1
|
Xue LL, Cheng J, Du RL, Luo BY, Chen L, Xiao QX, Zhou HS, She HQ, Wang SF, Chen TB, Hu CY, He YQ, Wang TH, Xiong LL. Bone marrow mesenchymal stem cells alleviate neurological dysfunction by reducing autophagy damage via downregulation of SYNPO2 in neonatal hypoxic-ischemic encephalopathy rats. Cell Death Dis 2025; 16:131. [PMID: 40000609 PMCID: PMC11862179 DOI: 10.1038/s41419-025-07439-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 01/14/2025] [Accepted: 02/11/2025] [Indexed: 02/27/2025]
Abstract
Neonatal hypoxic-ischemic encephalopathy (HIE) is worsened by autophagy-induced neuronal damage, with SYNPO2 playing a key role in this process. This study investigates the involvement of SYNPO2 in neuronal autophagy and explores the potential of bone marrow mesenchymal stem cells (BMSCs) to alleviate HIE-induced dysfunction by inhibiting SYNPO2-mediated autophagy. Using in vitro and in vivo neonatal HIE models, we observed an upregulation of SYNPO2 expression, accompanied by increased neuronal injury and aggregation of autophagy-related proteins. Intervention with BMSCs effectively reduced SYNPO2 expression, and SYNPO2 depression mitigated neuroautophagic damage and improved neurological dysfunctions. Moreover, SYNPO2 overexpression exacerbated neuroautophagy despite BMSC treatment, while SYNPO2 depletion notably reduced neuroautophagic damage and alleviated cognitive impairments, retaining the neuroprotective efficacy of BMSC treatment. These findings confirm the role of BMSCs in attenuating HIE injury by suppressing neuroautophagy and provide insights into the mechanistic involvement of SYNPO2. Ultimately, this study identifies SYNPO2 as a novel therapeutic target for neonatal HIE and supports the clinical potential of BMSCs in HIE management.
Collapse
Affiliation(s)
- Lu- Lu Xue
- Department of Anesthesiology, The Third Affiliated Hospital of Zunyi Medical University (The First People's Hospital of Zunyi), Zunyi, Guizhou, China
| | - Jie Cheng
- Center for Reproductive Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Ruo-Lan Du
- Department of Anesthesiology, The Third Affiliated Hospital of Zunyi Medical University (The First People's Hospital of Zunyi), Zunyi, Guizhou, China
| | - Bo-Yan Luo
- School of Pharmacy, Zunyi Medical University, Zunyi, Guizhou, China
| | - Li Chen
- Department of Neurosurgery, Institute of Neurological Disease, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Qiu-Xia Xiao
- Department of Anesthesiology, The Third Affiliated Hospital of Zunyi Medical University (The First People's Hospital of Zunyi), Zunyi, Guizhou, China
| | - Hong-Su Zhou
- Department of Anesthesiology, The Third Affiliated Hospital of Zunyi Medical University (The First People's Hospital of Zunyi), Zunyi, Guizhou, China
| | - Hong-Qing She
- Department of Anesthesiology, The Third Affiliated Hospital of Zunyi Medical University (The First People's Hospital of Zunyi), Zunyi, Guizhou, China
| | - Shi-Feng Wang
- Department of Anesthesiology, The Third Affiliated Hospital of Zunyi Medical University (The First People's Hospital of Zunyi), Zunyi, Guizhou, China
| | - Ting-Bao Chen
- Institute of Neuroscience, Kunming Medical University, Kunming, Yunnan, China
| | - Chang-Yan Hu
- Institute of Neuroscience, Kunming Medical University, Kunming, Yunnan, China
| | - Yu-Qi He
- Department of Anesthesiology, The Third Affiliated Hospital of Zunyi Medical University (The First People's Hospital of Zunyi), Zunyi, Guizhou, China.
| | - Ting-Hua Wang
- Department of Anesthesiology, The Third Affiliated Hospital of Zunyi Medical University (The First People's Hospital of Zunyi), Zunyi, Guizhou, China.
| | - Liu-Lin Xiong
- Department of Anesthesiology, The Third Affiliated Hospital of Zunyi Medical University (The First People's Hospital of Zunyi), Zunyi, Guizhou, China.
