1
|
Gleixner S, Zahn I, Dietrich J, Singh S, Drobny A, Schneider Y, Schwendner R, Socher E, Blavet N, Bräuer L, Gostian AO, Balk M, Schulze-Tanzil G, Günther C, Paulsen F, Arnold P. A New Immortalized Human Lacrimal Gland Cell Line. Cells 2024; 13:622. [PMID: 38607061 PMCID: PMC11011892 DOI: 10.3390/cells13070622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 03/25/2024] [Accepted: 03/27/2024] [Indexed: 04/13/2024] Open
Abstract
The lacrimal gland is crucial for maintaining ocular health by producing the aqueous component of the tear film, which hydrates and nourishes the ocular surface. Decreased production of this component results in dry eye disease, a condition affecting over 250 million people worldwide. However, the scarcity of primary human material for studying its underlying mechanisms and the absence of a cell model for human lacrimal gland epithelial cells present significant challenges. Here, we describe the generation of immortalized human lacrimal gland cell lines through the introduction of an SV40 antigen. We successfully isolated and characterized three cell clones from a female lacrimal gland donor, confirming their epithelial identity through genomic and protein analyses, including PCR, RNAseq, immunofluorescence and cultivation in a 3D spheroid model. Our findings represent a significant advancement, providing improved accessibility to investigate the molecular pathogenesis mechanisms of dry eye disease and potential therapeutic interventions. We identified the expression of typical epithelial cell marker genes and demonstrated the cells' capability to form 2D cell sheets and 3D spheroids. This establishment of immortalized human lacrimal gland cells with epithelial characteristics holds promise for future comprehensive studies, contributing to a deeper understanding of dry eye disease and its cellular mechanisms.
Collapse
Affiliation(s)
- Sophie Gleixner
- Institute of Functional and Clinical Anatomy, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany; (S.G.)
| | - Ingrid Zahn
- Institute of Functional and Clinical Anatomy, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany; (S.G.)
| | - Jana Dietrich
- Institute of Functional and Clinical Anatomy, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany; (S.G.)
| | - Swati Singh
- Institute of Functional and Clinical Anatomy, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany; (S.G.)
- Hariram Motumal Nasta & Renu Hariram Nasta Ophthalmic Plastic Surgery Services, LV Prasad Eye Institute, Hyderabad 500034, India
| | - Alice Drobny
- Department of Molecular Neurology, University Hospital Erlangen, Friedrich-Alexander Universität Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany
| | - Yanni Schneider
- Department of Molecular Neurology, University Hospital Erlangen, Friedrich-Alexander Universität Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany
| | - Raphael Schwendner
- Department of Medicine 1, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany
| | - Eileen Socher
- Institute of Functional and Clinical Anatomy, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany; (S.G.)
| | - Nicolas Blavet
- CEITEC-Central European Institute of Technology, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic
| | - Lars Bräuer
- Institute of Functional and Clinical Anatomy, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany; (S.G.)
| | - Antoniu-Oreste Gostian
- Department of Otorhinolaryngology, Merciful Brothers Hospital St. Elisabeth, 94315 Straubing, Germany
- Department of Otolaryngology, Head & Neck Surgery, Comprehensive Cancer Center Erlangen, University Hospital Erlangen, 91054 Erlangen, Germany
| | - Matthias Balk
- Department of Otolaryngology, Head & Neck Surgery, Comprehensive Cancer Center Erlangen, University Hospital Erlangen, 91054 Erlangen, Germany
| | - Gundula Schulze-Tanzil
- Institute of Anatomy and Cell Biology, Paracelsus Medical University, Nuremberg Prof. Ernst Nathan Str. 1, 90419 Nuremberg, Germany
| | - Claudia Günther
- Department of Medicine 1, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany
- Deutsches Zentrum Immuntherapie (DZI), University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany
| | - Friedrich Paulsen
- Institute of Functional and Clinical Anatomy, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany; (S.G.)
| | - Philipp Arnold
- Institute of Functional and Clinical Anatomy, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany; (S.G.)
