1
|
Li Y, Lv Y, Cheng P, Jiang Y, Deng C, Wang Y, Wen Z, Xie J, Chen J, Shi Q, Du H. Expression Profiles of Housekeeping Genes and Tissue-Specific Genes in Different Tissues of Chinese Sturgeon ( Acipenser sinensis). Animals (Basel) 2024; 14:3357. [PMID: 39682323 DOI: 10.3390/ani14233357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 11/08/2024] [Accepted: 11/19/2024] [Indexed: 12/18/2024] Open
Abstract
The Chinese sturgeon (Acipenser sinensis) is an ancient, complex autooctoploid fish species that is currently facing conservation challenges throughout its distribution. To comprehensively characterize the expression profiles of genes and their associated biological functions across different tissues, we performed a transcriptome-scale gene expression analysis, focusing on housekeeping genes (HKGs), tissue-specific genes (TSGs), and co-expressed gene modules in various tissues. We collected eleven tissues to establish a transcriptomic repository, including data from Pacific Biosciences isoform sequencing (PacBio Iso-seq) and RNA sequencing (RNA-seq), and then obtained 25,434 full-length transcripts, with lengths from 307 to 9515 bp and an N50 of 3195 bp. Additionally, 20,887 transcripts were effectively identified and classified as known homologous genes. We also identified 787 HKGs, and the number of TSGs varied from 25 in the liver to 2073 in the brain. TSG functions were mainly enriched in certain signaling pathways involved in specific physiological processes, such as voltage-gated potassium channel activity, nervous system development, glial cell differentiation in the brain, and leukocyte transendothelial migration in the spleen and pronephros. Meanwhile, HKGs were highly enriched in some pathways involved in ribosome biogenesis, proteasome core complex, spliceosome activation, elongation factor activity, and translation initiation factor activity, which have been strongly implicated in fundamental biological tissue functions. We also predicted five modules, with eight hub genes in the brown module, most of which (such as rps3a, rps7, rps23, rpl11, rpl17, rpl27, and rpl28) were linked to ribosome biogenesis. Our results offer insights into ribosomal proteins that are indispensable in ribosome biogenesis and protein synthesis, which are crucial in various cell developmental processes and neural development of Chinese sturgeon. Overall, these findings will not only advance the understanding of fundamental biological functions in Chinese sturgeon but also supply a valuable genetic resource for characterizing this extremely important species.
Collapse
Affiliation(s)
- Yanping Li
- Key Laboratory of Freshwater Biodiversity Conservation, Ministry of Agriculture and Rural Affairs of China, Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan 430223, China
- Key Laboratory of Sichuan Province for Fishes Conservation and Utilization in the Upper Reaches of the Yangtze River, College of Life Science, Neijiang Normal University, Neijiang 641100, China
| | - Yunyun Lv
- Key Laboratory of Sichuan Province for Fishes Conservation and Utilization in the Upper Reaches of the Yangtze River, College of Life Science, Neijiang Normal University, Neijiang 641100, China
| | - Peilin Cheng
- Key Laboratory of Freshwater Biodiversity Conservation, Ministry of Agriculture and Rural Affairs of China, Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan 430223, China
| | - Ying Jiang
- Key Laboratory of Sichuan Province for Fishes Conservation and Utilization in the Upper Reaches of the Yangtze River, College of Life Science, Neijiang Normal University, Neijiang 641100, China
| | - Cao Deng
- Department of Bioinformatics, DNA Stories Bioinformatics Center, Chengdu 610000, China
| | - Yongming Wang
- Key Laboratory of Sichuan Province for Fishes Conservation and Utilization in the Upper Reaches of the Yangtze River, College of Life Science, Neijiang Normal University, Neijiang 641100, China
| | - Zhengyong Wen
- Key Laboratory of Sichuan Province for Fishes Conservation and Utilization in the Upper Reaches of the Yangtze River, College of Life Science, Neijiang Normal University, Neijiang 641100, China
| | - Jiang Xie
- Key Laboratory of Sichuan Province for Fishes Conservation and Utilization in the Upper Reaches of the Yangtze River, College of Life Science, Neijiang Normal University, Neijiang 641100, China
| | - Jieming Chen
- Shenzhen Key Lab of Marine Genomics, BGI Academy of Marine Sciences, BGI Marine, Shenzhen 518081, China
| | - Qiong Shi
- Key Laboratory of Sichuan Province for Fishes Conservation and Utilization in the Upper Reaches of the Yangtze River, College of Life Science, Neijiang Normal University, Neijiang 641100, China
- Shenzhen Key Lab of Marine Genomics, BGI Academy of Marine Sciences, BGI Marine, Shenzhen 518081, China
- Laboratory of Aquatic Genomics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518057, China
| | - Hao Du
- Key Laboratory of Freshwater Biodiversity Conservation, Ministry of Agriculture and Rural Affairs of China, Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan 430223, China
| |
Collapse
|
2
|
Zhang K, Huang X, Wang C, Xu X, Xu X, Dong X, Xiao Q, Bai J, Zhou Y, Liu Z, Deng X, Tang Y, Li S, Hu E, Peng W, Xiong L, Qin Q, Liu S. Unveiling potential sex-determining genes and sex-specific markers in autotetraploid Carassius auratus. SCIENCE CHINA. LIFE SCIENCES 2024; 67:2444-2458. [PMID: 39136860 DOI: 10.1007/s11427-023-2694-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Accepted: 07/28/2024] [Indexed: 10/22/2024]
Abstract
Autotetraploid Carassius auratus is a stable hereditary autotetraploid fish resulting from the hybridization of Carassius auratus red var. (RCC, ♀) × Megalobrama amblycephala (BSB, ♂), containing four sets of RCC chromosomes. However, the molecular mechanism underlying the determination of sex in this species remains largely unknown. Currently, there lacks a full understanding of the molecular mechanisms governing sex determination and specific molecular markers to differentiate sex in this species. In this study, 25,801,677 SNPs (Single-nucleotide polymorphism) and 6,210,306 Indels (insertion-deletion) were obtained from whole-genome resequencing of 100 individuals (including 50 female and 50 male). Further identification confirmed the candidate chromosomes as Chr46B, with the sex-determining region located at Chr46B: 22,500,000-22,800,000 bp. Based on the male-specific insertion (26 bp) within the candidate sex-determining region, a pair of sex-specific molecular markers has been identified. In addition, based on the screening of candidate sex-determining region genes and RT-qPCR validation analysis, ADAM10, AQP9 and tc1a were identified as candidate sex-determining genes. These findings provide a robust foundation for investigating sex determination mechanisms in fish, the evolution of sex chromosomes, and the development of monosex populations.
