and cancer. Therefore, rigorous studies are essential to minimize the risks associated with epigenetic therapies and to develop safe and effective interventions for improving human health. This article provides a synthetic and historical view of the origin of epigenetics and some of the most relevant achievements.
Collapse
Affiliation(s)
- Antonella Farsetti
- Istituto di analisi dei sistemi ed informatica "Antonio Ruberti" (IASI), Consiglio Nazionale delle Ricerche (CNR), Via dei Taurini, 19 - 00185 Roma, Italy
| | - Barbara Illi
- Istituto di biologia e Patologia Molecolari, (IBPM), Consiglio Nazionale delle Ricerche (CNR), P.le Aldo Moro 5, 00185, Roma, Italy
| | - Carlo Gaetano
- Laboratorio di Epigenetica, Istituti Cinici Scientifici Maugeri IRCCS, Via Maugeri 4, 27100, Pavia, Italy.
| |
Collapse
|
5
|
Zhang M, Yang K, Wang QH, Xie L, Liu Q, Wei R, Tao Y, Zheng HL, Lin N, Xu H, Yang L, Wang H, Zhang T, Xue Z, Cao JL, Pan Z. The Cytidine N-Acetyltransferase NAT10 Participates in Peripheral Nerve Injury-Induced Neuropathic Pain by Stabilizing SYT9 Expression in Primary Sensory Neurons. J Neurosci 2023; 43:3009-3027. [PMID: 36898834 PMCID: PMC10146489 DOI: 10.1523/jneurosci.2321-22.2023] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 02/23/2023] [Accepted: 03/01/2023] [Indexed: 03/12/2023] Open
Abstract
RNA N4-acetylcytidine (ac4C) modification is increasingly recognized as an important layer of gene regulation; however, the involvement of ac4C in pain regulation has not been studied. Here, we report that N-acetyltransferase 10 protein (NAT10; the only known ac4C "writer") contributes to the induction and development of neuropathic pain in an ac4C-dependent manner. Peripheral nerve injury increases the levels of NAT10 expression and overall ac4C in injured dorsal root ganglia (DRGs). This upregulation is triggered by the activation of upstream transcription factor 1 (USF1), a transcription factor that binds to the Nat10 promoter. Knock-down or genetic deletion of NAT10 in the DRG abolishes the gain of ac4C sites in Syt9 mRNA and the augmentation of SYT9 protein, resulting in a marked antinociceptive effect in nerve-injured male mice. Conversely, mimicking NAT10 upregulation in the absence of injury evokes the elevation of Syt9 ac4C and SYT9 protein and induces the genesis of neuropathic-pain-like behaviors. These findings demonstrate that USF1-governed NAT10 regulates neuropathic pain by targeting Syt9 ac4C in peripheral nociceptive sensory neurons. Our findings establish NAT10 as a critical endogenous initiator of nociceptive behavior and a promising new target for treating neuropathic pain.SIGNIFICANCE STATEMENT The cytidine N4-acetylcytidine (ac4C), a new epigenetic RNA modification, is crucial for the translation and stability of mRNA, but its role for chronic pain remains unclear. Here, we demonstrate that N-acetyltransferase 10 (NAT10) acts as ac4C N-acetyltransferase and plays an important role in the development and maintenance of neuropathic pain. NAT10 was upregulated via the activation of the transcription factor upstream transcription factor 1 (USF1) in the injured dorsal root ganglion (DRG) after peripheral nerve injury. Since pharmacological or genetic deleting NAT10 in the DRG attenuated the nerve injury-induced nociceptive hypersensitivities partially through suppressing Syt9 mRNA ac4C and stabilizing SYT9 protein level, NAT10 may serve as an effective and novel therapeutic target for neuropathic pain.
Collapse
Affiliation(s)
- Ming Zhang
- Jiangsu Province Key Laboratory of Anesthesiology, Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, National Medical Products Administration (NMPA) Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou 221004, China
| | - Kehui Yang
- Jiangsu Province Key Laboratory of Anesthesiology, Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, National Medical Products Administration (NMPA) Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou 221004, China
| | - Qi-Hui Wang
- Jiangsu Province Key Laboratory of Anesthesiology, Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, National Medical Products Administration (NMPA) Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou 221004, China
| | - Ling Xie
- Department of Anesthesiology, The Obstetrics and Gynecology Hospital of Fudan University, Shanghai 200011, China
| | - Qiaoqiao Liu
- Jiangsu Province Key Laboratory of Anesthesiology, Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, National Medical Products Administration (NMPA) Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou 221004, China
| | - Runa Wei
- Jiangsu Province Key Laboratory of Anesthesiology, Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, National Medical Products Administration (NMPA) Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou 221004, China
| | - Yang Tao
- Jiangsu Province Key Laboratory of Anesthesiology, Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, National Medical Products Administration (NMPA) Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou 221004, China
| | - Hong-Li Zheng
- Department of Pain, Shanghai Tenth People's Hospital, Tongji University, Shanghai 200072, China
| | - Ninghua Lin
- Department of Anesthesiology, Yantai affiliated Hospital of Binzhou Medical University, Yantai 264000, China
| | - Hengjun Xu
- Jiangsu Province Key Laboratory of Anesthesiology, Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, National Medical Products Administration (NMPA) Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou 221004, China
