1
|
Martella G. Molecular Mechanisms of Synaptic Plasticity 2.0: Dynamic Changes in Neurons Functions, Physiological and Pathological Process. Int J Mol Sci 2023; 24:12685. [PMID: 37628862 PMCID: PMC10454448 DOI: 10.3390/ijms241612685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 08/07/2023] [Indexed: 08/27/2023] Open
Abstract
Due to the success of the first Special Issue on synaptic plasticity, I endeavored to promote a new Special Issue with an emphasis on dynamic changes in neuronal functions and physiological and pathological processes [...].
Collapse
Affiliation(s)
- Giuseppina Martella
- Laboratory of Neurophysiology and Plasticity, IRCCS Fondazione Santa Lucia, 00143 Rome, Italy; or
- Department of Humanistic Sciences, Faculty of Motor Sciences, Pegaso University, 80143 Naples, Italy
| |
Collapse
|
2
|
Martella G. Molecular Mechanisms of Synaptic Plasticity: Dynamic Changes in Neuron Functions. Int J Mol Sci 2023; 24:12567. [PMID: 37628751 PMCID: PMC10454657 DOI: 10.3390/ijms241612567] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 08/07/2023] [Indexed: 08/27/2023] Open
Abstract
The human brain has hundreds of billions of neurons and at least 7 million dendrites have been hypothesized to exist for each neuron, with over 100 trillion neuron-neuron, neuron-muscle, and neuron-endocrine cell synapses [...].
Collapse
Affiliation(s)
- Giuseppina Martella
- Laboratory of Neurophysiology and Plasticity, IRCCS Fondazione Santa Lucia, 00143 Rome, Italy;
- Department of Human Sciences, Faculty of Umanities Educations and Sports, Pegaso University, 80143 Naples, Italy
| |
Collapse
|
3
|
Martínez-Torres S, Bergadà-Martínez A, Ortega JE, Galera-López L, Hervera A, de Los Reyes-Ramírez L, Ortega-Álvaro A, Remmers F, Muñoz-Moreno E, Soria G, Del Río JA, Lutz B, Ruíz-Ortega JÁ, Meana JJ, Maldonado R, Ozaita A. Peripheral CB1 receptor blockade acts as a memory enhancer through a noradrenergic mechanism. Neuropsychopharmacology 2023; 48:341-350. [PMID: 36088492 PMCID: PMC9750989 DOI: 10.1038/s41386-022-01436-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 07/25/2022] [Accepted: 08/16/2022] [Indexed: 12/26/2022]
Abstract
Peripheral inputs continuously shape brain function and can influence memory acquisition, but the underlying mechanisms have not been fully understood. Cannabinoid type-1 receptor (CB1R) is a well-recognized player in memory performance, and its systemic modulation significantly influences memory function. By assessing low arousal/non-emotional recognition memory in mice, we found a relevant role of peripheral CB1R in memory persistence. Indeed, the peripherally-restricted CB1R specific antagonist AM6545 showed significant mnemonic effects that were occluded in adrenalectomized mice, and after peripheral adrenergic blockade. AM6545 also transiently impaired contextual fear memory extinction. Vagus nerve chemogenetic inhibition reduced AM6545-induced mnemonic effect. Genetic CB1R deletion in dopamine β-hydroxylase-expressing cells enhanced recognition memory persistence. These observations support a role of peripheral CB1R modulating adrenergic tone relevant for cognition. Furthermore, AM6545 acutely improved brain connectivity and enhanced extracellular hippocampal norepinephrine. In agreement, intra-hippocampal β-adrenergic blockade prevented AM6545 mnemonic effects. Altogether, we disclose a novel CB1R-dependent peripheral mechanism with implications relevant for lengthening the duration of non-emotional memory.