Collapse
Affiliation(s)
- Kun Zhang
- State Key Laboratory of Developmental Biology of Freshwater Fish, Engineering Research Center of Polyploid Fish Reproduction and Breeding of the State Education Ministry, College of Life Sciences, Hunan Normal University, Changsha, 410081, China
| | - Xu Huang
- State Key Laboratory of Developmental Biology of Freshwater Fish, Engineering Research Center of Polyploid Fish Reproduction and Breeding of the State Education Ministry, College of Life Sciences, Hunan Normal University, Changsha, 410081, China
| | - Chongqing Wang
- State Key Laboratory of Developmental Biology of Freshwater Fish, Engineering Research Center of Polyploid Fish Reproduction and Breeding of the State Education Ministry, College of Life Sciences, Hunan Normal University, Changsha, 410081, China
| | - Xidan Xu
- State Key Laboratory of Developmental Biology of Freshwater Fish, Engineering Research Center of Polyploid Fish Reproduction and Breeding of the State Education Ministry, College of Life Sciences, Hunan Normal University, Changsha, 410081, China
| | - Xiaowei Xu
- State Key Laboratory of Developmental Biology of Freshwater Fish, Engineering Research Center of Polyploid Fish Reproduction and Breeding of the State Education Ministry, College of Life Sciences, Hunan Normal University, Changsha, 410081, China
| | - Xiaoping Dong
- State Key Laboratory of Developmental Biology of Freshwater Fish, Engineering Research Center of Polyploid Fish Reproduction and Breeding of the State Education Ministry, College of Life Sciences, Hunan Normal University, Changsha, 410081, China
| | - Qingwen Xiao
- State Key Laboratory of Developmental Biology of Freshwater Fish, Engineering Research Center of Polyploid Fish Reproduction and Breeding of the State Education Ministry, College of Life Sciences, Hunan Normal University, Changsha, 410081, China
| | - Jinhai Bai
- State Key Laboratory of Developmental Biology of Freshwater Fish, Engineering Research Center of Polyploid Fish Reproduction and Breeding of the State Education Ministry, College of Life Sciences, Hunan Normal University, Changsha, 410081, China
| | - Yue Zhou
- State Key Laboratory of Developmental Biology of Freshwater Fish, Engineering Research Center of Polyploid Fish Reproduction and Breeding of the State Education Ministry, College of Life Sciences, Hunan Normal University, Changsha, 410081, China
| | - Zhengkun Liu
- State Key Laboratory of Developmental Biology of Freshwater Fish, Engineering Research Center of Polyploid Fish Reproduction and Breeding of the State Education Ministry, College of Life Sciences, Hunan Normal University, Changsha, 410081, China
| | - Xinyi Deng
- State Key Laboratory of Developmental Biology of Freshwater Fish, Engineering Research Center of Polyploid Fish Reproduction and Breeding of the State Education Ministry, College of Life Sciences, Hunan Normal University, Changsha, 410081, China
| | - Yan Tang
- State Key Laboratory of Developmental Biology of Freshwater Fish, Engineering Research Center of Polyploid Fish Reproduction and Breeding of the State Education Ministry, College of Life Sciences, Hunan Normal University, Changsha, 410081, China
| | - Siyang Li
- State Key Laboratory of Developmental Biology of Freshwater Fish, Engineering Research Center of Polyploid Fish Reproduction and Breeding of the State Education Ministry, College of Life Sciences, Hunan Normal University, Changsha, 410081, China
| | - Enkui Hu
- State Key Laboratory of Developmental Biology of Freshwater Fish, Engineering Research Center of Polyploid Fish Reproduction and Breeding of the State Education Ministry, College of Life Sciences, Hunan Normal University, Changsha, 410081, China
| | - Wanjing Peng
- State Key Laboratory of Developmental Biology of Freshwater Fish, Engineering Research Center of Polyploid Fish Reproduction and Breeding of the State Education Ministry, College of Life Sciences, Hunan Normal University, Changsha, 410081, China
| | - Ling Xiong
- State Key Laboratory of Developmental Biology of Freshwater Fish, Engineering Research Center of Polyploid Fish Reproduction and Breeding of the State Education Ministry, College of Life Sciences, Hunan Normal University, Changsha, 410081, China
| | - Qinbo Qin
- State Key Laboratory of Developmental Biology of Freshwater Fish, Engineering Research Center of Polyploid Fish Reproduction and Breeding of the State Education Ministry, College of Life Sciences, Hunan Normal University, Changsha, 410081, China.
- Nansha-South China Agricultural University Fishery Research Institute, Guangzhou, 511457, China.