| | - Li Yang
- Jiangsu Province Key Laboratory of Anesthesiology, Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, National Medical Products Administration (NMPA) Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou 221004, China
| | - Hongjun Wang
- Jiangsu Province Key Laboratory of Anesthesiology, Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, National Medical Products Administration (NMPA) Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou 221004, China
| | - Tingruo Zhang
- Jiangsu Province Key Laboratory of Anesthesiology, Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, National Medical Products Administration (NMPA) Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou 221004, China
| | - Zhouya Xue
- Department of Anesthesiology, Yancheng affiliated Hospital of Xuzhou Medical University, Yancheng 224008, China
| | - Jun-Li Cao
- Jiangsu Province Key Laboratory of Anesthesiology, Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, National Medical Products Administration (NMPA) Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou 221004, China
| | - Zhiqiang Pan
- Jiangsu Province Key Laboratory of Anesthesiology, Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, National Medical Products Administration (NMPA) Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou 221004, China
| |
Collapse
|
6
|
Song B, Xie B, Liu M, Li H, Shi D, Zhao F. Bibliometric and visual analysis of RAN methylation in cardiovascular disease. Front Cardiovasc Med 2023; 10:1110718. [PMID: 37063953 PMCID: PMC10098125 DOI: 10.3389/fcvm.2023.1110718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Accepted: 03/07/2023] [Indexed: 03/31/2023] Open
Abstract
BackgroundRNA methylation is associated with cardiovascular disease (CVD) occurrence and development. The purpose of this study is to visually analyze the results and research trends of global RNA methylation in CVD.MethodsArticles and reviews on RNA methylation in CVD published before 6 November 2022 were searched in the Web of Science Core Collection. Visual and statistical analysis was performed using CiteSpace 1.6.R4 advanced and VOSviewer 1.6.18.ResultsThere were 847 papers from 1,188 institutions and 63 countries/regions. Over approximately 30 years, there was a gradual increase in publications and citations on RNA methylation in CVD. America and China had the highest output (284 and 259 papers, respectively). Nine of the top 20 institutions that published articles were from China, among which Fudan University represented the most. The International Journal of Molecular Sciences was the journal with the most studies. Nature was the most co-cited journal. The most influential writers were Zhang and Wang from China and Mathiyalagan from the United States. After 2015, the primary keywords were cardiac development, heart, promoter methylation, RNA methylation, and N6-methyladenosine. Nuclear RNA, m6A methylation, inhibition, and myocardial infarction were the most common burst keywords from 2020 to the present.ConclusionsA bibliometric analysis reveals research hotspots and trends of RNA methylation in CVD. The regulatory mechanisms of RNA methylation related to CVD and the clinical application of their results, especially m6A methylation, are likely to be the focus of future research.
Collapse
Affiliation(s)
- Boce Song
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Beili Xie
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Mingwang Liu
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Haohao Li
- Graduate School, Beijing University of Chinese Medicine, Beijing, China
| | - Dazhuo Shi
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- National Clinical Research Center for Chinese Medicine Cardiology, Beijing, China
| | - Fuhai Zhao
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- National Clinical Research Center for Chinese Medicine Cardiology, Beijing, China
- Correspondence: Fuhai Zhao
| |
Collapse
|
7
|
Shu Y, Guo Y, Zheng Y, He S, Shi Z. RNA methylation in vascular disease: a systematic review. J Cardiothorac Surg 2022; 17:323. [PMID: 36536469 PMCID: PMC9762007 DOI: 10.1186/s13019-022-02077-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Accepted: 12/10/2022] [Indexed: 12/23/2022] Open
Abstract
Despite the rise in morbidity and mortality associated with vascular diseases, the underlying pathophysiological molecular mechanisms are still unclear. RNA N6-methyladenosine modification, as the most common cellular mechanism of RNA regulation, participates in a variety of biological functions and plays an important role in epigenetics. A large amount of evidence shows that RNA N6-methyladenosine modifications play a key role in the morbidity caused by vascular diseases. Further research on the relationship between RNA N6-methyladenosine modifications and vascular diseases is necessary to understand disease mechanisms at the gene level and to provide new tools for diagnosis and treatment. In this study, we summarize the currently available data on RNA N6-methyladenosine modifications in vascular diseases, addressing four aspects: the cellular regulatory system of N6-methyladenosine methylation, N6-methyladenosine modifications in risk factors for vascular disease, N6-methyladenosine modifications in vascular diseases, and techniques for the detection of N6-methyladenosine-methylated RNA.