| |
Collapse
|
2
|
Gögele C, Hahn J, Schulze-Tanzil G. Anatomical Tissue Engineering of the Anterior Cruciate Ligament Entheses. Int J Mol Sci 2023; 24:ijms24119745. [PMID: 37298698 DOI: 10.3390/ijms24119745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 05/23/2023] [Accepted: 05/26/2023] [Indexed: 06/12/2023] Open
Abstract
The firm integration of anterior cruciate ligament (ACL) grafts into bones remains the most demanding challenge in ACL reconstruction, since graft loosening means graft failure. For a functional-tissue-engineered ACL substitute to be realized in future, robust bone attachment sites (entheses) have to be re-established. The latter comprise four tissue compartments (ligament, non-calcified and calcified fibrocartilage, separated by the tidemark, bone) forming a histological and biomechanical gradient at the attachment interface between the ACL and bone. The ACL enthesis is surrounded by the synovium and exposed to the intra-articular micromilieu. This review will picture and explain the peculiarities of these synovioentheseal complexes at the femoral and tibial attachment sites based on published data. Using this, emerging tissue engineering (TE) strategies addressing them will be discussed. Several material composites (e.g., polycaprolactone and silk fibroin) and manufacturing techniques (e.g., three-dimensional-/bio-printing, electrospinning, braiding and embroidering) have been applied to create zonal cell carriers (bi- or triphasic scaffolds) mimicking the ACL enthesis tissue gradients with appropriate topological parameters for zones. Functionalized or bioactive materials (e.g., collagen, tricalcium phosphate, hydroxyapatite and bioactive glass (BG)) or growth factors (e.g., bone morphogenetic proteins [BMP]-2) have been integrated to achieve the zone-dependent differentiation of precursor cells. However, the ACL entheses comprise individual (loading history) asymmetric and polar histoarchitectures. They result from the unique biomechanical microenvironment of overlapping tensile, compressive and shear forces involved in enthesis formation, maturation and maintenance. This review should provide a road map of key parameters to be considered in future in ACL interface TE approaches.
Collapse
Affiliation(s)
- Clemens Gögele
- Institute of Anatomy and Cell Biology, Paracelsus Medical University, Nuremberg and Salzburg, Prof. Ernst Nathan Str. 1, 90419 Nuremberg, Germany
| | - Judith Hahn
- Workgroup BioEngineering, Department Materials Engineering, Institute of Polymers Materials, Leibniz-Institut für Polymerforschung Dresden e.V. (IPF), Hohe Straße 6, 01069 Dresden, Germany
| | - Gundula Schulze-Tanzil
- Institute of Anatomy and Cell Biology, Paracelsus Medical University, Nuremberg and Salzburg, Prof. Ernst Nathan Str. 1, 90419 Nuremberg, Germany
| |
Collapse
|
3
|
Otto A, McCarthy MBR, Baldino JB, Mehl J, Muench LN, Tamburini LM, Uyeki CL, Arciero RA, Mazzocca AD. Biologically Augmented Suture for Ligament Bracing Procedures Positively Affects Human Ligamentocytes and Osteoblasts In Vitro. Arthroscopy 2022; 38:498-505. [PMID: 34785293 DOI: 10.1016/j.arthro.2021.11.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 11/02/2021] [Accepted: 11/04/2021] [Indexed: 02/02/2023]
Abstract
PURPOSE The purpose was to evaluate the response of human ligamentocytes and osteoblasts after biological augmentation with thrombin, concentrated bone marrow aspirate (cBMA), or platelet-rich plasma (PRP) on two different types of nonresorbable flat braided suture used for ligament bracing. METHODS Uncoated (U) and collagen-coated (C) flat braided suture material was augmented with either thrombin (T), cBMA (B), PRP (P), or a combination of these three (A), while platelet-poor plasma was used as a source for fibrin (F) in each assay. Previously cultured ligamentocytes and osteoblasts were added with a defined density and assayed after the required time period for adhesion, proliferation, and alkaline phosphatase activity. RESULTS Biological augmentation of uncoated [(UFT, UFBT, UFA; P < .001), (UFPT; P = .017)] and collagen-coated suture (CFT, CFPT, CFBT, CFA; P < .001) led to a significantly higher ligamentocyte adhesion. Significantly higher adhesion was also observed for osteoblasts (UFT, UFPT, UFBT, UFA; P < .001; CFT, CFPT, CFBT, CFA; P < .001). Similarly, ligamentocyte proliferation was significantly higher [(UFT, UFPT, UFA; P = .009), (UFBT; P = .001), (CFT; P = .009), (CFBT; P = .001), and (CFA; P = .01)]. Osteoblasts showed significantly higher proliferation as well [(UFT, UFPT, UFA; P = .002), (UFBT; P = .001); (CFT: P = .003), and (CFPT, CFBT, CFA; P = .001)]. Augmentation with thrombin, PRP, and BMA for uncoated (UFT; P = .006, UFPT; P = .035, UFBT; P = .001) and BMA for coated suture (CFBT; P = .027) led to significantly higher alkaline phosphatase activity. CONCLUSION Biological enhancement of suture used for ligament bracing significantly increased ligamentocyte and osteoblast adhesion and proliferation, as well as alkaline phosphatase activity of osteoblasts in an in vitro model. After biological augmentation, cellular adhesion, proliferation, and alkaline phosphatase activity changed up to 1,077%, 190%, and 78%, respectively. Furthermore, no overall superiority between uncoated or collagen-coated suture material was observed for cellular adhesion, proliferation, or alkaline phosphatase activity. CLINICAL RELEVANCE This study provides in vitro data on a new treatment concept of biologic augmentation for acute ligamentous lesions treated with ligament bracing that has not been widely described. This concept may improve the healing of injured ligaments, in addition to providing immediate biomechanical stabilization.