- Hunan Yuelu Mountain Science and Technology Co., Ltd., for Aquatic Breeding, Changsha, 410081, China.
| | - Shaojun Liu
- State Key Laboratory of Developmental Biology of Freshwater Fish, Engineering Research Center of Polyploid Fish Reproduction and Breeding of the State Education Ministry, College of Life Sciences, Hunan Normal University, Changsha, 410081, China.
| |
Collapse
|
3
|
Wei Y, Shen X, Zhao X, He H, Zhang Y, Zhu Q, Yin H. Circular RNA circRPS19 promotes chicken granulosa cell proliferation and steroid hormone synthesis by interrupting the miR-218-5p/INHBB axis. Theriogenology 2024; 219:103-115. [PMID: 38422566 DOI: 10.1016/j.theriogenology.2024.02.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Revised: 02/22/2024] [Accepted: 02/22/2024] [Indexed: 03/02/2024]
Abstract
Ovarian follicle development is an important physiological activity for females and makes great significance in maintaining female health and reproduction performance. The development of ovarian follicle is mainly affected by the granulosa cells (GCs), whose growth is regulated by a variety of factors. Here, we identified a novel circular RNA (circRNA) derived from the Ribosomal protein S19 (RPS19) gene, named circRPS19, which is differentially expressed during chicken ovarian follicle development. Further explorations identified that circRPS19 promotes GCs proliferation and steroid hormone synthesis. Furthermore, circRPS19 was found to target and regulate miR-218-5p through a competitive manner with endogenous RNA (ceRNA). Functionals investigation revealed that miR-218-5p attenuates GCs proliferation and steroidogenesis, which is opposite to that of circRPS19. In addition, we also confirmed that circRPS19 upregulates the expression of Inhibin beta B subunit (INHBB) by binding with miR-218-5p to facilitate GCs proliferation and steroidogenesis. Overall, this study revealed that circRPS19 regulates GCs development by releasing the repression of miR-218-5p on INHBB, which suggests a novel mechanism in respect to circRNA and miRNA regulation in ovarian follicle development.
Collapse
Affiliation(s)
- Yuanhang Wei
- Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China; Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Xiaoxu Shen
- Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China; Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Xiyu Zhao
- Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China; Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Haorong He
- Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China; Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Yao Zhang
- Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China; Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Qing Zhu
- Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China; Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China.
| | - Huadong Yin
- Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China; Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China.
| |
Collapse
|
4
|
Benedetto A, Robotti E, Belay MH, Ghignone A, Fabbris A, Goggi E, Cerruti S, Manfredi M, Barberis E, Peletto S, Arillo A, Giaccio N, Masini MA, Brandi J, Cecconi D, Marengo E, Brizio P. Multi-Omics Approaches for Freshness Estimation and Detection of Illicit Conservation Treatments in Sea Bass ( Dicentrarchus Labrax): Data Fusion Applications. Int J Mol Sci 2024; 25:1509. [PMID: 38338789 PMCID: PMC10855268 DOI: 10.3390/ijms25031509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 01/18/2024] [Accepted: 01/20/2024] [Indexed: 02/12/2024] Open
Abstract
Fish freshness consists of complex endogenous and exogenous processes; therefore, the use of a few parameters to unravel illicit practices could be insufficient. Moreover, the development of strategies for the identification of such practices based on additives known to prevent and/or delay fish spoilage is still limited. The paper deals with the identification of the effect played by a Cafodos solution on the conservation state of sea bass at both short-term (3 h) and long-term (24 h). Controls and treated samples were characterized by a multi-omic approach involving proteomics, lipidomics, metabolomics, and metagenomics. Different parts of the fish samples were studied (muscle, skin, eye, and gills) and sampled through a non-invasive procedure based on EVA strips functionalized by ionic exchange resins. Data fusion methods were then applied to build models able to discriminate between controls and treated samples and identify the possible markers of the applied treatment. The approach was effective in the identification of the effect played by Cafodos that proved to be different in the short- and long-term and complex, involving proteins, lipids, and small molecules to a different extent.
Collapse
Affiliation(s)
- Alessandro Benedetto
- Istituto Zooprofilattico Sperimentale del Piemonte, Liguria e Valle d’Aosta, Via Bologna 148, 10154 Torino, Italy; (A.B.); (S.P.); (A.A.); (N.G.); (P.B.)
| | - Elisa Robotti
- Department of Sciences and Technological Innovation, University of Piemonte Orientale, Viale Michel 11, 15121 Alessandria, Italy; (M.H.B.); (A.G.); (A.F.); (E.G.); (S.C.); (E.B.); (M.A.M.); (E.M.)
| | - Masho Hilawie Belay
- Department of Sciences and Technological Innovation, University of Piemonte Orientale, Viale Michel 11, 15121 Alessandria, Italy; (M.H.B.); (A.G.); (A.F.); (E.G.); (S.C.); (E.B.); (M.A.M.); (E.M.)