| |
Collapse
|
2
|
Alraddadi EA, Aljuhani FF, Alsamiri GY, Hafez SY, Alselami G, Almarghalani DA, Alamri FF. The Effects of Cannabinoids on Ischemic Stroke-Associated Neuroinflammation: A Systematic Review. J Neuroimmune Pharmacol 2025; 20:12. [PMID: 39899062 PMCID: PMC11790784 DOI: 10.1007/s11481-025-10171-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Accepted: 01/20/2025] [Indexed: 02/04/2025]
Abstract
Stroke represents a significant burden on global health and the economy, with high mortality rates, disability, and recurrence. Ischemic stroke is a serious condition that occurs when a blood vessel in the brain is interrupted, reducing the blood supply to the affected area. Inflammation is a significant component in stroke pathophysiology. Neuroinflammation is triggered following the acute ischemic ictus, where the blood-brain barrier (BBB) breaks down, causing damage to the endothelial cells. The damage will eventually generate oxidative stress, activate the pathological phenotypes of astrocytes and microglia, and lead to neuronal death in the neurovascular unit. As a result, the brain unleashes a robust neuroinflammatory response, which can further worsen the neurological outcomes. Neuroinflammation is a complex pathological process involved in ischemic damage and repair. Finding new neuroinflammation molecular targets is essential to develop effective and safe novel treatment approaches against ischemic stroke. Accumulating studies have investigated the pharmacological properties of cannabinoids (CBs) for many years, and recent research has shown their potential therapeutic use in treating ischemic stroke in rodent models. These findings revealed promising impacts of CBs in reducing neuroinflammation and cellular death and ameliorating neurological deficits. In this review, we explore the possibility of the therapeutic administration of CBs in mitigating neuroinflammation caused by a stroke. We summarize the results from several preclinical studies evaluating the efficacy of CBs anti-inflammatory interventions in ischemic stroke. Although convincing preclinical evidence implies that CBs targeting neuroinflammation are promising for ischemic stroke, translating these findings into the clinical setting has proven to be challenging. The translation hurdle is due to the essence of the CBs ability to cause anxiety, cognitive deficit, and psychosis. Future studies are warranted to address the dose-beneficial effect of CBs in clinical trials of ischemic stroke-related neuroinflammation treatment.
Collapse
Affiliation(s)
- Eman A Alraddadi
- Department of Basic Sciences, College of Science and Health Professions, King Saud Bin Abdulaziz University for Health Sciences, Jeddah, Saudi Arabia
- King Abdullah International Medical Research Center, Jeddah, Saudi Arabia
| | - Faisal F Aljuhani
- Department of Basic Sciences, College of Science and Health Professions, King Saud Bin Abdulaziz University for Health Sciences, Jeddah, Saudi Arabia
- College of Medicine, King Saud Bin Abdulaziz University for Health Sciences, Jeddah, Saudi Arabia
| | - Ghadah Y Alsamiri
- Department of Basic Sciences, College of Science and Health Professions, King Saud Bin Abdulaziz University for Health Sciences, Jeddah, Saudi Arabia
- College of Medicine, King Saud Bin Abdulaziz University for Health Sciences, Jeddah, Saudi Arabia
| | - Salwa Y Hafez
- King Abdullah International Medical Research Center, Jeddah, Saudi Arabia
- College of Nursing, King Saud Bin Abdulaziz University for Health Sciences, Jeddah, Saudi Arabia
| | - Ghaida Alselami
- Department of Basic Sciences, College of Science and Health Professions, King Saud Bin Abdulaziz University for Health Sciences, Jeddah, Saudi Arabia
- College of Medicine, King Saud Bin Abdulaziz University for Health Sciences, Jeddah, Saudi Arabia
| | - Daniyah A Almarghalani
- Stroke Research Unit, Taif University, Taif, Saudi Arabia
- Department of Pharmacology and Toxicology, College of Pharmacy, Taif University, Taif, Saudi Arabia
| | - Faisal F Alamri
- Department of Basic Sciences, College of Science and Health Professions, King Saud Bin Abdulaziz University for Health Sciences, Jeddah, Saudi Arabia.
- King Abdullah International Medical Research Center, Jeddah, Saudi Arabia.
| |
Collapse
|
3
|
Zhao P, Li S, He Z, Ma X. Physiological and Genetic Basis of High-Altitude Indigenous Animals' Adaptation to Hypoxic Environments. Animals (Basel) 2024; 14:3031. [PMID: 39457960 PMCID: PMC11505238 DOI: 10.3390/ani14203031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 10/14/2024] [Accepted: 10/18/2024] [Indexed: 10/28/2024] Open
Abstract
Adaptation is one of the fundamental characteristics of life activities; humans and animals inhabiting high altitudes are well adapted to hypobaric hypoxic environments, and studies on the mechanisms of this adaptation emerged a hundred years ago. Based on these studies, this paper reviews the adaptive changes in hypoxia-sensitive tissues and organs, as well as at the molecular genetic level, such as pulmonary, cardiovascular, O2-consuming tissues, and the hemoglobin and HIF pathway, that occur in animals in response to the challenge of hypobaric hypoxia. High-altitude hypoxia adaptation may be due to the coordinated action of genetic variants in multiple genes and, as a result, adaptive changes in multiple tissues and organs at the physiological and biochemical levels. Unraveling their mechanisms of action can provide a reference for the prevention and treatment of multiple diseases caused by chronic hypoxia.