Collapse
Affiliation(s)
- Alexander Otto
- Department of Orthopaedic Sports Medicine, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany; Department of Trauma, Orthopaedic, Plastic and Hand Surgery, University Hospital of Augsburg, Augsburg, Germany.
| | - Mary Beth R McCarthy
- Department of Orthopaedic Surgery, UConn Musculoskeletal Institute, University of Connecticut Health Center, Farmington, Connecticut, U.S.A
| | - Joshua B Baldino
- Department of Orthopaedic Surgery, UConn Musculoskeletal Institute, University of Connecticut Health Center, Farmington, Connecticut, U.S.A
| | - Julian Mehl
- Department of Orthopaedic Sports Medicine, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Lukas N Muench
- Department of Orthopaedic Sports Medicine, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Lisa M Tamburini
- Department of Orthopaedic Surgery, UConn Musculoskeletal Institute, University of Connecticut Health Center, Farmington, Connecticut, U.S.A
| | - Colin L Uyeki
- Department of Orthopaedic Surgery, UConn Musculoskeletal Institute, University of Connecticut Health Center, Farmington, Connecticut, U.S.A
| | - Robert A Arciero
- Department of Orthopaedic Surgery, UConn Musculoskeletal Institute, University of Connecticut Health Center, Farmington, Connecticut, U.S.A
| | - Augustus D Mazzocca
- Department of Orthopaedic Surgery, UConn Musculoskeletal Institute, University of Connecticut Health Center, Farmington, Connecticut, U.S.A
| |
Collapse
|
4
|
Zahn I, Braun T, Gögele C, Schulze-Tanzil G. Minispheroids as a Tool for Ligament Tissue Engineering: Do the Self-Assembly Techniques and Spheroid Dimensions Influence the Cruciate Ligamentocyte Phenotype? Int J Mol Sci 2021; 22:11011. [PMID: 34681672 PMCID: PMC8537246 DOI: 10.3390/ijms222011011] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 09/29/2021] [Accepted: 10/05/2021] [Indexed: 12/14/2022] Open
Abstract
Spheroid culture might stabilize the ligamentocyte phenotype. Therefore, the phenotype of lapine cruciate ligamentocyte (L-CLs) minispheroids prepared either by hanging drop (HD) method or by using a novel spheroid plate (SP) and the option of methyl cellulose (MC) for tuning spheroid formation was tested. A total of 250 and 1000 L-CLs per spheroid were seeded as HDs or on an SP before performing cell viability assay, morphometry, gene expression (qRT-PCR) and protein immunolocalization after 7 (HD/SP) and 14 (SP) days. Stable and viable spheroids of both sizes could be produced with both methods, but more rapidly with SP. MC accelerated the formation of round spheroids (HD). Their circular areas decreased significantly during culturing. After 7 days, the diameters of HD-derived spheroids were significantly larger compared to those harvested from the SP, with a tendency of lower circularity suggesting an ellipsoid shape. Gene expression of decorin increased significantly after 7 days (HD, similar trend in SP), tenascin C tended to increase after 7 (HD/SP) and 14 days (SP), whereas collagen type 1 decreased (HD/SP) compared to the monolayer control. The cruciate ligament extracellular matrix components could be localized in all mini-spheroids, confirming their conserved expression profile and their suitability for ligament tissue engineering.
