1
|
Aloi N, Drago G, Ruggieri S, Cibella F, Colombo P, Longo V. Extracellular Vesicles and Immunity: At the Crossroads of Cell Communication. Int J Mol Sci 2024; 25:1205. [PMID: 38256278 PMCID: PMC10816988 DOI: 10.3390/ijms25021205] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 01/15/2024] [Accepted: 01/17/2024] [Indexed: 01/24/2024] Open
Abstract
Extracellular vesicles (EVs), comprising exosomes and microvesicles, are small membranous structures secreted by nearly all cell types. They have emerged as crucial mediators in intercellular communication, playing pivotal roles in diverse physiological and pathological processes, notably within the realm of immunity. These roles go beyond mere cellular interactions, as extracellular vesicles stand as versatile and dynamic components of immune regulation, impacting both innate and adaptive immunity. Their multifaceted involvement includes immune cell activation, antigen presentation, and immunomodulation, emphasising their significance in maintaining immune homeostasis and contributing to the pathogenesis of immune-related disorders. Extracellular vesicles participate in immunomodulation by delivering a wide array of bioactive molecules, including proteins, lipids, and nucleic acids, thereby influencing gene expression in target cells. This manuscript presents a comprehensive review that encompasses in vitro and in vivo studies aimed at elucidating the mechanisms through which EVs modulate human immunity. Understanding the intricate interplay between extracellular vesicles and immunity is imperative for unveiling novel therapeutic targets and diagnostic tools applicable to various immunological disorders, including autoimmune diseases, infectious diseases, and cancer. Furthermore, recognising the potential of EVs as versatile drug delivery vehicles holds significant promise for the future of immunotherapies.
Collapse
Affiliation(s)
| | | | | | | | - Paolo Colombo
- Institute for Biomedical Research and Innovation, National Research Council of Italy (IRIB-CNR), Via Ugo La Malfa 153, 90146 Palermo, Italy; (N.A.); (G.D.); (S.R.); (F.C.); (V.L.)
| | | |
Collapse
|
2
|
Zhao M, Guo J, Tian C, Yan M, Zhou Y, Liu C, Pang M, Du B, Cheng G. Dual-targeted nanoparticles with removing ROS inside and outside mitochondria for acute kidney injury treatment. NANOMEDICINE : NANOTECHNOLOGY, BIOLOGY, AND MEDICINE 2024; 55:102725. [PMID: 38007068 DOI: 10.1016/j.nano.2023.102725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 09/30/2023] [Accepted: 10/23/2023] [Indexed: 11/27/2023]
Abstract
Mitochondrial oxidative stress and inflammation are the main pathological features of acute kidney injury (AKI). However, systemic toxicity of anti-inflammatory drugs and low bioavailability of antioxidants limit the treatment of AKI. Here, the lipid micelle nanosystem modified with l-serine was designed to improve treatment of AKI. The micelle kernels coating the antioxidant drug 4-carboxybutyl triphenylph-osphine bromide-modified curcumin (Cur-TPP) and quercetin (Que). In the cisplatin (CDDP)-induced AKI model, the nanosystem protected mitochondrial structure and improved renal function. Compared to mono-targeted group, the mitochondrial ROS content of renal tubular epithelial cells acting in the dual-target group decreased about 1.66-fold in vitro, serum creatinine (Scr) and urea nitrogen (BUN) levels were reduced by 1.5 and 1.2 mmol/L in vivo, respectively. Mechanistic studies indicated that the nanosystem inhibited the inflammatory response by interfering with the NF-κB and Nrf2 pathways. This study provides an efficient and low-toxicity strategy for AKI therapy.