Collapse
Affiliation(s)
- Pengfei Zhao
- Faculty of Chemistry and Life Sciences, Gansu Minzu Normal University, Hezuo 747000, China;
| | - Shaobin Li
- Gansu Key Laboratory of Herbivorous Animal Biotechnology, Faculty of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, China;
| | - Zhaohua He
- Gansu Key Laboratory of Herbivorous Animal Biotechnology, Faculty of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, China;
| | - Xiong Ma
- Faculty of Chemistry and Life Sciences, Gansu Minzu Normal University, Hezuo 747000, China;
| |
Collapse
|
4
|
Geng J, Feng J, Ke F, Fang F, Jing X, Tang J, Fang C, Zhang B. MicroRNA-124 negatively regulates STAT3 to alleviate hypoxic-ischemic brain damage by inhibiting oxidative stress. Aging (Albany NY) 2024; 16:2828-2847. [PMID: 38319722 PMCID: PMC10911356 DOI: 10.18632/aging.205513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Accepted: 12/29/2023] [Indexed: 02/07/2024]
Abstract
MicroRNA-124 (miR-124) is implicated in various neurological diseases; however, its significance in hypoxic-ischaemic brain damage (HIBD) remains unclear. This study aimed to elucidate the underlying pathophysiological mechanisms of miR-124 in HIBD. In our study performed on oxygen-glucose deprivation followed by reperfusion (OGD)/R-induced primary cortical neurons, a substantial reduction in miR-124 was observed. Furthermore, the upregulation of miR-124 significantly mitigated oxidative stress, apoptosis, and mitochondrial impairment. We demonstrated that miR-124 interacts with the signal transducer and activator of transcription 3 (STAT3) to exert its biological function using the dual-luciferase reporter gene assay. As the duration of OGD increased, miR-124 exhibited a negative correlation with STAT3. STAT3 overexpression notably attenuated the protective effects of miR-124 mimics, while knockdown of STAT3 reversed the adverse effects of the miR-124 inhibitor. Subsequently, we conducted an HIBD model in rats. In vivo experiments, miR-124 overexpression attenuated cerebral infarction volume, cerebral edema, apoptosis, oxidative stress, and improved neurological function recovery in HIBD rats. In summary, the neuroprotective effects of the miR-124/STAT3 axis were confirmed in the HIBD model. MiR-124 may serve as a potential biomarker with significant therapeutic implications for HIBD.
Collapse
Affiliation(s)
- Jiaqing Geng
- Departments of Neonatology, Renmin Hospital of Wuhan University, Wuhan 430062, China
- Central Laboratory, Renmin Hospital of Wuhan University, Wuhan 430062, China
| | - Jiangpeng Feng
- State Key Laboratory of Virology, Modern Virology Research Center, College of Life Sciences, Wuhan University, Wuhan 430062, China
| | - Fangzi Ke
- Departments of Neonatology, Renmin Hospital of Wuhan University, Wuhan 430062, China
| | - Fang Fang
- Departments of Neonatology, Renmin Hospital of Wuhan University, Wuhan 430062, China
| | - Xiaoqi Jing
- Departments of Neonatology, Renmin Hospital of Wuhan University, Wuhan 430062, China
| | - Jiaxin Tang
- Departments of Neonatology, Renmin Hospital of Wuhan University, Wuhan 430062, China
| | - Chengzhi Fang
- Departments of Neonatology, Renmin Hospital of Wuhan University, Wuhan 430062, China
| | - Binghong Zhang
- Departments of Neonatology, Renmin Hospital of Wuhan University, Wuhan 430062, China
| |
Collapse
|
5
|
Yu MH, Yang Q, Zhang YP, Wang JH, Zhang RJZ, Liu ZG, Liu XC. Cannabinoid Receptor Agonist WIN55, 212-2 Attenuates Injury in the Hippocampus of Rats after Deep Hypothermic Circulatory Arrest. Brain Sci 2023; 13:brainsci13030525. [PMID: 36979335 PMCID: PMC10046860 DOI: 10.3390/brainsci13030525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 03/17/2023] [Accepted: 03/21/2023] [Indexed: 03/30/2023] Open
Abstract