Collapse
Affiliation(s)
- Sara Martínez-Torres
- Laboratory of Neuropharmacology-NeuroPhar, Department of Medicine and Life Sciences, Universitat Pompeu Fabra, Barcelona, Spain
- Molecular and Cellular Neurobiotechnology, Institute for Bioengineering of Catalonia. Parc Científic de Barcelona, Barcelona, Spain
- Department of Cell Biology, Physiology and Immunology, University of Barcelona, Barcelona, Spain
- Network Centre of Biomedical Research of Neurodegenerative Diseases (CIBERNED), Institute of Health Carlos III, Ministry of Economy and Competitiveness, Madrid, Spain
- Institute of Neuroscience, University of Barcelona, Barcelona, Spain
| | - Araceli Bergadà-Martínez
- Laboratory of Neuropharmacology-NeuroPhar, Department of Medicine and Life Sciences, Universitat Pompeu Fabra, Barcelona, Spain
| | - Jorge E Ortega
- Department of Pharmacology, University of the Basque Country UPV/EHU, Leioa, Spain
- Centro de Investigación Biomédica en Red de Salud Mental CIBERSAM, Spain; Biocruces Bizkaia Health Research Institute, Barakaldo, Spain
| | - Lorena Galera-López
- Laboratory of Neuropharmacology-NeuroPhar, Department of Medicine and Life Sciences, Universitat Pompeu Fabra, Barcelona, Spain
| | - Arnau Hervera
- Molecular and Cellular Neurobiotechnology, Institute for Bioengineering of Catalonia. Parc Científic de Barcelona, Barcelona, Spain
- Department of Cell Biology, Physiology and Immunology, University of Barcelona, Barcelona, Spain
- Network Centre of Biomedical Research of Neurodegenerative Diseases (CIBERNED), Institute of Health Carlos III, Ministry of Economy and Competitiveness, Madrid, Spain
- Institute of Neuroscience, University of Barcelona, Barcelona, Spain
| | - Lucía de Los Reyes-Ramírez
- Laboratory of Neuropharmacology-NeuroPhar, Department of Medicine and Life Sciences, Universitat Pompeu Fabra, Barcelona, Spain
| | - Antonio Ortega-Álvaro
- Laboratory of Neuropharmacology-NeuroPhar, Department of Medicine and Life Sciences, Universitat Pompeu Fabra, Barcelona, Spain
| | - Floortje Remmers
- Institute of Physiological Chemistry, University Medical Center of the Johannes Gutenberg University of Mainz, Mainz, Germany
| | - Emma Muñoz-Moreno
- Experimental 7T MRI Unit, Magnetic Resonance Imaging Core Facility (IDIBAPS), Barcelona, Spain
| | - Guadalupe Soria
- Experimental 7T MRI Unit, Magnetic Resonance Imaging Core Facility (IDIBAPS), Barcelona, Spain
- Laboratory of Surgical Neuroanatomy, Faculty of Medicine and Health Sciences, Institute of Neurosciencies, University of Barcelona, Barcelona, Spain
| | - José Antonio Del Río
- Molecular and Cellular Neurobiotechnology, Institute for Bioengineering of Catalonia. Parc Científic de Barcelona, Barcelona, Spain
- Department of Cell Biology, Physiology and Immunology, University of Barcelona, Barcelona, Spain
- Network Centre of Biomedical Research of Neurodegenerative Diseases (CIBERNED), Institute of Health Carlos III, Ministry of Economy and Competitiveness, Madrid, Spain
- Institute of Neuroscience, University of Barcelona, Barcelona, Spain
| | - Beat Lutz
- Institute of Physiological Chemistry, University Medical Center of the Johannes Gutenberg University of Mainz, Mainz, Germany
- Leibniz Institute for Resilience Research (LIR), Mainz, Germany
| | | | - J Javier Meana
- Department of Pharmacology, University of the Basque Country UPV/EHU, Leioa, Spain
- Centro de Investigación Biomédica en Red de Salud Mental CIBERSAM, Spain; Biocruces Bizkaia Health Research Institute, Barakaldo, Spain
| | - Rafael Maldonado
- Laboratory of Neuropharmacology-NeuroPhar, Department of Medicine and Life Sciences, Universitat Pompeu Fabra, Barcelona, Spain.
- IMIM Hospital del Mar Research Institute, Barcelona, Spain.
| | - Andrés Ozaita
- Laboratory of Neuropharmacology-NeuroPhar, Department of Medicine and Life Sciences, Universitat Pompeu Fabra, Barcelona, Spain.