- Department of Chemistry, Mekelle University, Mekelle P.O. Box 231, Ethiopia
| | - Arianna Ghignone
- Department of Sciences and Technological Innovation, University of Piemonte Orientale, Viale Michel 11, 15121 Alessandria, Italy; (M.H.B.); (A.G.); (A.F.); (E.G.); (S.C.); (E.B.); (M.A.M.); (E.M.)
| | - Alessia Fabbris
- Department of Sciences and Technological Innovation, University of Piemonte Orientale, Viale Michel 11, 15121 Alessandria, Italy; (M.H.B.); (A.G.); (A.F.); (E.G.); (S.C.); (E.B.); (M.A.M.); (E.M.)
| | - Eleonora Goggi
- Department of Sciences and Technological Innovation, University of Piemonte Orientale, Viale Michel 11, 15121 Alessandria, Italy; (M.H.B.); (A.G.); (A.F.); (E.G.); (S.C.); (E.B.); (M.A.M.); (E.M.)
| | - Simone Cerruti
- Department of Sciences and Technological Innovation, University of Piemonte Orientale, Viale Michel 11, 15121 Alessandria, Italy; (M.H.B.); (A.G.); (A.F.); (E.G.); (S.C.); (E.B.); (M.A.M.); (E.M.)
| | - Marcello Manfredi
- Department of Translational Medicine, University of Piemonte Orientale, Via Solaroli 17, 28100 Novara, Italy;
| | - Elettra Barberis
- Department of Sciences and Technological Innovation, University of Piemonte Orientale, Viale Michel 11, 15121 Alessandria, Italy; (M.H.B.); (A.G.); (A.F.); (E.G.); (S.C.); (E.B.); (M.A.M.); (E.M.)
| | - Simone Peletto
- Istituto Zooprofilattico Sperimentale del Piemonte, Liguria e Valle d’Aosta, Via Bologna 148, 10154 Torino, Italy; (A.B.); (S.P.); (A.A.); (N.G.); (P.B.)
| | - Alessandra Arillo
- Istituto Zooprofilattico Sperimentale del Piemonte, Liguria e Valle d’Aosta, Via Bologna 148, 10154 Torino, Italy; (A.B.); (S.P.); (A.A.); (N.G.); (P.B.)
| | - Nunzia Giaccio
- Istituto Zooprofilattico Sperimentale del Piemonte, Liguria e Valle d’Aosta, Via Bologna 148, 10154 Torino, Italy; (A.B.); (S.P.); (A.A.); (N.G.); (P.B.)
| | - Maria Angela Masini
- Department of Sciences and Technological Innovation, University of Piemonte Orientale, Viale Michel 11, 15121 Alessandria, Italy; (M.H.B.); (A.G.); (A.F.); (E.G.); (S.C.); (E.B.); (M.A.M.); (E.M.)
| | - Jessica Brandi
- Department of Biotechnology, University of Verona, Strada le Grazie 15, 37134 Verona, Italy; (J.B.); (D.C.)
| | - Daniela Cecconi
- Department of Biotechnology, University of Verona, Strada le Grazie 15, 37134 Verona, Italy; (J.B.); (D.C.)
| | - Emilio Marengo
- Department of Sciences and Technological Innovation, University of Piemonte Orientale, Viale Michel 11, 15121 Alessandria, Italy; (M.H.B.); (A.G.); (A.F.); (E.G.); (S.C.); (E.B.); (M.A.M.); (E.M.)
| | - Paola Brizio
- Istituto Zooprofilattico Sperimentale del Piemonte, Liguria e Valle d’Aosta, Via Bologna 148, 10154 Torino, Italy; (A.B.); (S.P.); (A.A.); (N.G.); (P.B.)
| |
Collapse
|
5
|
Jiang H, Li X, Li Y, Liu X, Zhang S, Li H, Zhang M, Wang L, Yu M, Qiao Z. Molecular and functional characterization of ribosome protein S24 in ovarian development of Macrobrachium nipponense. Int J Biol Macromol 2024; 254:127934. [PMID: 37939777 DOI: 10.1016/j.ijbiomac.2023.127934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 10/21/2023] [Accepted: 11/05/2023] [Indexed: 11/10/2023]
Abstract
Ribosomal proteins (RPs) have mang extraribosomal functions including regulation of ovarian development in some organisms. In order to solve the problem of rapid ovarian maturation in Macrobrachium nipponense aquaculture, this study identified a RPS24 (MnRPS24) gene from M. nipponense, which encodes a protein of ββαβαααα folding structure type. MnRPS24 exhibited the greatest expressions in the female adult stage among the six growth stages, in the ovary among the nine tissues, and in the stage I ovary among the six ovarian development stages. The MnRPS24 protein located in the cytoplasm of oogonia, previtellogenic and early-vitellogenic oocytes, and the follicular cells surrounding the oocytes. The expression of the vitellogenin (MnVg), vitellogenin receptor (MnVgr), cell cycle protein B (MnCyclin B) and cell division cyclin 2 (MnCdc2) genes were increased by recombinant MnRPS24 protein incubation. Conversely, the expression of the Wee1 kinase (MnWee1) gene was decreased. MnRPS24 gene silencing downregulated the expression for MnVg, MnVgr, MnCyclin B and MnCdc2 and upregulated the expression for MnWee1. Furthermore, MnRPS24 gene silencing delayed the vitellogenesis of oocytes, halting the progression of ovarian development. The findings of this research demonstrate that MnRPS24 could potentially function as a stimulator in promoting the development of ovaries in M. nipponense.
Collapse
Affiliation(s)
- Hongxia Jiang
- Engineering Lab of Henan Province for Aquatic Animal Disease Control, Engineering Technology Research Center of Henan Province for Aquatic Animal Cultivation, College of Fisheries, Henan Normal University, Xinxiang, Henan 453007, China.