Collapse
Affiliation(s)
- Yue Shu
- Geriatric Multi-Clinic Center, Hainan ChengMei Hospital, Haikou, Hainan People’s Republic of China ,Department of Special Medical Services, Hainan Cancer Hospital, Haikou, Hainan People’s Republic of China
| | - Yilong Guo
- grid.488137.10000 0001 2267 2324Medical School of Chinese PLA, Beijing, People’s Republic of China ,grid.414252.40000 0004 1761 8894Department of Vascular and Endovascular Surgery, The First Medical Centre of Chinese PLA General Hospital, Beijing, People’s Republic of China
| | - Yin Zheng
- Geriatric Multi-Clinic Center, Hainan ChengMei Hospital, Haikou, Hainan People’s Republic of China ,Department of Special Medical Services, Hainan Cancer Hospital, Haikou, Hainan People’s Republic of China
| | - Shuwu He
- grid.443397.e0000 0004 0368 7493Department of Cardiovascular Surgery, The Second Affiliated Hospital of Hainan Medical University, 48th of Bai Shui Tang Road, Haikou, 570311 Hainan People’s Republic of China
| | - Zhensu Shi
- grid.443397.e0000 0004 0368 7493Department of Cardiovascular Surgery, The Second Affiliated Hospital of Hainan Medical University, 48th of Bai Shui Tang Road, Haikou, 570311 Hainan People’s Republic of China
| |
Collapse
|
8
|
Zhou Y, Jiang R, Jiang Y, Fu Y, Manafhan Y, Zhu J, Jia E. Exploration of N6-Methyladenosine Profiles of mRNAs and the Function of METTL3 in Atherosclerosis. Cells 2022; 11:cells11192980. [PMID: 36230944 PMCID: PMC9563305 DOI: 10.3390/cells11192980] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 08/31/2022] [Accepted: 09/05/2022] [Indexed: 11/25/2022] Open
Abstract
Objectives: N6-methylladenosine (m6A) modification has not been fully studied in atherosclerosis. The objectives of this study were to investigate differentially expressed m6A methylated peaks and mRNAs, along with the regulatory role of methyltransferase 3 (METTL3) in pathological processes of atherosclerosis. Methods: The pathological models of human coronary artery smooth muscle cells (HCASMCs) were induced in vitro. The differentially expressed mRNAs and m6A peaks were identified by RNA-Seq and meRIP-Seq. The potential mechanisms were analyzed via bioinformatic assays. Methylases expression was tested by quantitative real-time polymerase chain reaction (qRT-PCR) and Western blotting (WB) in HCASMCs, and by immunohistochemical assays in 40 human coronary arteries. The knockdown of METTL3 expression in cells was performed by siRNA transfection, and cell proliferation and migration were detected after transfection. Results: We identified 5121 m6A peaks and 883 mRNAs that were expressed differentially in the pathological processes of HCASMCs. Bioinformatic analyses showed that the different m6A peaks were associated with cell growth and cell adhesion, and the 883 genes showed that the extracellular matrix and PI3K/AKT pathway regulate the processes of HCASMCs. Additionally, 10 hub genes and 351 mRNAs with differential methylation and expression levels were found. METTL3 was upregulated in the arteries with atherosclerotic lesions and in the proliferation and migration model of HCASMCs, and pathological processes of HCASMCs could be inhibited by the knockdown of METTL3. The mechanisms behind regulation of migration and proliferation reduced by siMETTL3 are concerned with protein synthesis and energy metabolism. Conclusions: These results revealed a new m6A epigenetic method to regulate the progress of atherosclerosis, which suggest approaches for potential therapeutic interventions that target METTL3 for the prevention and treatment of coronary artery diseases.
Collapse
Affiliation(s)
- Yaqing Zhou
- Department of Cardiovascular Medicine, The First Affiliated Hospital of Nanjing Medical University, Guangzhou Road 300, Nanjing 210029, China
| | - Rongli Jiang
- Department of Cardiovascular Medicine, The First Affiliated Hospital of Nanjing Medical University, Guangzhou Road 300, Nanjing 210029, China
| | - Yali Jiang
- The Friendship Hospital of Ili Kazakh Autonomous Prefecture,Ili & Jiangsu Joint Institute of Health, Yining 835000, China
| | - Yahong Fu
- Department of Cardiovascular Medicine, The First Affiliated Hospital of Nanjing Medical University, Guangzhou Road 300, Nanjing 210029, China
| | - Yerbolat Manafhan
- Department of Hypertension, Yili Friendship Hospital, Stalin Road 92, Yining 835000, China
- Correspondence: (Y.M.); (J.Z.); (E.J.); Tel.: +86-13951623205 (E.J.); +86-13809049659 (J.Z.); +86-13899798859 (Y.M.)
| | - Jinfu Zhu
- Department of Cardiovascular Surgery, the First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
- Correspondence: (Y.M.); (J.Z.); (E.J.); Tel.: +86-13951623205 (E.J.); +86-13809049659 (J.Z.); +86-13899798859 (Y.M.)
| | - Enzhi Jia
- Department of Cardiovascular Medicine, The First Affiliated Hospital of Nanjing Medical University, Guangzhou Road 300, Nanjing 210029, China
- Correspondence: (Y.M.); (J.Z.); (E.J.); Tel.: +86-13951623205 (E.J.); +86-13809049659 (J.Z.); +86-13899798859 (Y.M.)