- IMIM Hospital del Mar Research Institute, Barcelona, Spain.
| |
Collapse
|
4
|
Memories are not written in stone: Re-writing fear memories by means of non-invasive brain stimulation and optogenetic manipulations. Neurosci Biobehav Rev 2021; 127:334-352. [PMID: 33964307 DOI: 10.1016/j.neubiorev.2021.04.036] [Citation(s) in RCA: 58] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 03/29/2021] [Accepted: 04/29/2021] [Indexed: 11/21/2022]
Abstract
The acquisition of fear associative memory requires brain processes of coordinated neural activity within the amygdala, prefrontal cortex (PFC), hippocampus, thalamus and brainstem. After fear consolidation, a suppression of fear memory in the absence of danger is crucial to permit adaptive coping behavior. Acquisition and maintenance of fear extinction critically depend on amygdala-PFC projections. The robust correspondence between the brain networks encompassed cortical and subcortical hubs involved into fear processing in humans and in other species underscores the potential utility of comparing the modulation of brain circuitry in humans and animals, as a crucial step to inform the comprehension of fear mechanisms and the development of treatments for fear-related disorders. The present review is aimed at providing a comprehensive description of the literature on recent clinical and experimental researches regarding the noninvasive brain stimulation and optogenetics. These innovative manipulations applied over specific hubs of fear matrix during fear acquisition, consolidation, reconsolidation and extinction allow an accurate characterization of specific brain circuits and their peculiar interaction within the specific fear processing.
Collapse
|
5
|
Tu Y, Wu W, Guo Y, Lu F, Li X, Xu D, Zou D, Tu Y, Chai Y, He L. Up-regulation of hsa-miR-221-3p induced by UVB affects proliferation and apoptosis of keratinocytes via Bcl-xL/Bax pathway. PHOTODERMATOLOGY PHOTOIMMUNOLOGY & PHOTOMEDICINE 2021; 37:269-277. [PMID: 33351232 DOI: 10.1111/phpp.12647] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Accepted: 12/19/2020] [Indexed: 11/28/2022]
Abstract
BACKGROUND Chronic actinic dermatitis (CAD) is a photoallergic skin disease with abnormal hyperplasia. At present, the mechanism of abnormal proliferation is not clear. OBJECTIVE To explore possible mechanism of CAD proliferative lesions. METHODS Immunohistochemistry (IHC) assay and small RNA sequencing were carried out. Quantitative real-time PCR (qRT-PCR) analysis was performed to evaluate expression levels of hsa-miR-221-3p and FOS. The interaction between hsa-miR-221-3p and FOS was identified by dual-luciferase reporter assay. Expression of hsa-miR-221-3p also was detected by qRT-PCR after UVB irradiation. Influences of hsa-miR-221-3p and FOS on cell viability and apoptosis were assessed through a series of functional experiments and rescue experiments. Western blot analysis was used to detect protein expression of fos, Bax, Bcl-xL, and caspase-3. RESULTS Patients with CAD had marked epidermal hyperplasia. The expression of hsa-miR-221-3p was up-regulated in CAD while FOS was significantly down-regulated. Dual-luciferase reporter assay confirmed that hsa-miR-221-3p targeted FOS 3'UTR. Hsa-miR-221-3p induced by UVB ranged from 0 to 30 mJ. Moreover, hsa-miR-221-3p overexpression or FOS knockdown promoted cell proliferation and reduced cell apoptosis. Western blot showed that hsa-miR-221-3p negatively regulated fos, which regulated Bcl-xL/Bax. Cell proliferation caused by hsa-miR-221-3p overexpression or FOS knockdown could be reversed by Bcl-xL inhibitor. CONCLUSION Hsa-miR-221-3p induced by UVB targeted FOS 3'UTR, which played an important role in regulating proliferation and apoptosis of keratinocytes via Bcl-xL/Bax pathway; this may provide a new insight for CAD proliferative lesions.
Collapse
Affiliation(s)
- Yunhua Tu
- Department of Dermatology, First Affiliated Hospital of Kunming Medical University, Kunming, China.,Department of Dermatology, The Second People's Hospital of Guiyang, Guizhou, China
| | - Wenjuan Wu
- Department of Dermatology, First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Yanni Guo
- Department of Dermatology, The Second Affiliated Hospital of Fujian Medical University, Fujian, China
| | - Fengyan Lu
- Department of Dermatology, The First People's Hospital of Qujing, Qujing, China
| | - Xing Li
- Department of Dermatology, People's Hospital of Chuxiong Yi Autonomous Prefecture, Chuxiong, China
| | - Dan Xu
- Department of Dermatology, First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Dandan Zou
- Department of Dermatology, First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Ying Tu
- Department of Dermatology, First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Yanjie Chai
- Department of Dermatology, First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Li He
- Department of Dermatology, First Affiliated Hospital of Kunming Medical University, Kunming, China
| |
Collapse
|