1
|
Kureshi S, Mendizabal M, Francis J, Djalilian HR. Conservative Management of Acute Sports-Related Concussions: A Narrative Review. Healthcare (Basel) 2024; 12:289. [PMID: 38338173 PMCID: PMC10855441 DOI: 10.3390/healthcare12030289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 01/09/2024] [Accepted: 01/22/2024] [Indexed: 02/12/2024] Open
Abstract
This review explores the application of the conservative management model for pain to sports-related concussions (SRCs), framing concussions as a distinct form of pain syndrome with a pathophysiological foundation in central sensitization. Drawing parallels with proven pain management models, we underscore the significance of a proactive approach to concussion management. Recognizing concussions as a pain syndrome allows for the tailoring of interventions in alignment with conservative principles. This review first covers the epidemiology and controversies surrounding prolonged concussion recovery and persistent post-concussion symptoms (PPCS). Next, the pathophysiology of concussions is presented within the central sensitization framework, emphasizing the need for early intervention to mitigate the neuroplastic changes that lead to heightened pain sensitivity. Five components of the central sensitization process specific to concussion injuries are highlighted as targets for conservative interventions in the acute period: peripheral sensitization, cerebral metabolic dysfunction, neuroinflammation, glymphatic system dysfunction, and pain catastrophizing. These proactive interventions are emphasized as pivotal in accelerating concussion recovery and reducing the risk of prolonged symptoms and PPCS, in line with the philosophy of conservative management.
Collapse
Affiliation(s)
- Sohaib Kureshi
- Neurosurgical Medical Clinic, San Diego, CA 92111, USA
- TBI Virtual, San Diego, CA 92111, USA
| | | | | | - Hamid R. Djalilian
- TBI Virtual, San Diego, CA 92111, USA
- Departments of Otolaryngology, Neurological Surgery, and Biomedical Engineering, University of California, Irvine, CA 92697, USA
| |
Collapse
|
2
|
Sanchez-Molano J, Blaya MO, Padgett KR, Moreno WJ, Zhao W, Dietrich WD, Bramlett HM. Multimodal magnetic resonance imaging after experimental moderate and severe traumatic brain injury: A longitudinal correlative assessment of structural and cerebral blood flow changes. PLoS One 2023; 18:e0289786. [PMID: 37549175 PMCID: PMC10406285 DOI: 10.1371/journal.pone.0289786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Accepted: 07/25/2023] [Indexed: 08/09/2023] Open
Abstract
Traumatic brain injury (TBI) is a worldwide problem that results in death or disability for millions of people every year. Progressive neurological complications and long-term impairment can significantly disrupt quality of life. We demonstrated the feasibility of multiple magnetic resonance imaging (MRI) modalities to investigate and predict aberrant changes and progressive atrophy of gray and white matter tissue at several acute and chronic time points after moderate and severe parasagittal fluid percussion TBI. T2-weighted imaging, diffusion tensor imaging (DTI), and perfusion weighted imaging (PWI) were performed. Adult Sprague-Dawley rats were imaged sequentially on days 3, 14, and 1, 4, 6, 8, and 12 months following surgery. TBI caused dynamic white and gray matter alterations with significant differences in DTI values and injury-induced alterations in cerebral blood flow (CBF) as measured by PWI. Regional abnormalities after TBI were observed in T2-weighted images that showed hyperintense cortical lesions and significant cerebral atrophy in these hyperintense areas 1 year after TBI. Temporal DTI values indicated significant injury-induced changes in anisotropy in major white matter tracts, the corpus callosum and external capsule, and in gray matter, the hippocampus and cortex, at both early and chronic time points. These alterations were primarily injury-severity dependent with severe TBI exhibiting a greater degree of change relative to uninjured controls. PWI evaluating CBF revealed sustained global reductions in the cortex and in the hippocampus at most time points in an injury-independent manner. We next sought to investigate prognostic correlations across MRI metrics, timepoints, and cerebral pathology, and found that diffusion abnormalities and reductions in CBF significantly correlated with specific vulnerable structures at multiple time points, as well as with the degree of cerebral atrophy observed 1 year after TBI. This study further supports using DTI and PWI as a means of prognostic imaging for progressive structural changes after TBI and emphasizes the progressive nature of TBI damage.