| |
Collapse
|
9
|
Peng L, Long T, Li F, Xie Q. Emerging role of m 6 A modification in cardiovascular diseases. Cell Biol Int 2022; 46:711-722. [PMID: 35114043 DOI: 10.1002/cbin.11773] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Revised: 12/19/2021] [Accepted: 01/30/2022] [Indexed: 11/07/2022]
Abstract
Cardiovascular diseases (CVDs) contribute to the leading cause of death worldwide. Despite significantly improvements in CVDs diagnosis and treatment, a continued effort to explore novel therapeutic strategies is urgently need. N6-methyladenosine (m6 A) RNA methylation, well known as the most prevalent type of RNA modifications, involved in RNA stability, nuclear exports, translation and decoy, plays a crucial role in the pathogenesis of a variety of diseases, including CVDs, cancer and drug resistance. Here, our article summarizes cellular functions of m6 A modulators and recent research progress concerning the functions and mechanisms of m6 A methylation in CVDs, in hope of providing references for exploring novel therapeutic approaches and potential biomarkers in the treatment of CVDs. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Liming Peng
- Department of Cardiology, Xiangya Hospital, Central South University, Changsha, China
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, China
- Department of Clinical Pharmacology, Hunan Key Laboratory of Pharmaco Genetics, Central South University, Changsha, China
- Department of National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Tianyi Long
- Department of Cardiology, Xiangya Hospital, Central South University, Changsha, China
| | - Fei Li
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, China
| | - Qiying Xie
- Department of Cardiology, Xiangya Hospital, Central South University, Changsha, China
- Department of National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
10
|
Zhang Y, Hua W, Dang Y, Cheng Y, Wang J, Zhang X, Teng M, Wang S, Zhang M, Kong Z, Lu X, Zheng Y. Validated Impacts of N6-Methyladenosine Methylated mRNAs on Apoptosis and Angiogenesis in Myocardial Infarction Based on MeRIP-Seq Analysis. Front Mol Biosci 2022; 8:789923. [PMID: 35155564 PMCID: PMC8831860 DOI: 10.3389/fmolb.2021.789923] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Accepted: 11/26/2021] [Indexed: 12/13/2022] Open
Abstract
Objectives: N6-methyladenosine (m6A) is hypothesized to play a role in the regulation of pathogenesis of myocardial infarction (MI). This study was designed to compare m6A-tagged transcript profiles to identify mRNA-specific changes on pathophysiological variations after MI. Methods: N6-methyladenosine methylated RNA immunoprecipitation sequencing (MeRIP-seq) and RNA sequencing (RNA-seq) were interacted to select m6A-modified mRNAs with samples collected from sham operated and MI rat models. m6A methylation regulated mRNAs were interacted with apoptosis/angiogenesis related genes in GeneCards. Afterwards, MeRIP-quantitative real-time PCR (MeRIP-qRT-PCR) was performed to measure m6A methylation level of hub mRNAs. m6A methylation variation was tested under different oxygen concentration or hypoxic duration in H9c2 cells and HUVECs. In addition, Western blot and qRT-PCR were employed to detect expression of hub mRNAs and relevant protein level. Flow cytometry and Tunel assay were conducted to assess apoptotic level. CCK-8, EdU, and tube formation assay were performed to measure cell proliferation and tube formation ability. Results: Upregulation of Mettl3 was firstly observed in vivo and in vitro, followed by upregulation of m6A methylation level. A total of 567 significantly changed m6A methylation peaks were identified, including 276 upregulated and 291 downregulated peaks. A total of 576 mRNAs were upregulated and 78 were downregulated. According to combined analysis of MeRIP-seq and RNA-seq, we identified 26 significantly hypermethylated and downregulated mRNAs. Based on qRT-PCR and interactive analysis, Hadh, Kcnn1, and Tet1 were preliminarily identified as hub mRNAs associated with apoptosis/angiogenesis. MeRIP-qRT-PCR assay confirmed the results from MeRIP-seq. With the inhibition of Mettl3 in H9c2 cells and HUVECs, downregulated m6A methylation level of total RNA and upregulated expression of hub mRNAs were observed. Increased m6A level was verified in the gradient context in terms of prolonged hypoxic duration and decreased oxygen concentration. Under simulated hypoxia, roles of Kcnn1 and Tet1 in angiogenesis and Hadh, Tet1, and Kcnn1 in apoptosis were further confirmed with our validation experiments. Conclusion: Roles of m6A-modified mRNA transcripts in the context of MI were preliminarily verified. In the context of m6A methylation, three hub mRNAs were validated to impact the process of apoptosis/angiogenesis. Our study provided theoretical basis and innovative targets for treatment of MI and paved the way for future investigations aiming at exploring upstream epigenetic mechanisms of pathogenesis after MI.
Collapse
Affiliation(s)
- Yingjie Zhang
- Department of Rehabilitation Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Wenjie Hua
- Department of Rehabilitation Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Yini Dang
- Department of Gastroenterology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Yihui Cheng
- Department of Rehabilitation Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Jiayue Wang
- Department of Rehabilitation Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Xiu Zhang
- Department of Rehabilitation Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Meiling Teng
- Department of Rehabilitation Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Shenrui Wang
- Department of Rehabilitation Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Min Zhang
- Department of Gastroenterology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Zihao Kong
- Department of Gastroenterology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Xiao Lu
- Department of Rehabilitation Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
- *Correspondence: Yu Zheng, ; Xiao Lu,
| | - Yu Zheng
- Department of Rehabilitation Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
- *Correspondence: Yu Zheng, ; Xiao Lu,
| |
Collapse
|
11
|
Leptidis S, Papakonstantinou E, Diakou KI, Pierouli K, Mitsis T, Dragoumani K, Bacopoulou F, Sanoudou D, Chrousos GP, Vlachakis D. Epitranscriptomics of cardiovascular diseases (Review). Int J Mol Med 2022; 49:9. [PMID: 34791505 PMCID: PMC8651226 DOI: 10.3892/ijmm.2021.5064] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Accepted: 10/20/2021] [Indexed: 11/09/2022] Open
Abstract
RNA modifications have recently become the focus of attention due to their extensive regulatory effects in a vast array of cellular networks and signaling pathways. Just as epigenetics is responsible for the imprinting of environmental conditions on a genetic level, epitranscriptomics follows the same principle at the RNA level, but in a more dynamic and sensitive manner. Nevertheless, its impact in the field of cardiovascular disease (CVD) remains largely unexplored. CVD and its associated pathologies remain the leading cause of death in Western populations due to the limited regenerative capacity of the heart. As such, maintenance of cardiac homeostasis is paramount for its physiological function and its capacity to respond to environmental stimuli. In this context, epitranscriptomic modifications offer a novel and promising therapeutic avenue, based on the fine‑tuning of regulatory cascades, necessary for cardiac function. This review aimed to provide an overview of the most recent findings of key epitranscriptomic modifications in both coding and non‑coding RNAs. Additionally, the methods used for their detection and important associations with genetic variations in the context of CVD were summarized. Current knowledge on cardiac epitranscriptomics, albeit limited still, indicates that the impact of epitranscriptomic editing in the heart, in both physiological and pathological conditions, holds untapped potential for the development of novel targeted therapeutic approaches in a dynamic manner.