OBJECTIVES Postoperative neurological deficits remain a challenge in cardiac surgery employing deep hypothermic circulatory arrest (DHCA). This study aimed to investigate the effect of WIN55, 212-2, a cannabinoid agonist, on brain injury in a rat model of DHCA. METHODS Twenty-four male Sprague Dawley rats were randomly divided into three groups: a control group (which underwent cardiopulmonary bypass (CPB) only), a DHCA group (CPB with DHCA), and a WIN group (WIN55, 212-2 pretreatment before CPB with DHCA). Histopathological changes in the brain were evaluated by hematoxylin-eosin staining. Plasma levels of superoxide dismutase (SOD) and proinflammatory cytokines including interleukin (IL)-1β, IL-6, and tumor necrosis factor-alpha (TNF-a) were determined using an enzyme-linked immunosorbent assay (ELISA). The expression of SOD in the hippocampus was detected by Western blot and immunofluorescence staining. Levels of apoptotic-related protein caspase-3 and type 1 cannabinoid receptor (CB1R) in the hippocampus were evaluated by Western blot. RESULTS WIN55, 212-2 administration attenuated histopathological injury of the hippocampus in rats undergoing DHCA, associated with lowered levels of IL-1β, IL-6, and TNF-α (p < 0.05, p < 0.001, and p < 0.01, vs. DHCA, respectively) and an increased level of SOD (p < 0.05 vs. DHCA). WIN55, 212-2 treatment also increased the content of SOD in the hippocampus. The protein expression of caspase-3 was downregulated and the expression of CB1R was upregulated in the hippocampus by WIN55, 212-2. CONCLUSIONS the administration of WIN55, 212-2 alleviates hippocampal injury induced by DHCA in rats by regulating intrinsic inflammatory and oxidative stress responses through a CB1R-dependent mechanism.
Collapse
Affiliation(s)
- Ming-Huan Yu
- Department of Cardiovascular Surgery, TEDA International Cardiovascular Hospital, Chinese Academy of Medical Sciences, Graduate School of Peking Union Medical College, 61 Third Avenue, TEDA, Tianjin 300456, China
| | - Qin Yang
- Department of Cardiovascular Surgery, TEDA International Cardiovascular Hospital, Chinese Academy of Medical Sciences, Graduate School of Peking Union Medical College, 61 Third Avenue, TEDA, Tianjin 300456, China
| | - You-Peng Zhang
- Department of Cardiovascular Surgery, TEDA International Cardiovascular Hospital, Chinese Academy of Medical Sciences, Graduate School of Peking Union Medical College, 61 Third Avenue, TEDA, Tianjin 300456, China
| | - Jia-Hui Wang
- Department of Cardiovascular Surgery, TEDA International Cardiovascular Hospital, Chinese Academy of Medical Sciences, Graduate School of Peking Union Medical College, 61 Third Avenue, TEDA, Tianjin 300456, China
| | - Ren-Jian-Zhi Zhang
- Department of Cardiovascular Surgery, TEDA International Cardiovascular Hospital, Chinese Academy of Medical Sciences, Graduate School of Peking Union Medical College, 61 Third Avenue, TEDA, Tianjin 300456, China
| | - Zhi-Gang Liu
- Department of Cardiovascular Surgery, TEDA International Cardiovascular Hospital, Chinese Academy of Medical Sciences, Graduate School of Peking Union Medical College, 61 Third Avenue, TEDA, Tianjin 300456, China
| | - Xiao-Cheng Liu
- Department of Cardiovascular Surgery, TEDA International Cardiovascular Hospital, Chinese Academy of Medical Sciences, Graduate School of Peking Union Medical College, 61 Third Avenue, TEDA, Tianjin 300456, China
| |
Collapse
|
6
|
Tudorancea IM, Ciorpac M, Stanciu GD, Caratașu C, Săcărescu A, Ignat B, Burlui A, Rezuș E, Creangă I, Alexa-Stratulat T, Tudorancea I, Tamba BI. The Therapeutic Potential of the Endocannabinoid System in Age-Related Diseases. Biomedicines 2022; 10:2492. [PMID: 36289755 PMCID: PMC9599275 DOI: 10.3390/biomedicines10102492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2022] [Revised: 09/24/2022] [Accepted: 10/03/2022] [Indexed: 11/25/2022] Open
Abstract
The endocannabinoid system (ECS) dynamically regulates many aspects of mammalian physiology. ECS has gained substantial interest since growing evidence suggests that it also plays a major role in several pathophysiological conditions due to its ability to modulate various underlying mechanisms. Furthermore, cannabinoids, as components of the cannabinoid system (CS), have proven beneficial effects such as anti-inflammatory, immunomodulatory, neuromodulatory, antioxidative, and cardioprotective effects. In this comprehensive review, we aimed to describe the complex interaction between CS and most common age-related diseases such as neuro-degenerative, oncological, skeletal, and cardiovascular disorders, together with the potential of various cannabinoids to ameliorate the progression of these disorders. Since chronic inflammation is postulated as the pillar of all the above-mentioned medical conditions, we also discuss in this paper the potential of CS to ameliorate aging-associated immune system dysregulation.