| | - Xiao Li
- Engineering Lab of Henan Province for Aquatic Animal Disease Control, Engineering Technology Research Center of Henan Province for Aquatic Animal Cultivation, College of Fisheries, Henan Normal University, Xinxiang, Henan 453007, China
| | - Yizheng Li
- Engineering Lab of Henan Province for Aquatic Animal Disease Control, Engineering Technology Research Center of Henan Province for Aquatic Animal Cultivation, College of Fisheries, Henan Normal University, Xinxiang, Henan 453007, China
| | - Xuewei Liu
- Engineering Lab of Henan Province for Aquatic Animal Disease Control, Engineering Technology Research Center of Henan Province for Aquatic Animal Cultivation, College of Fisheries, Henan Normal University, Xinxiang, Henan 453007, China
| | - Shuaishuai Zhang
- Engineering Lab of Henan Province for Aquatic Animal Disease Control, Engineering Technology Research Center of Henan Province for Aquatic Animal Cultivation, College of Fisheries, Henan Normal University, Xinxiang, Henan 453007, China
| | - Huanxin Li
- Engineering Lab of Henan Province for Aquatic Animal Disease Control, Engineering Technology Research Center of Henan Province for Aquatic Animal Cultivation, College of Fisheries, Henan Normal University, Xinxiang, Henan 453007, China
| | - Meng Zhang
- Engineering Lab of Henan Province for Aquatic Animal Disease Control, Engineering Technology Research Center of Henan Province for Aquatic Animal Cultivation, College of Fisheries, Henan Normal University, Xinxiang, Henan 453007, China
| | - Lei Wang
- Engineering Lab of Henan Province for Aquatic Animal Disease Control, Engineering Technology Research Center of Henan Province for Aquatic Animal Cultivation, College of Fisheries, Henan Normal University, Xinxiang, Henan 453007, China
| | - Miao Yu
- Engineering Lab of Henan Province for Aquatic Animal Disease Control, Engineering Technology Research Center of Henan Province for Aquatic Animal Cultivation, College of Fisheries, Henan Normal University, Xinxiang, Henan 453007, China
| | - Zhigang Qiao
- Engineering Lab of Henan Province for Aquatic Animal Disease Control, Engineering Technology Research Center of Henan Province for Aquatic Animal Cultivation, College of Fisheries, Henan Normal University, Xinxiang, Henan 453007, China
| |
Collapse
|
6
|
Xu AF, Molinuevo R, Fazzari E, Tom H, Zhang Z, Menendez J, Casey KM, Ruggero D, Hinck L, Pritchard JK, Barna M. Subfunctionalized expression drives evolutionary retention of ribosomal protein paralogs Rps27 and Rps27l in vertebrates. eLife 2023; 12:e78695. [PMID: 37306301 PMCID: PMC10313321 DOI: 10.7554/elife.78695] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Accepted: 06/09/2023] [Indexed: 06/13/2023] Open
Abstract
The formation of paralogs through gene duplication is a core evolutionary process. For paralogs that encode components of protein complexes such as the ribosome, a central question is whether they encode functionally distinct proteins or whether they exist to maintain appropriate total expression of equivalent proteins. Here, we systematically tested evolutionary models of paralog function using the ribosomal protein paralogs Rps27 (eS27) and Rps27l (eS27L) as a case study. Evolutionary analysis suggests that Rps27 and Rps27l likely arose during whole-genome duplication(s) in a common vertebrate ancestor. We show that Rps27 and Rps27l have inversely correlated mRNA abundance across mouse cell types, with the highest Rps27 in lymphocytes and the highest Rps27l in mammary alveolar cells and hepatocytes. By endogenously tagging the Rps27 and Rps27l proteins, we demonstrate that Rps27- and Rps27l-ribosomes associate preferentially with different transcripts. Furthermore, murine Rps27 and Rps27l loss-of-function alleles are homozygous lethal at different developmental stages. However, strikingly, expressing Rps27 protein from the endogenous Rps27l locus or vice versa completely rescues loss-of-function lethality and yields mice with no detectable deficits. Together, these findings suggest that Rps27 and Rps27l are evolutionarily retained because their subfunctionalized expression patterns render both genes necessary to achieve the requisite total expression of two equivalent proteins across cell types. Our work represents the most in-depth characterization of a mammalian ribosomal protein paralog to date and highlights the importance of considering both protein function and expression when investigating paralogs.
Collapse
Affiliation(s)
- Adele Francis Xu
- Department of Genetics, Stanford UniversityStanfordUnited States
- Medical Scientist Training Program, Stanford School of MedicineStanfordUnited States
| | - Rut Molinuevo
- Department of Molecular, Cell, and Developmental Biology, University of California, Santa CruzSanta CruzUnited States
| | - Elisa Fazzari
- Helen Diller Family Comprehensive Cancer Center, University of California, Los AngelesLos AngelesUnited States
- Department of Cellular and Molecular Pharmacology, University of California, San FranciscoSan FranciscoUnited States
- Department of Urology, University of California, San FranciscoSan FranciscoUnited States
| | - Harrison Tom
- Helen Diller Family Comprehensive Cancer Center, University of California, Los AngelesLos AngelesUnited States
- Department of Cellular and Molecular Pharmacology, University of California, San FranciscoSan FranciscoUnited States
- Department of Urology, University of California, San FranciscoSan FranciscoUnited States
| | - Zijian Zhang
- Department of Chemical and Systems Biology, Stanford UniversityStanfordUnited States
| | - Julien Menendez
- Department of Molecular, Cell, and Developmental Biology, University of California, Santa CruzSanta CruzUnited States
| | - Kerriann M Casey
- Department of Biology, Stanford UniversityStanfordUnited States
- Department of Comparative Medicine, Stanford School of MedicineStanfordUnited States
| | - Davide Ruggero
- Department of Cellular and Molecular Pharmacology, University of California, San FranciscoSan FranciscoUnited States
- Department of Urology, University of California, San FranciscoSan FranciscoUnited States
| | - Lindsay Hinck
- Department of Molecular, Cell, and Developmental Biology, University of California, Santa CruzSanta CruzUnited States
| | | | - Maria Barna
- Department of Genetics, Stanford UniversityStanfordUnited States
| |
Collapse
|
7
|
Luo LF, Xu ZS, Li DY, Hu Z, Gao ZX. Comparative transcriptome profiles of four sexually size dimorphic fish. Sci Data 2022; 9:774. [PMID: 36528628 PMCID: PMC9759545 DOI: 10.1038/s41597-022-01887-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Accepted: 12/06/2022] [Indexed: 12/23/2022] Open
Abstract
Sexual size dimorphism is widespread in fish species. Although sex growth differences in multiple species have been studied successively, the commonalities of regulatory mechanisms across sexually dimorphic species are unknown. In this study, we performed RNA-seq analysis of four representative fish (loach, half-smooth tongue sole, yellow catfish, and Nile tilapia) with significant growth differences between females and males. Clean reads were identified from four fish species, ranging from 45,718,052 to 57,733,120. Following comparison transcriptome analysis, there were 1,132 and 1,108, 1,290 and 1,102, 4,732 and 4,266, 748 and 192 differentially expressed genes (DEGs) in the brain and muscle of loach, half-smooth tongue sole, yellow catfish, and Nile tilapia, respectively. Furthermore, the expression levels were validated by quantitative real-time PCR (qRT-PCR). Comparative transcriptome profiles of four fish described here will provide fundamental information for further studies on the commonalities of sexually size dimorphic fish in regulating growth differences between females and males.