Collapse
Affiliation(s)
- Stefanos Leptidis
- Laboratory of Genetics, Department of Biotechnology, School of Applied Biology and Biotechnology, Agricultural University of Athens, 11855 Athens, Greece
| | - Eleni Papakonstantinou
- Laboratory of Genetics, Department of Biotechnology, School of Applied Biology and Biotechnology, Agricultural University of Athens, 11855 Athens, Greece
| | - Kalliopi Io Diakou
- Laboratory of Genetics, Department of Biotechnology, School of Applied Biology and Biotechnology, Agricultural University of Athens, 11855 Athens, Greece
| | - Katerina Pierouli
- Laboratory of Genetics, Department of Biotechnology, School of Applied Biology and Biotechnology, Agricultural University of Athens, 11855 Athens, Greece
| | - Thanasis Mitsis
- Laboratory of Genetics, Department of Biotechnology, School of Applied Biology and Biotechnology, Agricultural University of Athens, 11855 Athens, Greece
| | - Konstantina Dragoumani
- Laboratory of Genetics, Department of Biotechnology, School of Applied Biology and Biotechnology, Agricultural University of Athens, 11855 Athens, Greece
| | - Flora Bacopoulou
- Laboratory of Molecular Endocrinology, Center of Clinical, Experimental Surgery and Translational Research, Biomedical Research Foundation of the Academy of Athens, 11527 Athens, Greece
- First Department of Pediatrics, Center for Adolescent Medicine and UNESCO Chair on Adolescent Health Care, Medical School, Aghia Sophia Children's Hospital, National and Kapodistrian University of Athens, 11527 Athens, Greece
| | - Despina Sanoudou
- Fourth Department of Internal Medicine, Clinical Genomics and Pharmacogenomics Unit, Medical School, 'Attikon' Hospital, National and Kapodistrian University of Athens, 11527 Athens, Greece
- Molecular Biology Division, Biomedical Research Foundation of the Academy of Athens, 11527 Athens, Greece
- Center for New Biotechnologies and Precision Medicine, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece
| | - George P. Chrousos
- Laboratory of Molecular Endocrinology, Center of Clinical, Experimental Surgery and Translational Research, Biomedical Research Foundation of the Academy of Athens, 11527 Athens, Greece
- First Department of Pediatrics, Center for Adolescent Medicine and UNESCO Chair on Adolescent Health Care, Medical School, Aghia Sophia Children's Hospital, National and Kapodistrian University of Athens, 11527 Athens, Greece
| | - Dimitrios Vlachakis
- Laboratory of Genetics, Department of Biotechnology, School of Applied Biology and Biotechnology, Agricultural University of Athens, 11855 Athens, Greece
- Laboratory of Molecular Endocrinology, Center of Clinical, Experimental Surgery and Translational Research, Biomedical Research Foundation of the Academy of Athens, 11527 Athens, Greece
- First Department of Pediatrics, Center for Adolescent Medicine and UNESCO Chair on Adolescent Health Care, Medical School, Aghia Sophia Children's Hospital, National and Kapodistrian University of Athens, 11527 Athens, Greece
- School of Informatics, Faculty of Natural and Mathematical Sciences, King's College London, London WC2R 2LS, UK
| |
Collapse
|
12
|
Kumari R, Ranjan P, Suleiman ZG, Goswami SK, Li J, Prasad R, Verma SK. mRNA modifications in cardiovascular biology and disease: with a focus on m6A modification. Cardiovasc Res 2021; 118:1680-1692. [PMID: 33956076 DOI: 10.1093/cvr/cvab160] [Citation(s) in RCA: 107] [Impact Index Per Article: 26.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Accepted: 05/04/2021] [Indexed: 12/23/2022] Open
Abstract
Among several known RNA modifications, N6-methyladenosine (m6A) is the most studied RNA epitranscriptomic modification and controls multiple cellular functions during development, differentiation, and disease. Current research advancements have made it possible to examine the regulatory mechanisms associated with RNA methylation and reveal its functional consequences in the pathobiology of many diseases, including heart failure. m6A methylation has been described both on coding (mRNA) and non-coding RNA species including rRNA, tRNA, small nuclear RNA and circular RNAs. The protein components which catalyze the m6A methylation are termed methyltransferase or "m6A writers." The family of proteins that recognize this methylation are termed "m6A readers" and finally the enzymes involved in the removal of a methyl group from RNA are known as demethylases or "m6A erasers." At the cellular level, different components of methylation machinery are tightly regulated by many factors to maintain the m6A methylation dynamics. The m6A methylation process impacts different stages of mRNA metabolism and the biogenesis of long non-coding RNA and miRNA. Although, mRNA methylation was initially described in the 1970s, its regulatory roles in various diseases, including cardiovascular diseases are broadly unexplored. Recent investigations suggest the important role of m6A mRNA methylation in both hypertrophic and ischemic heart diseases. In the present review, we evaluate the significance of m6A methylation in the cardiovascular system, in cardiac homeostasis and disease, all of which may help to improve therapeutic intervention for the treatment of heart failure.