Collapse
Affiliation(s)
- Ivona Maria Tudorancea
- Advanced Research and Development Center for Experimental Medicine (CEMEX), “Grigore T. Popa” University of Medicine and Pharmacy, 16 Universității Street, 700115 Iași, Romania
| | - Mitică Ciorpac
- Advanced Research and Development Center for Experimental Medicine (CEMEX), “Grigore T. Popa” University of Medicine and Pharmacy, 16 Universității Street, 700115 Iași, Romania
| | - Gabriela Dumitrița Stanciu
- Advanced Research and Development Center for Experimental Medicine (CEMEX), “Grigore T. Popa” University of Medicine and Pharmacy, 16 Universității Street, 700115 Iași, Romania
| | - Cătălin Caratașu
- Advanced Research and Development Center for Experimental Medicine (CEMEX), “Grigore T. Popa” University of Medicine and Pharmacy, 16 Universității Street, 700115 Iași, Romania
| | - Alina Săcărescu
- Department of Medical Specialties II, “Grigore T. Popa” University of Medicine and Pharmacy, 16 Universității, 700115 Iași, Romania
- Department of Neurology, Clinical Rehabilitation Hospital, 14 Pantelimon Halipa, 700661 Iași, Romania
| | - Bogdan Ignat
- Department of Neurology, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iași, Romania
| | - Alexandra Burlui
- Department of Rheumatology and Rehabilitation, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iași, Romania
- Clinical Rehabilitation Hospital, 700661 Iași, Romania
| | - Elena Rezuș
- Department of Rheumatology and Rehabilitation, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iași, Romania
- Clinical Rehabilitation Hospital, 700661 Iași, Romania
| | - Ioana Creangă
- Advanced Research and Development Center for Experimental Medicine (CEMEX), “Grigore T. Popa” University of Medicine and Pharmacy, 16 Universității Street, 700115 Iași, Romania
- Oncology Department, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iași, Romania
| | - Teodora Alexa-Stratulat
- Oncology Department, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iași, Romania
- Oncology Department, Regional Institute of Oncology, 700483 Iași, Romania
| | - Ionuț Tudorancea
- Department of Morpho-Functional Sciences II, Discipline of Physiology, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iași, Romania
- Cardiology Clinic “St. Spiridon” County Clinical Emergency Hospital, 700111 Iași, Romania
| | - Bogdan Ionel Tamba
- Advanced Research and Development Center for Experimental Medicine (CEMEX), “Grigore T. Popa” University of Medicine and Pharmacy, 16 Universității Street, 700115 Iași, Romania
- Department of Pharmacology, Clinical Pharmacology and Algesiology, “Grigore T. Popa” University of Medicine and Pharmacy, 16 Universității Street, 700115 Iași, Romania
| |
Collapse
|
7
|
He Q, Zhang W, Zhang J, Deng Y. Cannabinoid Analogue WIN 55212-2 Protects Paraquat-Induced Lung Injury and Enhances Macrophage M2 Polarization. Inflammation 2022; 45:2256-2267. [PMID: 35674874 PMCID: PMC9174632 DOI: 10.1007/s10753-022-01688-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 05/18/2022] [Accepted: 05/20/2022] [Indexed: 01/02/2023]
Abstract
WIN 55212-2 is an endocannabinoids analogue that has been reported to have anti-inflammatory and anti-fibrosis effects on different models. In this study, we investigated the protective effects of WIN 55212-2 on paraquat (PQ)-induced poison on mice especially on lung injury. Mice were administrated with different dose of PQ and thereafter treated with 0.2 mg/kg or 1 mg/kg WIN 55212-2. The survival of mice was recorded during 4 weeks of observation. Twenty-eight days after PQ treatment, the cell population and inflammatory factors IL-6, IL-10, and TNF-α were measured in bronchoalveolar lavage fluid (BALF). Pulmonary fibrosis was evaluated by Masson staining. Our results showed that WIN 55212-2 treatment reduced PQ-induced mortality of mice in a dose dependent manner. It decreased the number of inflammation-associated cells, as well as the level of pro-inflammatory factors in BALF (P < 0.05). WIN 55212-2 increased M2 cells in BALF (P < 0.05), improved the lung histology, reduced fibrosis formation, and decreased TGF-β, α-SMA and PDGFRa expression. The protective effects of WIN 55212-2 on PQ-induced lung injury and fibrosis were associated with an increase inM2 cells and increased expressions of IL-10, CD163, and CD206, suggesting that polarization of M2 macrophages may be involved in WIN 55212-2 protective effects on PQ-induced lung injury.