Collapse
Affiliation(s)
- Li-Fei Luo
- College of Fisheries, Key Lab of Freshwater Animal Breeding, Ministry of Agriculture/Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education/Engineering Research Center of Green development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Huazhong Agricultural University, Wuhan, 430070, China.
- Hubei Hongshan Laboratory, Wuhan, 430070, China.
| | - Zi-Sheng Xu
- College of Fisheries, Key Lab of Freshwater Animal Breeding, Ministry of Agriculture/Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education/Engineering Research Center of Green development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Huazhong Agricultural University, Wuhan, 430070, China
- Hubei Hongshan Laboratory, Wuhan, 430070, China
| | - Dan-Yang Li
- College of Fisheries, Key Lab of Freshwater Animal Breeding, Ministry of Agriculture/Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education/Engineering Research Center of Green development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Huazhong Agricultural University, Wuhan, 430070, China
- Hubei Hongshan Laboratory, Wuhan, 430070, China
| | - Zhen Hu
- Hubei Aquatic Products Technology Promotion Station, Wuhan, 430060, China
| | - Ze-Xia Gao
- College of Fisheries, Key Lab of Freshwater Animal Breeding, Ministry of Agriculture/Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education/Engineering Research Center of Green development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Huazhong Agricultural University, Wuhan, 430070, China.
- Hubei Hongshan Laboratory, Wuhan, 430070, China.
- Engineering Technology Research Center for Fish Breeding and Culture in Hubei Province, Wuhan, 430070, China.
| |
Collapse
|
8
|
Xu C, Yu M, Zhang Q, Ma Z, Du K, You H, Wei J, Wang D, Tao W. Genome-Wide Identification and Characterization of the BRD Family in Nile Tilapia (Oreochromis niloticus). Animals (Basel) 2022; 12:ani12172266. [PMID: 36077987 PMCID: PMC9454494 DOI: 10.3390/ani12172266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 08/22/2022] [Accepted: 08/31/2022] [Indexed: 11/24/2022] Open
Abstract
Simple Summary Nile tilapia is a good model for genome-wide identification and examination of the expression and role of gene families. In this study, we identified 54 bromodomain genes (BRDs) divided into eight subfamilies in Nile tilapia. Phylogenetic analysis revealed a high conservation of the BRDs family in vertebrates, with BRDs expansion due to fish-specific duplications. Most of the BRDs displayed sexually dimorphic expression in the gonads at 90 and 180 dah (days after hatching), including 21 testis-dominated genes (brdt, brd4a and brd2b, etc.), and 9 ovary-dominated genes (brd3b, brd2a and kat2a, etc.). Male fish treated with JQ1 (BET subfamily inhibitor) displayed abnormal spermatogenesis. The numbers of germ cells were reduced and the expression of steroidogenic enzyme genes was downregulated, while the expression of apoptosis-promoting genes was elevated in the testes of treated fish. Abstract The bromodomain (BRD) proteins specifically recognize the N-acetyllysine motifs, which is a key event in the reading process of epigenetic marks. BRDs are evolutionarily highly conserved. Over recent years, BRDs attracted great interest because of their important roles in biological processes. However, the genome-wide identification of this family was not carried out in many animal groups, in particular, in teleosts. Moreover, the expression patterns were not reported for any of the members in this family, and the role of the BRD family was not extensively studied in fish reproduction. In this study, we identified 16 to 120 BRD genes in 24 representative species. BRDs expanded significantly in vertebrates. Phylogenetic analysis showed that the BRD family was divided into eight subfamilies (I–VIII). Transcriptome analysis showed that BRDs in Nile tilapia (Oreochromis niloticus) exhibited different expression patterns in different tissues, suggesting that these genes may play different roles in growth and development. Gonadal transcriptome analysis showed that most of the BRDs display sexually dimorphic expression in the gonads at 90 and 180 dah (days after hatching), including 21 testis-dominated genes (brdt, brd4a and brd2b, etc.), and nine ovary-dominated genes (brd3b, brd2a and kat2a, etc.). Consistent with transcriptomic data, the results of qRT-PCR and fluorescence in situ hybridization showed that brdt expression was higher in the testis than in the ovary, suggesting its critical role in the spermatogenesis of the tilapia. Male fish treated with JQ1 (BET subfamily inhibitor) displayed abnormal spermatogenesis. The numbers of germ cells were reduced, and the expression of steroidogenic enzyme genes was downregulated, while the expression of apoptosis-promoting genes was elevated in the testis tissue of treated fish. Our data provide insights into the evolution and expression of BRD genes, which is helpful for understanding their critical roles in sex differentiation and gonadal development in teleosts.