Collapse
Affiliation(s)
- Rajesh Kumari
- Division of Cardiovascular Disease, The University of Alabama at Birmingham, Birmingham, AL, United States
| | - Prabhat Ranjan
- Division of Cardiovascular Disease, The University of Alabama at Birmingham, Birmingham, AL, United States
| | - Zainab Gbongbo Suleiman
- Department of Biomedical Engineering, The University of Alabama at Birmingham, Birmingham, AL, United States
| | - Sumanta Kumar Goswami
- Division of Cardiovascular Disease, The University of Alabama at Birmingham, Birmingham, AL, United States
| | - Jing Li
- Division of Cardiovascular Disease, The University of Alabama at Birmingham, Birmingham, AL, United States
| | - Ram Prasad
- Department of Ophthalmology and Visual Sciences, School of Medicine, The University of Alabama at Birmingham, Birmingham, AL, United States
| | - Suresh Kumar Verma
- Division of Cardiovascular Disease, The University of Alabama at Birmingham, Birmingham, AL, United States.,Department of Biomedical Engineering, The University of Alabama at Birmingham, Birmingham, AL, United States
| |
Collapse
|
13
|
Ciccone V, Genah S, Morbidelli L. Endothelium as a Source and Target of H 2S to Improve Its Trophism and Function. Antioxidants (Basel) 2021; 10:antiox10030486. [PMID: 33808872 PMCID: PMC8003673 DOI: 10.3390/antiox10030486] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 03/13/2021] [Accepted: 03/16/2021] [Indexed: 12/18/2022] Open
Abstract
The vascular endothelium consists of a single layer of squamous endothelial cells (ECs) lining the inner surface of blood vessels. Nowadays, it is no longer considered as a simple barrier between the blood and vessel wall, but a central hub to control blood flow homeostasis and fulfill tissue metabolic demands by furnishing oxygen and nutrients. The endothelium regulates the proper functioning of vessels and microcirculation, in terms of tone control, blood fluidity, and fine tuning of inflammatory and redox reactions within the vessel wall and in surrounding tissues. This multiplicity of effects is due to the ability of ECs to produce, process, and release key modulators. Among these, gasotransmitters such as nitric oxide (NO) and hydrogen sulfide (H2S) are very active molecules constitutively produced by endotheliocytes for the maintenance and control of vascular physiological functions, while their impairment is responsible for endothelial dysfunction and cardiovascular disorders such as hypertension, atherosclerosis, and impaired wound healing and vascularization due to diabetes, infections, and ischemia. Upregulation of H2S producing enzymes and administration of H2S donors can be considered as innovative therapeutic approaches to improve EC biology and function, to revert endothelial dysfunction or to prevent cardiovascular disease progression. This review will focus on the beneficial autocrine/paracrine properties of H2S on ECs and the state of the art on H2S potentiating drugs and tools.
Collapse
|
14
|
Potential regulatory role of epigenetic RNA methylation in cardiovascular diseases. Biomed Pharmacother 2021; 137:111376. [PMID: 33588266 DOI: 10.1016/j.biopha.2021.111376] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 02/05/2021] [Accepted: 02/08/2021] [Indexed: 12/17/2022] Open
Abstract
Cardiovascular diseases (CVDs) are the leading cause of morbidity and mortality worldwide, especially in developing countries. To date, several approaches have been proposed for the prevention and treatment of CVDs. However, the increased risk of developing cardiovascular events that result in hospitalization has become a growing public health concern. The pathogenesis of CVDs has been analyzed from various perspectives. Recent data suggest that regulatory RNAs play a multidimensional role in the development of CVDs. Studies have identified several mRNA modifications that have contributed to the functional characterization of various cardiac diseases. RNA methylation, such as N6-methyladenosine, N1-methyladenosine, 5-methylcytosine, N7-methylguanosine, N4-acetylcytidine, and 2'-O-methylation are novel epigenetic modifications that affect the regulation of cell growth, immunity, DNA damage, calcium signaling, apoptosis, and aging in cardiomyocytes. In this review, we summarize the role of RNA methylation in the pathophysiology of CVDs and the potential of using epigenetics to treat such disorders.
Collapse
|
15
|
RNA Modification by m 6A Methylation in Cardiovascular Disease. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:8813909. [PMID: 34221238 PMCID: PMC8183103 DOI: 10.1155/2021/8813909] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 01/27/2021] [Accepted: 01/28/2021] [Indexed: 12/11/2022]
Abstract
Cardiovascular disease is currently the leading cause of death worldwide, and its underlying regulatory mechanisms remain largely unknown. N6-Methyladenosine (m6A) RNA methylation is an epigenetic modification involved in the splicing, nuclear export, translational regulation, and degradation of RNA. After the initial identification of m6A RNA methylation in 1974, the rise of next-generation sequencing technology to detect m6A throughout the transcriptome led to its renewed recognition in 2012. Since that time, m6A methylation has been extensively studied, and its functions, mechanisms, and effectors (e.g., METTL3, FTO, METTL14, WTAP, ALKBH5, and YTHDFs) in various diseases, including cardiovascular diseases, have rapidly been investigated. In this review, we first examine and summarize the molecular and cellular functions of m6A methylation and its readers, writers, and erasers in the cardiovascular system. Finally, we discuss future directions for m6A methylation research and the potential for therapeutic targeting of m6A modification in cardiovascular disease.