Collapse
Affiliation(s)
- Quan He
- Department of Emergency, the First People's Hospital of Yunnan Province,the Affiliated Hospital of Kunming University of Science and Technology, Xishan District, No.157 Jinbi Road Yunnan Province, Kunming City, China.
| | - Wen Zhang
- Department of Basic Research Institute, the First People's Hospital of Yunnan Province, the Affiliated Hospital of Kunming University of Science and Technology,Xishan District, No.157 Jinbi Road Yunnan Province, Kunming City, China
| | - Jinjuan Zhang
- Department of Basic Research Institute, the First People's Hospital of Yunnan Province, the Affiliated Hospital of Kunming University of Science and Technology,Xishan District, No.157 Jinbi Road Yunnan Province, Kunming City, China
| | - Yuanyou Deng
- Department of Emergency, the First People's Hospital of Yunnan Province,the Affiliated Hospital of Kunming University of Science and Technology, Xishan District, No.157 Jinbi Road Yunnan Province, Kunming City, China
| |
Collapse
|
8
|
Holubiec MI, Romero JI, Urbainsky C, Gellert M, Galeano P, Capani F, Lillig CH, Hanschmann EM. Nucleoredoxin Plays a Key Role in the Maintenance of Retinal Pigmented Epithelium Differentiation. Antioxidants (Basel) 2022; 11:antiox11061106. [PMID: 35740003 PMCID: PMC9220054 DOI: 10.3390/antiox11061106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 05/29/2022] [Accepted: 05/29/2022] [Indexed: 02/05/2023] Open
Abstract
Nucleoredoxin (Nrx) belongs to the Thioredoxin protein family and functions in redox-mediated signal transduction. It contains the dithiol active site motif Cys-Pro-Pro-Cys and interacts and regulates different proteins in distinct cellular pathways. Nrx was shown to be catalytically active in the insulin assay and recent findings indicate that Nrx functions, in fact, as oxidase. Here, we have analyzed Nrx in the mammalian retina exposed to (perinatal) hypoxia-ischemia/reoxygenation, combining ex vivo and in vitro models. Our data show that Nrx regulates cell differentiation, which is important to (i) increase the number of glial cells and (ii) replenish neurons that are lost following the hypoxic insult. Nrx is essential to maintain cell morphology. These regulatory changes are related to VEGF but do not seem to be linked to the Wnt/β-catenin pathway, which is not affected by Nrx knock-down. In conclusion, our results strongly suggest that hypoxia-ischemia could lead to alterations in the organization of the retina, related to changes in RPE cell differentiation. Nrx may play an essential role in the maintenance of the RPE cell differentiation state via the regulation of VEGF release.
Collapse
Affiliation(s)
- Mariana I. Holubiec
- Facultad de Medicina, Instituto de Investigaciones Cardiológicas “Prof. Dr. Alberto C. Taquini” (ININCA), Universidad de Buenos Aires (UBA-CONICET), Buenos Aires 1122, Argentina;
- Instituto de Investigación en Biomedicina de Buenos Aires, Partner Institute of the MaxPlank Society (IBioBA-CONICET-MPSP), Buenos Aires 2390, Argentina
- Correspondence: (M.I.H.); (E.-M.H.); Tel.: +54-11-51618547 (M.I.H.); +49-211-8106040 (E.-M.H.)
| | - Juan I. Romero
- Instituto de Investigaciones Bioquímicas de Buenos Aires (IIBBA-CONICET), Fundación Instituto Leloir, Buenos Aires 1405, Argentina; (J.I.R.); (P.G.)