Collapse
Affiliation(s)
- Ingrid Zahn
- Institute of Anatomy and Cell Biology, Paracelsus Medical University, Nuremberg and Salzburg, Prof. Ernst Nathan Str.1, 90419 Nuremberg, Germany; (I.Z.); (T.B.); (C.G.)
- Institute of Functional and Clinical Anatomy, Friedrich Alexander University, Erlangen-Nuremberg, Universitätsstraße 19, 91054 Erlangen, Germany
- Department of Applied Chemistry, Nuremberg Institute of Technology Georg Simon Ohm, Keßlerplatz 12, 90489 Nuremberg, Germany
| | - Tobias Braun
- Institute of Anatomy and Cell Biology, Paracelsus Medical University, Nuremberg and Salzburg, Prof. Ernst Nathan Str.1, 90419 Nuremberg, Germany; (I.Z.); (T.B.); (C.G.)
- Department of Applied Chemistry, Nuremberg Institute of Technology Georg Simon Ohm, Keßlerplatz 12, 90489 Nuremberg, Germany
- Department of Cardiac Surgery (Cardiovascular Center), Klinikum Nürnberg Süd, Breslauer Str. 201, 90471 Nuremberg, Germany
| | - Clemens Gögele
- Institute of Anatomy and Cell Biology, Paracelsus Medical University, Nuremberg and Salzburg, Prof. Ernst Nathan Str.1, 90419 Nuremberg, Germany; (I.Z.); (T.B.); (C.G.)
- Department of Biosciences, Paris Lodron University of Salzburg, Hellbrunnerstr 34, 5020 Salzburg, Austria
| | - Gundula Schulze-Tanzil
- Institute of Anatomy and Cell Biology, Paracelsus Medical University, Nuremberg and Salzburg, Prof. Ernst Nathan Str.1, 90419 Nuremberg, Germany; (I.Z.); (T.B.); (C.G.)
| |
Collapse
|
5
|
Maintenance of Ligament Homeostasis of Spheroid-Colonized Embroidered and Functionalized Scaffolds after 3D Stretch. Int J Mol Sci 2021; 22:ijms22158204. [PMID: 34360970 PMCID: PMC8348491 DOI: 10.3390/ijms22158204] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 07/18/2021] [Accepted: 07/23/2021] [Indexed: 01/12/2023] Open
Abstract
Anterior cruciate ligament (ACL) ruptures are usually treated with autograft implantation to prevent knee instability. Tissue engineered ACL reconstruction is becoming promising to circumvent autograft limitations. The aim was to evaluate the influence of cyclic stretch on lapine (L) ACL fibroblasts on embroidered scaffolds with respect to adhesion, DNA and sulphated glycosaminoglycan (sGAG) contents, gene expression of ligament-associated extracellular matrix genes, such as type I collagen, decorin, tenascin C, tenomodulin, gap junctional connexin 43 and the transcription factor Mohawk. Control scaffolds and those functionalized by gas phase fluorination and cross-linked collagen foam were either pre-cultured with a suspension or with spheroids of LACL cells before being subjected to cyclic stretch (4%, 0.11 Hz, 3 days). Stretch increased significantly the scaffold area colonized with cells but impaired sGAGs and decorin gene expression (functionalized scaffolds seeded with cell suspension). Stretching increased tenascin C, connexin 43 and Mohawk but decreased decorin gene expression (control scaffolds seeded with cell suspension). Pre-cultivation of functionalized scaffolds with spheroids might be the more suitable method for maintaining ligamentogenesis in 3D scaffolds compared to using a cell suspension due to a significantly higher sGAG content in response to stretching and type I collagen gene expression in functionalized scaffolds.