Collapse
Affiliation(s)
- Juliana Sanchez-Molano
- Department of Neurological Surgery, The Miami Project to Cure Paralysis, University of Miami Miller School of Medicine, Miami, Florida, United States of America
| | - Meghan O. Blaya
- Department of Neurological Surgery, The Miami Project to Cure Paralysis, University of Miami Miller School of Medicine, Miami, Florida, United States of America
| | - Kyle R. Padgett
- Department of Radiation Oncology, University of Miami Miller School of Medicine, Miami, Florida, United States of America
| | - William J. Moreno
- Department of Neurological Surgery, The Miami Project to Cure Paralysis, University of Miami Miller School of Medicine, Miami, Florida, United States of America
| | - Weizhao Zhao
- Department of Biomedical Engineering, University of Miami Miller School of Medicine, Miami, Florida, United States of America
| | - W. Dalton Dietrich
- Department of Neurological Surgery, The Miami Project to Cure Paralysis, University of Miami Miller School of Medicine, Miami, Florida, United States of America
| | - Helen M. Bramlett
- Department of Neurological Surgery, The Miami Project to Cure Paralysis, University of Miami Miller School of Medicine, Miami, Florida, United States of America
- Bruce W. Carter Department of Veterans Affairs Medical Center, Miami, Florida, United States of America
| |
Collapse
|
3
|
Pinky NN, Debert CT, Dukelow SP, Benson BW, Harris AD, Yeates KO, Emery CA, Goodyear BG. Multimodal magnetic resonance imaging of youth sport-related concussion reveals acute changes in the cerebellum, basal ganglia, and corpus callosum that resolve with recovery. Front Hum Neurosci 2022; 16:976013. [PMID: 36337852 PMCID: PMC9626521 DOI: 10.3389/fnhum.2022.976013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Accepted: 09/23/2022] [Indexed: 11/28/2022] Open
Abstract
Magnetic resonance imaging (MRI) can provide a number of measurements relevant to sport-related concussion (SRC) symptoms; however, most studies to date have used a single MRI modality and whole-brain exploratory analyses in attempts to localize concussion injury. This has resulted in highly variable findings across studies due to wide ranging symptomology, severity and nature of injury within studies. A multimodal MRI, symptom-guided region-of-interest (ROI) approach is likely to yield more consistent results. The functions of the cerebellum and basal ganglia transcend many common concussion symptoms, and thus these regions, plus the white matter tracts that connect or project from them, constitute plausible ROIs for MRI analysis. We performed diffusion tensor imaging (DTI), resting-state functional MRI, quantitative susceptibility mapping (QSM), and cerebral blood flow (CBF) imaging using arterial spin labeling (ASL), in youth aged 12-18 years following SRC, with a focus on the cerebellum, basal ganglia and white matter tracts. Compared to controls similar in age, sex and sport (N = 20), recent SRC youth (N = 29; MRI at 8 ± 3 days post injury) exhibited increased susceptibility in the cerebellum (p = 0.032), decreased functional connectivity between the caudate and each of the pallidum (p = 0.035) and thalamus (p = 0.021), and decreased diffusivity in the mid-posterior corpus callosum (p < 0.038); no changes were observed in recovered asymptomatic youth (N = 16; 41 ± 16 days post injury). For recent symptomatic-only SRC youth (N = 24), symptom severity was associated with increased susceptibility in the superior cerebellar peduncles (p = 0.011) and reduced activity in the cerebellum (p = 0.013). Fewer days between injury and MRI were associated with reduced cerebellar-parietal functional connectivity (p < 0.014), reduced activity of the pallidum (p = 0.002), increased CBF in the caudate (p = 0.005), and reduced diffusivity in the central corpus callosum (p < 0.05). Youth SRC is associated with acute cerebellar inflammation accompanied by reduced cerebellar activity and cerebellar-parietal connectivity, as well as structural changes of the middle regions of the corpus callosum accompanied by functional changes of the caudate, all of which resolve with recovery. Early MRI post-injury is important to establish objective MRI-based indicators for concussion diagnosis, recovery assessment and prediction of outcome.
Collapse
Affiliation(s)
- Najratun Nayem Pinky
- Department of Biomedical Engineering, University of Calgary, Calgary, AB, Canada
| | - Chantel T. Debert
- Department of Clinical Neurosciences, University of Calgary, Calgary, AB, Canada
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada
| | - Sean P. Dukelow
- Department of Clinical Neurosciences, University of Calgary, Calgary, AB, Canada
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada
| | - Brian W. Benson
- Department of Clinical Neurosciences, University of Calgary, Calgary, AB, Canada
- Canadian Sport Institute Calgary, University of Calgary, Calgary, AB, Canada
- Benson Concussion Institute, University of Calgary, Calgary, AB, Canada
| | - Ashley D. Harris
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada
- Department of Radiology, University of Calgary, Calgary, AB, Canada
- Alberta Children’s Hospital Research Institute, University of Calgary, Calgary, AB, Canada
| | - Keith O. Yeates
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada
- Alberta Children’s Hospital Research Institute, University of Calgary, Calgary, AB, Canada
- Department of Psychology, University of Calgary, Calgary, AB, Canada
| | - Carolyn A. Emery
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada
- Alberta Children’s Hospital Research Institute, University of Calgary, Calgary, AB, Canada
- Department of Pediatrics, University of Calgary, Calgary, AB, Canada
- Department of Community Health Sciences, University of Calgary, Calgary, AB, Canada
- Sports Injury Prevention Research Centre, University of Calgary, Calgary, AB, Canada
| | - Bradley G. Goodyear
- Department of Clinical Neurosciences, University of Calgary, Calgary, AB, Canada
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada
- Department of Radiology, University of Calgary, Calgary, AB, Canada
- Department of Psychiatry, University of Calgary, Calgary, AB, Canada
- Seaman Family MR Research Centre, University of Calgary, Calgary, AB, Canada
- *Correspondence: Bradley G. Goodyear,
| |
Collapse
|