| | - Claudia Urbainsky
- Institute for Medical Biochemistry and Molecular Biology, University Medicine Greifswald, University of Greifswald, 17489 Greifswald, Germany; (C.U.); (M.G.); (C.H.L.)
| | - Manuela Gellert
- Institute for Medical Biochemistry and Molecular Biology, University Medicine Greifswald, University of Greifswald, 17489 Greifswald, Germany; (C.U.); (M.G.); (C.H.L.)
| | - Pablo Galeano
- Instituto de Investigaciones Bioquímicas de Buenos Aires (IIBBA-CONICET), Fundación Instituto Leloir, Buenos Aires 1405, Argentina; (J.I.R.); (P.G.)
| | - Francisco Capani
- Facultad de Medicina, Instituto de Investigaciones Cardiológicas “Prof. Dr. Alberto C. Taquini” (ININCA), Universidad de Buenos Aires (UBA-CONICET), Buenos Aires 1122, Argentina;
- Facultad de Medicina, Universidad Católica Argentina (UCA), Buenos Aires 1600, Argentina
| | - Christopher Horst Lillig
- Institute for Medical Biochemistry and Molecular Biology, University Medicine Greifswald, University of Greifswald, 17489 Greifswald, Germany; (C.U.); (M.G.); (C.H.L.)
| | - Eva-Maria Hanschmann
- Institute for Medical Biochemistry and Molecular Biology, University Medicine Greifswald, University of Greifswald, 17489 Greifswald, Germany; (C.U.); (M.G.); (C.H.L.)
- Department of Neurology, Medical Faculty, Heinrich-Heine University, 40225 Düsseldorf, Germany
- Correspondence: (M.I.H.); (E.-M.H.); Tel.: +54-11-51618547 (M.I.H.); +49-211-8106040 (E.-M.H.)
| |
Collapse
|
9
|
Victor S, Rocha-Ferreira E, Rahim A, Hagberg H, Edwards D. New possibilities for neuroprotection in neonatal hypoxic-ischemic encephalopathy. Eur J Pediatr 2022; 181:875-887. [PMID: 34820702 PMCID: PMC8897336 DOI: 10.1007/s00431-021-04320-8] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 11/11/2021] [Accepted: 11/12/2021] [Indexed: 12/26/2022]
Abstract
Around 0.75 million babies worldwide suffer from moderate or severe hypoxic-ischemic encephalopathy (HIE) each year resulting in around 400,000 babies with neurodevelopmental impairment. In 2010, neonatal HIE was associated with 2.4% of the total Global Burden of Disease. Therapeutic hypothermia (TH), a treatment that is now standard of care in high-income countries, provides proof of concept that strategies that aim to improve neurodevelopment are not only possible but can also be implemented to clinical practice. While TH is beneficial, neonates with moderate or severe HIE treated with TH still experience devastating complications: 48% (range: 44-53) combined death or moderate/severe disability. There is a concern that TH may not be effective in low- and middle-income countries. Therapies that further improve outcomes are desperately needed, and in high-income countries, they must be tested in conjunction with TH. We have in this review focussed on pharmacological treatment options (e.g. erythropoietin, allopurinol, melatonin, cannabidiol, exendin-4/exenatide). Erythropoietin and allopurinol show promise and are progressing towards the clinic with ongoing definitive phase 3 randomised placebo-controlled trials. However, there remain global challenges for the next decade. Conclusion: There is a need for more optimal animal models, greater industry support/sponsorship, increased use of juvenile toxicology, dose-ranging studies with pharmacokinetic-pharmacodynamic modelling, and well-designed clinical trials to avoid exposure to harmful medications or abandoning putative treatments. What is Known: • Therapeutic hypothermia is beneficial in neonatal hypoxic-ischemic encephalopathy. • Neonates with moderate or severe hypoxic-ischemic encephalopathy treated with therapeutic hypothermia still experience severe sequelae. What is New: • Erythropoietin, allopurinol, melatonin, cannabidiol, and exendin-4/exenatide show promise in conjunction with therapeutic hypothermia. • There is a need for more optimal animal models, greater industry support/sponsorship, increased use of juvenile toxicology, dose-ranging studies with pharmacokinetic-pharmacodynamic modelling, and well-designed clinical trials.