Collapse
|
9
|
Yang N, Yang C, Tan T, Wang Q, Lei X. Histology study and transcriptome analysis of the testis of Loach(Misgurnus anguillicaudatus) in response to phenanthrene exposure. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 242:113950. [PMID: 35999765 DOI: 10.1016/j.ecoenv.2022.113950] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 07/28/2022] [Accepted: 08/02/2022] [Indexed: 06/15/2023]
Abstract
Phenanthrene (PHE) is one of the most abundant polycyclic aromatic hydrocarbon compounds (PAHs) in the aquatic environment. The loaches were exposed at concentrations of 0.30、1.00、3.00 mg L-1 for 60 days. The effects of PHE on the testis development were evaluated by calculating the survival rate, observing the structure of testis and analyzing transcriptome. Firstly, PHE markedly decreased the survival rate in a dose-dependent manner. Then, the number and density of spermatogonia, primary spermatocytes, secondary spermatocytes and spermatids were substantially reduced under PHE exposure. The space in the seminiferous tubule obviously increased in the high PHE concentration group. Meanwhile, transcriptome comparative analysis identified 5329 differentially expressed genes (DEGs) including 2928 up-regulated and 2401 down-regulated in the testis of loach exposed PHE for 60 days. Meiotic cell cycle, arganelle fission, ATPase activity and adenylate nucleotide binding were significantly differences by GO (Gene Ontology) enrichment. KEGG (Kyoto Encyclopedia of Genes and Genomes) pathway analysis revealed that TNF (Tumor Necrosis Factor) signaling pathway, CAMs (Cell Adhesion Molecules), cytochrome P450 and lipid metabolism were markedly regulated. In addition, eight DEGs were randomly selected from the testis transcriptomics results for qPCR verification, the results were consistent with RNA-Seq. Finally, related genes (piwil2, dmc1, vasa, ubr2, dnd, rnf17, plcb2, c-fos, gpx4) of testis development were further confirmed and they were differentially regulated after PHE exposure. In summary, a survey of the mechanism of loach testis response to PHE was performed, and a large number of gene expression levels regarding metabolism, spermatogenesis and immunity genes were acquired from RNA-seq. This study provide informations for elucidating the molecular mechanism of PHE affected the testis development of loach.
Collapse
Affiliation(s)
- Na Yang
- College of Life Science, Yan'an University, Yan'an 716000, China
| | - Chaochao Yang
- College of Life Science, Yan'an University, Yan'an 716000, China
| | - Ting Tan
- College of Life Science, Yan'an University, Yan'an 716000, China
| | - Qi Wang
- College of Life Science, Yan'an University, Yan'an 716000, China
| | - Xin Lei
- College of Life Science, Yan'an University, Yan'an 716000, China.
| |
Collapse
|
10
|
Sun R, Liu J, Xu Y, Jiang L, Li Y, Zhong G, Yi X. Genome-Wide Identification and Stage-Specific Expression Profile Analysis Reveal the Function of Ribosomal Proteins for Oogenesis of Spodoptera litura. Front Physiol 2022; 13:943205. [PMID: 35812325 PMCID: PMC9259932 DOI: 10.3389/fphys.2022.943205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Accepted: 06/01/2022] [Indexed: 11/13/2022] Open
Abstract
Ribosomal proteins (Rps) are indispensable in ribosome biogenesis and protein synthesis, which tightly correlate with cell growth and proliferation in different physiological processes across species. Up to now, genes coding for Rps have been identified and studied in many species, however, their information still remains elusive in many insect species, especially in Spodoptera litura. In this study, 81 Rp genes were identified from S. litura genome and were mapped to their positions on the chromosomes. In addition, their physical and chemical properties, gene structure, phylogenetic relationships, targeted microRNAs were also analyzed. Gene ontology analysis disclosed that Rp genes were closely associated with processes related to ribosome biosynthesis, proteins translation processing, molecular binding activities. The quantitative real-time PCR (qRT-PCR) revealed expression profiles of Rp genes varied in different stages of oogenesis, and found that most Rp genes accumulated in previtellogenesis stage. This study described the comprehensive genome-wide analysis of Rp gene family in agricultural pests, which provided foundation for further characterizing the roles of Rps in oogenesis of insects, and some Rp genes may further serve as targets for innovative pest control.