Collapse
|
6
|
Gögele C, Hoffmann C, Konrad J, Merkel R, Schwarz S, Tohidnezhad M, Hoffmann B, Schulze-Tanzil GG. Cyclically stretched ACL fibroblasts emigrating from spheroids adapt their cytoskeleton and ligament-related expression profile. Cell Tissue Res 2021; 384:675-690. [PMID: 33835257 PMCID: PMC8211585 DOI: 10.1007/s00441-021-03416-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Accepted: 01/13/2021] [Indexed: 01/09/2023]
Abstract
Mechanical stress of ligaments varies; hence, ligament fibroblasts must adapt their expression profile to novel mechanomilieus to ensure tissue resilience. Activation of the mechanoreceptors leads to a specific signal transduction, the so-called mechanotransduction. However, with regard to their natural three-dimensional (3D) microenvironment cell reaction to mechanical stimuli during emigrating from a 3D spheroid culture is still unclear. This study aims to provide a deeper understanding of the reaction profile of anterior cruciate ligament (ACL)-derived fibroblasts exposed to cyclic uniaxial strain in two-dimensional (2D) monolayer culture and during emigration from 3D spheroids with respect to cell survival, cell and cytoskeletal orientation, distribution, and expression profile. Monolayers and spheroids were cultured in crosslinked polydimethyl siloxane (PDMS) elastomeric chambers and uniaxially stretched (14% at 0.3 Hz) for 48 h. Cell vitality, their distribution, nuclear shape, stress fiber orientation, focal adhesions, proliferation, expression of ECM components such as sulfated glycosaminoglycans, collagen type I, decorin, tenascin C and cell-cell communication-related gap junctional connexin (CXN) 43, tendon-related markers Mohawk and tenomodulin (myodulin) were analyzed. In contrast to unstretched cells, stretched fibroblasts showed elongation of stress fibers, cell and cytoskeletal alignment perpendicular to strain direction, less rounded cell nuclei, increased numbers of focal adhesions, proliferation, amplified CXN43, and main ECM component expression in both cultures. The applied cyclic stretch protocol evoked an anabolic response and enhanced tendon-related marker expression in ACL-derived fibroblasts emigrating from 3D spheroids and seems also promising to support in future tissue formation in ACL scaffolds seeded in vitro with spheroids.
Collapse
Affiliation(s)
- Clemens Gögele
- Institute of Anatomy and Cell Biology, Paracelsus Medical University, Prof.-Ernst-Nathan Str. 1, 90419 Nuremberg and Salzburg, Nuremberg, Germany
- Department of Biosciences, Paris Lodron University Salzburg, Hellbrunnerstr. 34, 5020 Salzburg, Austria
| | - Christina Hoffmann
- Institute of Biological Information Processing: IBI-2, Forschungszentrum Jülich, 52425 Jülich, Germany
| | - Jens Konrad
- Institute of Biological Information Processing: IBI-2, Forschungszentrum Jülich, 52425 Jülich, Germany
| | - Rudolf Merkel
- Institute of Biological Information Processing: IBI-2, Forschungszentrum Jülich, 52425 Jülich, Germany
| | - Silke Schwarz
- Institute of Anatomy and Cell Biology, Paracelsus Medical University, Prof.-Ernst-Nathan Str. 1, 90419 Nuremberg and Salzburg, Nuremberg, Germany
| | - Mersedeh Tohidnezhad
- Department of Anatomy and Cell Biology, RWTH Aachen University, Wendlingweg 2, 52074 Aachen, Germany
| | - Bernd Hoffmann
- Institute of Biological Information Processing: IBI-2, Forschungszentrum Jülich, 52425 Jülich, Germany
| | - Gundula Gesine Schulze-Tanzil
- Institute of Anatomy and Cell Biology, Paracelsus Medical University, Prof.-Ernst-Nathan Str. 1, 90419 Nuremberg and Salzburg, Nuremberg, Germany
| |
Collapse
|
7
|
Doulgkeroglou MN, Di Nubila A, Niessing B, König N, Schmitt RH, Damen J, Szilvassy SJ, Chang W, Csontos L, Louis S, Kugelmeier P, Ronfard V, Bayon Y, Zeugolis DI. Automation, Monitoring, and Standardization of Cell Product Manufacturing. Front Bioeng Biotechnol 2020; 8:811. [PMID: 32766229 PMCID: PMC7381146 DOI: 10.3389/fbioe.2020.00811] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Accepted: 06/23/2020] [Indexed: 12/18/2022] Open
Abstract
Although regenerative medicine products are at the forefront of scientific research, technological innovation, and clinical translation, their reproducibility and large-scale production are compromised by automation, monitoring, and standardization issues. To overcome these limitations, new technologies at software (e.g., algorithms and artificial intelligence models, combined with imaging software and machine learning techniques) and hardware (e.g., automated liquid handling, automated cell expansion bioreactor systems, automated colony-forming unit counting and characterization units, and scalable cell culture plates) level are under intense investigation. Automation, monitoring and standardization should be considered at the early stages of the developmental cycle of cell products to deliver more robust and effective therapies and treatment plans to the bedside, reducing healthcare expenditure and improving services and patient care.