Collapse
|
16
|
Tao L, Mu X, Chen H, Jin D, Zhang R, Zhao Y, Fan J, Cao M, Zhou Z. FTO modifies the m6A level of MALAT and promotes bladder cancer progression. Clin Transl Med 2021; 11:e310. [PMID: 33634966 PMCID: PMC7851431 DOI: 10.1002/ctm2.310] [Citation(s) in RCA: 80] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Revised: 01/15/2021] [Accepted: 01/19/2021] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND Nearly a half million people around the world are diagnosed with bladder cancer each year, and an incomplete understanding of its pathogenicity and lack of efficient biomarkers having been discovered lead to poor clinical management of bladder cancer. Fat mass and obesity-associated protein (FTO) is a critical player in carcinogenesis. We, here, explored the role of FTO and unraveled the mechanism of its function in bladder cancer. METHODS Identification of the correlation of FTO with bladder cancer was based on both bioinformatics and clinical analysis of tissue samples collected from a cohort of patients at a hospital and microarray data. Gain-of-function and loss-of-function assays were conducted in vivo and in vitro to assess the effect of FTO on bladder carcinoma tumor growth and its impact on the bladder carcinoma cell viability. Moreover, the interactions of intermediate products were also investigated to elucidate the mechanisms of FTO function. RESULTS Bladder tumor tissues had increased FTO expression which correlated with clinical bladder cancer prognosis and outcomes. Both in vivo and in vitro, it played the function of an oncogene in stimulating the cell viability and tumorigenicity of bladder cancer. Furthermore, FTO catalyzed metastasis-associated lung adenocarcinoma transcript 1 (MALAT1) demethylation, regulated microRNA miR-384 and mal T cell differentiation protein 2 (MAL2) expression, and modulated the interactions among these processes. CONCLUSIONS The interplay of these four clinically relevant factors contributes to the oncogenesis of bladder cancer. FTO facilitates the tumorigenesis of bladder cancer through regulating the MALAT/miR-384/MAL2 axis in m6A RNA modification manner, which ensures the potential of FTO for serving as a diagnostic or prognostic biomarker in bladder cancer.
Collapse
Affiliation(s)
- Le Tao
- Department of UrologyRenji HospitalSchool of MedicineShanghai Jiaotong UniversityShanghaiChina
| | - Xingyu Mu
- Department of UrologyShanghai General HospitalSchool of MedicineShanghai Jiaotong UniversityShanghaiChina
| | - Haige Chen
- Department of UrologyRenji HospitalSchool of MedicineShanghai Jiaotong UniversityShanghaiChina
| | - Di Jin
- Department of UrologyRenji HospitalSchool of MedicineShanghai Jiaotong UniversityShanghaiChina
| | - Ruiyun Zhang
- Department of UrologyRenji HospitalSchool of MedicineShanghai Jiaotong UniversityShanghaiChina
| | - Yuyang Zhao
- Department of UrologyShanghai General HospitalSchool of MedicineShanghai Jiaotong UniversityShanghaiChina
| | - Jie Fan
- Department of UrologyShanghai General HospitalSchool of MedicineShanghai Jiaotong UniversityShanghaiChina
| | - Ming Cao
- Department of UrologyRenji HospitalSchool of MedicineShanghai Jiaotong UniversityShanghaiChina
| | - Zhihua Zhou
- Department of UrologyMenchao Hepatobiliary Hospital of Fujian Medical UniversityFuzhouChina
| |
Collapse
|
17
|
Atlante S, Mongelli A, Barbi V, Martelli F, Farsetti A, Gaetano C. The epigenetic implication in coronavirus infection and therapy. Clin Epigenetics 2020; 12:156. [PMID: 33087172 PMCID: PMC7576975 DOI: 10.1186/s13148-020-00946-x] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Accepted: 10/08/2020] [Indexed: 02/06/2023] Open
Abstract
Epigenetics is a relatively new field of science that studies the genetic and non-genetic aspects related to heritable phenotypic changes, frequently caused by environmental and metabolic factors. In the host, the epigenetic machinery can regulate gene expression through a series of reversible epigenetic modifications, such as histone methylation and acetylation, DNA/RNA methylation, chromatin remodeling, and non-coding RNAs. The coronavirus disease 19 (COVID-19) is a highly transmittable and pathogenic viral infection. The Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2), which emerged in Wuhan, China, and spread worldwide, causes it. COVID-19 severity and consequences largely depend on patient age and health status. In this review, we will summarize and comparatively analyze how viruses regulate the host epigenome. Mainly, we will be focusing on highly pathogenic respiratory RNA virus infections such as coronaviruses. In this context, epigenetic alterations might play an essential role in the onset of coronavirus disease complications. Although many therapeutic approaches are under study, more research is urgently needed to identify effective vaccine or safer chemotherapeutic drugs, including epigenetic drugs, to cope with this viral outbreak and to develop pre- and post-exposure prophylaxis against COVID-19.