Collapse
Affiliation(s)
- Ranran Sun
- Key Laboratory of Crop Integrated Pest Management in South China, Ministry of Agriculture, South China Agricultural University, Guangzhou, China
- Key Laboratory of Natural Pesticide and Chemical Biology, Ministry of Education, South China Agricultural University, Guangzhou, China
| | - Jin Liu
- Key Laboratory of Crop Integrated Pest Management in South China, Ministry of Agriculture, South China Agricultural University, Guangzhou, China
- Key Laboratory of Natural Pesticide and Chemical Biology, Ministry of Education, South China Agricultural University, Guangzhou, China
| | - Yuanhao Xu
- Key Laboratory of Crop Integrated Pest Management in South China, Ministry of Agriculture, South China Agricultural University, Guangzhou, China
- Key Laboratory of Natural Pesticide and Chemical Biology, Ministry of Education, South China Agricultural University, Guangzhou, China
| | - Liwei Jiang
- Key Laboratory of Crop Integrated Pest Management in South China, Ministry of Agriculture, South China Agricultural University, Guangzhou, China
- Key Laboratory of Natural Pesticide and Chemical Biology, Ministry of Education, South China Agricultural University, Guangzhou, China
| | - Yun Li
- Key Laboratory of Crop Integrated Pest Management in South China, Ministry of Agriculture, South China Agricultural University, Guangzhou, China
- Key Laboratory of Natural Pesticide and Chemical Biology, Ministry of Education, South China Agricultural University, Guangzhou, China
| | - Guohua Zhong
- Key Laboratory of Crop Integrated Pest Management in South China, Ministry of Agriculture, South China Agricultural University, Guangzhou, China
- Key Laboratory of Natural Pesticide and Chemical Biology, Ministry of Education, South China Agricultural University, Guangzhou, China
- *Correspondence: Guohua Zhong, ; Xin Yi,
| | - Xin Yi
- Key Laboratory of Crop Integrated Pest Management in South China, Ministry of Agriculture, South China Agricultural University, Guangzhou, China
- Key Laboratory of Natural Pesticide and Chemical Biology, Ministry of Education, South China Agricultural University, Guangzhou, China
- *Correspondence: Guohua Zhong, ; Xin Yi,
| |
Collapse
|
11
|
Jiang H, Liu X, Li Y, Zhang R, Liu H, Ma X, Wu L, Qiao Z, Li X. Identification of ribosomal protein L24 (RPL24) from the oriental river prawn, Macrobrachium nipponense, and its roles in ovarian development. Comp Biochem Physiol A Mol Integr Physiol 2022; 266:111154. [PMID: 35032656 DOI: 10.1016/j.cbpa.2022.111154] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 01/09/2022] [Accepted: 01/10/2022] [Indexed: 10/19/2022]
Abstract
Ribosomal proteins exhibit various extraribosomal functions in addition to their roles in protein synthesis. In this study, complementary DNA (cDNA) of ribosomal protein L24 in Macrobrachium nipponense (MnRPL24) was isolated, and its role in ovarian development was investigated using quantitative real-time PCR (qPCR), immunohistochemistry (IHC), RNA interference (RNAi) and histological observations. The complete cDNA of MnRPL24 is 564 base pairs (bps) and contains a 486 bp open reading frame (ORF) encoding 162 amino acids (aas). The highest expression level of MnRPL24 among eight tissues was found in the ovary, specifically in the stage I ovary. The MnRPL24 protein existed in the cytoplasm and nucleus of developing oocytes, and also existed in the cytoplasm of follicle cells in developing ovaries. After MnRPL24 knockdown by RNAi, the expression levels of vitellogenin (Vg), vitellogenin receptor (Vgr), cyclin-dependent kinase 2 (Cdc2) and M-phase cyclin (Cyclin B) genes and the gonadsomatic index (GSI) did not show the typical trend of gradually elevation with ovarian development and finally decrease in the later stage of ovarian cycle. Moreover, the oviposition rate (OR) was downregulated, and oocyte development was delayed after MnRPL24 knockdown. After eyestalk ablation, the MnRPL24 expression level was considerably elevated in the initial stages and decreased in the late stage of the ovarian development cycle. This investigation illustrates a possible regulatory role of MnRPL24 in the ovarian development of M. nipponense, and MnRPL24 may act as a stimulator of early ovarian development.
Collapse
Affiliation(s)
- Hongxia Jiang
- Engineering Lab of Henan Province for Aquatic Animal Disease Control, Engineering Technology Research Center of Henan Province for Aquatic Animal Cultivation, College of Fisheries, Henan Normal University, Xinxiang 453007, PR China.
| | - Xuewei Liu
- Engineering Lab of Henan Province for Aquatic Animal Disease Control, Engineering Technology Research Center of Henan Province for Aquatic Animal Cultivation, College of Fisheries, Henan Normal University, Xinxiang 453007, PR China
| | - Yizheng Li
- Engineering Lab of Henan Province for Aquatic Animal Disease Control, Engineering Technology Research Center of Henan Province for Aquatic Animal Cultivation, College of Fisheries, Henan Normal University, Xinxiang 453007, PR China
| | - Ran Zhang
- Engineering Lab of Henan Province for Aquatic Animal Disease Control, Engineering Technology Research Center of Henan Province for Aquatic Animal Cultivation, College of Fisheries, Henan Normal University, Xinxiang 453007, PR China
| | - Huifen Liu
- Engineering Lab of Henan Province for Aquatic Animal Disease Control, Engineering Technology Research Center of Henan Province for Aquatic Animal Cultivation, College of Fisheries, Henan Normal University, Xinxiang 453007, PR China
| | - Xiao Ma
- Engineering Lab of Henan Province for Aquatic Animal Disease Control, Engineering Technology Research Center of Henan Province for Aquatic Animal Cultivation, College of Fisheries, Henan Normal University, Xinxiang 453007, PR China
| | - Limin Wu
- Engineering Lab of Henan Province for Aquatic Animal Disease Control, Engineering Technology Research Center of Henan Province for Aquatic Animal Cultivation, College of Fisheries, Henan Normal University, Xinxiang 453007, PR China
| | - Zhigang Qiao
- Engineering Lab of Henan Province for Aquatic Animal Disease Control, Engineering Technology Research Center of Henan Province for Aquatic Animal Cultivation, College of Fisheries, Henan Normal University, Xinxiang 453007, PR China
| | - Xuejun Li
- Engineering Lab of Henan Province for Aquatic Animal Disease Control, Engineering Technology Research Center of Henan Province for Aquatic Animal Cultivation, College of Fisheries, Henan Normal University, Xinxiang 453007, PR China
| |
Collapse
|