Collapse
Affiliation(s)
- Meletios-Nikolaos Doulgkeroglou
- Regenerative, Modular & Developmental Engineering Laboratory, National University of Ireland Galway, Galway, Ireland.,Science Foundation Ireland, Centre for Research in Medical Devices, National University of Ireland Galway, Galway, Ireland
| | - Alessia Di Nubila
- Regenerative, Modular & Developmental Engineering Laboratory, National University of Ireland Galway, Galway, Ireland.,Science Foundation Ireland, Centre for Research in Medical Devices, National University of Ireland Galway, Galway, Ireland
| | | | - Niels König
- Fraunhofer Institute for Production Technology, Aachen, Germany
| | - Robert H Schmitt
- Production Engineering Cluster, RWTH Aachen University, Aachen, Germany
| | - Jackie Damen
- STEMCELL Technologies Inc., Vancouver, BC, Canada
| | | | - Wing Chang
- STEMCELL Technologies Ltd., Cambridge, United Kingdom
| | - Lynn Csontos
- STEMCELL Technologies Ltd., Cambridge, United Kingdom
| | - Sharon Louis
- STEMCELL Technologies Inc., Vancouver, BC, Canada
| | | | - Vincent Ronfard
- College System of Pharmacy, University of North Texas Health Science Center, Fort Worth, TX, United States.,Cutiss AG, Zurich, Switzerland.,HairClone, Manchester, United Kingdom
| | - Yves Bayon
- Medtronic - Sofradim Production, Trévoux, France
| | - Dimitrios I Zeugolis
- Regenerative, Modular & Developmental Engineering Laboratory, National University of Ireland Galway, Galway, Ireland.,Science Foundation Ireland, Centre for Research in Medical Devices, National University of Ireland Galway, Galway, Ireland
| |
Collapse
|
8
|
Komro J, Gonzales J, Marberry K, Main DC, Cramberg M, Kondrashov P. Fibrocartilaginous metaplasia and neovascularization of the anterior cruciate ligament in patients with osteoarthritis. Clin Anat 2020; 33:899-905. [PMID: 32243680 DOI: 10.1002/ca.23590] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Revised: 03/10/2020] [Accepted: 03/17/2020] [Indexed: 01/01/2023]
Abstract
INTRODUCTION The anterior cruciate ligament (ACL) prevents the anterior translocation and medial rotation of the tibia against the femur. It is typically composed of dense regular connective tissue (DRCT), small amount of loose connective tissue, little vasculature, and few nerve endings. The objective of the current study was to evaluate the details of histological changes in ACLs of patients with clinically diagnosed osteoarthritis (OA). MATERIALS AND METHODS The ACLs of six patients undergoing total knee replacement because of OA (OA group) were compared with 16 normal ACLs from cadavers (control). The ACLs were analyzed for tissue composition and number of blood vessels across the full length and thickness of the ligament. Percentages for areas of DRCT, fibrocartilage, degenerative tissue, and vasculature were calculated. Tissue composition and relative number of blood vessels were compared between groups. RESULTS The proportion of DRCT to non-DRCT was significantly smaller in the OA group than the control group (p < .001); non-DRCT included degenerative connective tissue and fibrocartilage. The number of blood vessels to area was greater in the OA group than the control group (p = .002). Six of control (37.5%) and five of OA ACLs (83%) showed areas of calcification. CONCLUSIONS These results indicate that inflammatory processes contributing to OA in the knee cause changes in the composition of the ACL that lead to destruction of collagen bundles, increased vascularization, calcification, and formation of fibrocartilage-like tissue inside the ligament. These changes make ligament-retaining total knee arthroplasty a less beneficial option for knee repair.
Collapse
Affiliation(s)
- Jack Komro
- Kirksville College of Osteopathic Medicine, A.T. Still University, Kirksville, Missouri, USA
| | - Joshua Gonzales
- Kirksville College of Osteopathic Medicine, A.T. Still University, Kirksville, Missouri, USA
| | - Kevin Marberry
- Department of Surgery, Kirksville College of Osteopathic Medicine, A.T. Still University, Kirksville, Missouri, USA
| | - Donet C Main
- Midwest Bone & Joint Center, PC, Macon, Missouri, USA
| | - Michael Cramberg
- Department of Anatomy, Kirksville College of Osteopathic Medicine, A.T. Still University, Kirksville, Missouri, USA
| | - Peter Kondrashov
- Department of Anatomy, Kirksville College of Osteopathic Medicine, A.T. Still University, Kirksville, Missouri, USA
| |
Collapse
|