Collapse
Affiliation(s)
- Suresh Victor
- Centre for the Developing Brain, Department of Perinatal Imaging and Health, School of Biomedical Engineering and Imaging Sciences, King’s College London, 1st Floor, South Wing, St Thomas’ Hospital, Westmister Bridge Road, London, UK
| | - Eridan Rocha-Ferreira
- Centre for Perinatal Medicine and Health, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Ahad Rahim
- UCL School of Pharmacy, University College London, London, UK
| | - Henrik Hagberg
- Centre for Perinatal Medicine and Health, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - David Edwards
- Centre for the Developing Brain, Department of Perinatal Imaging and Health, School of Biomedical Engineering and Imaging Sciences, King’s College London, 1st Floor, South Wing, St Thomas’ Hospital, Westmister Bridge Road, London, UK
| |
Collapse
|
10
|
Sharma DS, Paddibhatla I, Raghuwanshi S, Malleswarapu M, Sangeeth A, Kovuru N, Dahariya S, Gautam DK, Pallepati A, Gutti RK. Endocannabinoid system: Role in blood cell development, neuroimmune interactions and associated disorders. J Neuroimmunol 2021; 353:577501. [PMID: 33571815 DOI: 10.1016/j.jneuroim.2021.577501] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 01/03/2021] [Accepted: 01/24/2021] [Indexed: 12/19/2022]
Abstract
The endocannabinoid system (ECS) is a complex physiological network involved in creating homeostasis and maintaining human health. Studies of the last 40 years have shown that endocannabinoids (ECs), a group of bioactive lipids, together with their set of receptors, function as one of the most important physiologic systems in human body. ECs and cannabinoid receptors (CBRs) are found throughout the body: in the brain tissues, immune cells, and in the peripheral organs and tissues as well. In recent years, ECs have emerged as key modulators of affect, neurotransmitter release, immune function, and several other physiological functions. This modulatory homoeostatic system operates in the regulation of brain activity and states of physical health and disease. In several research studies and patents the ECS has been recognised with neuro-protective properties thus it might be a target in neurodegenerative diseases. Most immune cells express these bioactive lipids and their receptors, recent data also highlight the immunomodulatory effects of endocannabinoids. Interplay of immune and nervous system has been recognized in past, recent studies suggest that ECS function as a bridge between neuronal and immune system. In several ongoing clinical trial studies, the ECS has also been placed in the anti-cancer drugs spotlight. This review summarizes the literature of cannabinoid ligands and their biosynthesis, cannabinoid receptors and their distribution, and the signaling pathways initiated by the binding of cannabinoid ligands to cannabinoid receptors. Further, this review highlights the functional role of cannabinoids and ECS in blood cell development, neuroimmune interactions and associated disorders. Moreover, we highlight the current state of knowledge of cannabinoid ligands as the mediators of neuroimmune interactions, which can be therapeutically effective for neuro-immune disorders and several diseases associated with neuroinflammation.
Collapse
Affiliation(s)
- Durga Shankar Sharma
- Department of Biochemistry, School of Life Sciences, University of Hyderabad, Gachibowli, Hyderabad 500046, Telangana, India
| | - Indira Paddibhatla
- Department of Biochemistry, School of Life Sciences, University of Hyderabad, Gachibowli, Hyderabad 500046, Telangana, India
| | - Sanjeev Raghuwanshi
- Department of Biochemistry, School of Life Sciences, University of Hyderabad, Gachibowli, Hyderabad 500046, Telangana, India
| | - Mahesh Malleswarapu
- Department of Biochemistry, School of Life Sciences, University of Hyderabad, Gachibowli, Hyderabad 500046, Telangana, India
| | - Anjali Sangeeth
- Department of Biochemistry, School of Life Sciences, University of Hyderabad, Gachibowli, Hyderabad 500046, Telangana, India
| | - Narasaiah Kovuru
- Department of Biochemistry, School of Life Sciences, University of Hyderabad, Gachibowli, Hyderabad 500046, Telangana, India
| | - Swati Dahariya
- Department of Biochemistry, School of Life Sciences, University of Hyderabad, Gachibowli, Hyderabad 500046, Telangana, India
| | - Dushyant Kumar Gautam
- Department of Biochemistry, School of Life Sciences, University of Hyderabad, Gachibowli, Hyderabad 500046, Telangana, India
| | - Aditya Pallepati
- Department of Biochemistry, School of Life Sciences, University of Hyderabad, Gachibowli, Hyderabad 500046, Telangana, India
| | - Ravi Kumar Gutti
- Department of Biochemistry, School of Life Sciences, University of Hyderabad, Gachibowli, Hyderabad 500046, Telangana, India.
| |
Collapse
|