Collapse
Affiliation(s)
- Sandra Atlante
- Laboratorio di Epigenetica, Istituti Clinici Scientifici Maugeri IRCCS, Via Maugeri 4, 27100 Pavia, Italy
| | - Alessia Mongelli
- Laboratorio di Epigenetica, Istituti Clinici Scientifici Maugeri IRCCS, Via Maugeri 4, 27100 Pavia, Italy
| | - Veronica Barbi
- Laboratorio di Epigenetica, Istituti Clinici Scientifici Maugeri IRCCS, Via Maugeri 4, 27100 Pavia, Italy
| | - Fabio Martelli
- Laboratorio di Cardiologia Molecolare, Policlinico San Donato IRCCS, Milan, Italy
| | - Antonella Farsetti
- Institute for Systems Analysis and Computer Science “A. Ruberti” (IASI), National Research Council (CNR), Rome, Italy
| | - Carlo Gaetano
- Laboratorio di Epigenetica, Istituti Clinici Scientifici Maugeri IRCCS, Via Maugeri 4, 27100 Pavia, Italy
| |
Collapse
|
18
|
Wypijewska Del Nogal A, Füchtbauer AF, Bood M, Nilsson JR, Wranne MS, Sarangamath S, Pfeiffer P, Rajan VS, El-Sagheer AH, Dahlén A, Brown T, Grøtli M, Wilhelmsson LM. Getting DNA and RNA out of the dark with 2CNqA: a bright adenine analogue and interbase FRET donor. Nucleic Acids Res 2020; 48:7640-7652. [PMID: 32558908 PMCID: PMC7641321 DOI: 10.1093/nar/gkaa525] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 05/15/2020] [Accepted: 06/09/2020] [Indexed: 12/16/2022] Open
Abstract
With the central role of nucleic acids there is a need for development of fluorophores that facilitate the visualization of processes involving nucleic acids without perturbing their natural properties and behaviour. Here, we incorporate a new analogue of adenine, 2CNqA, into both DNA and RNA, and evaluate its nucleobase-mimicking and internal fluorophore capacities. We find that 2CNqA displays excellent photophysical properties in both nucleic acids, is highly specific for thymine/uracil, and maintains and slightly stabilises the canonical conformations of DNA and RNA duplexes. Moreover, the 2CNqA fluorophore has a quantum yield in single-stranded and duplex DNA ranging from 10% to 44% and 22% to 32%, respectively, and a slightly lower one (average 12%) inside duplex RNA. In combination with a comparatively strong molar absorptivity for this class of compounds, the resulting brightness of 2CNqA inside double-stranded DNA is the highest reported for a fluorescent base analogue. The high, relatively sequence-independent quantum yield in duplexes makes 2CNqA promising as a nucleic acid label and as an interbase Förster resonance energy transfer (FRET) donor. Finally, we report its excellent spectral overlap with the interbase FRET acceptors qAnitro and tCnitro, and demonstrate that these FRET pairs enable conformation studies of DNA and RNA.
Collapse
Affiliation(s)
- Anna Wypijewska Del Nogal
- Department of Chemistry and Chemical Engineering, Chalmers University of Technology, Gothenburg SE-412 96, Sweden
| | - Anders F Füchtbauer
- Department of Chemistry and Chemical Engineering, Chalmers University of Technology, Gothenburg SE-412 96, Sweden.,Department of Chemistry and Molecular Biology, University of Gothenburg, Gothenburg SE-412 96, Sweden
| | - Mattias Bood
- Department of Chemistry and Molecular Biology, University of Gothenburg, Gothenburg SE-412 96, Sweden.,Medicinal Chemistry, Research and EarlyDevelopment, Cardiovascular, Renal and Metabolism (CVRM), BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Pepparedsleden 1, Mölndal, SE-431 83, Sweden
| | - Jesper R Nilsson
- Department of Chemistry and Chemical Engineering, Chalmers University of Technology, Gothenburg SE-412 96, Sweden
| | - Moa S Wranne
- Department of Chemistry and Chemical Engineering, Chalmers University of Technology, Gothenburg SE-412 96, Sweden
| | - Sangamesh Sarangamath
- Department of Chemistry and Chemical Engineering, Chalmers University of Technology, Gothenburg SE-412 96, Sweden
| | - Pauline Pfeiffer
- Department of Chemistry and Chemical Engineering, Chalmers University of Technology, Gothenburg SE-412 96, Sweden
| | - Vinoth Sundar Rajan
- Department of Chemistry and Chemical Engineering, Chalmers University of Technology, Gothenburg SE-412 96, Sweden
| | - Afaf H El-Sagheer
- Chemistry Branch, Faculty of Petroleum and Mining Engineering, Suez University, Suez 43721, Egypt
| | - Anders Dahlén
- Discovery Sciences, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Pepparedsleden 1, Mölndal, SE-431 83, Sweden
| | - Tom Brown
- Chemistry Research Laboratory, Department of Chemistry, University of Oxford, Oxford OX1 3TA, UK
| | - Morten Grøtli
- Department of Chemistry and Molecular Biology, University of Gothenburg, Gothenburg SE-412 96, Sweden
| | - L Marcus Wilhelmsson
- Department of Chemistry and Chemical Engineering, Chalmers University of Technology, Gothenburg SE-412 96, Sweden
| |
Collapse
|