Collapse
Affiliation(s)
- Mengmeng Zhao
- School of Pharmaceutical Sciences, Zhengzhou University, Henan, Zhengzhou 450001, China
| | - Jialing Guo
- School of Pharmaceutical Sciences, Zhengzhou University, Henan, Zhengzhou 450001, China
| | - Chaoying Tian
- School of Pharmaceutical Sciences, Zhengzhou University, Henan, Zhengzhou 450001, China
| | - Mei Yan
- School of Pharmaceutical Sciences, Zhengzhou University, Henan, Zhengzhou 450001, China
| | - Yingying Zhou
- School of Pharmaceutical Sciences, Zhengzhou University, Henan, Zhengzhou 450001, China
| | - Chenxin Liu
- School of Pharmaceutical Sciences, Zhengzhou University, Henan, Zhengzhou 450001, China
| | - Mengxue Pang
- School of Pharmaceutical Sciences, Zhengzhou University, Henan, Zhengzhou 450001, China
| | - Bin Du
- School of Pharmaceutical Sciences, Zhengzhou University, Henan, Zhengzhou 450001, China.
| | - Genyang Cheng
- Department of Nephrology, the First Affiliated Hospital of Zhengzhou University, Henan, Zhengzhou 450052, China.
| |
Collapse
|
3
|
Bachmeier BE. Novel Insights into the Therapeutic Potential of Curcumin and Derivatives. Int J Mol Sci 2023; 24:ijms24108837. [PMID: 37240182 DOI: 10.3390/ijms24108837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Accepted: 04/24/2023] [Indexed: 05/28/2023] Open
Abstract
The polyphenol curcumin (diferuloylmethane) is extracted from the plant turmeric (Curcuma longa), and it is widely used as a spice component or coloring agent [...].
Collapse
Affiliation(s)
- Beatrice E Bachmeier
- Institute of Pharmaceutical Biology, Goethe University Frankfurt, 60438 Frankfurt am Main, Germany
| |
Collapse
|
4
|
The Development of Dyslipidemia in Chronic Kidney Disease and Associated Cardiovascular Damage, and the Protective Effects of Curcuminoids. Foods 2023; 12:foods12050921. [PMID: 36900438 PMCID: PMC10000737 DOI: 10.3390/foods12050921] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 02/07/2023] [Accepted: 02/09/2023] [Indexed: 02/24/2023] Open
Abstract
Chronic kidney disease (CKD) is a health problem that is constantly growing. This disease presents a diverse symptomatology that implies complex therapeutic management. One of its characteristic symptoms is dyslipidemia, which becomes a risk factor for developing cardiovascular diseases and increases the mortality of CKD patients. Various drugs, particularly those used for dyslipidemia, consumed in the course of CKD lead to side effects that delay the patient's recovery. Therefore, it is necessary to implement new therapies with natural compounds, such as curcuminoids (derived from the Curcuma longa plant), which can cushion the damage caused by the excessive use of medications. This manuscript aims to review the current evidence on the use of curcuminoids on dyslipidemia in CKD and CKD-induced cardiovascular disease (CVD). We first described oxidative stress, inflammation, fibrosis, and metabolic reprogramming as factors that induce dyslipidemia in CKD and their association with CVD development. We proposed the potential use of curcuminoids in CKD and their utilization in clinics to treat CKD-dyslipidemia.
Collapse
|
5
|
Synthesis of 6-styryldihydropyrimidinones and 6-styryldihydropyridinones via the respective 6-alkylphosphonates. Chem Heterocycl Compd (N Y) 2023. [DOI: 10.1007/s10593-023-03145-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
6
|
Chamani S, Moossavi M, Naghizadeh A, Abbasifard M, Majeed M, Johnston TP, Sahebkar A. Immunomodulatory effects of curcumin in systemic autoimmune diseases. Phytother Res 2022; 36:1616-1632. [PMID: 35302258 DOI: 10.1002/ptr.7417] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 01/27/2022] [Accepted: 01/30/2022] [Indexed: 12/23/2022]
Abstract
Systemic autoimmune diseases like rheumatoid arthritis, multiple sclerosis, and systemic lupus erythematosus represent various autoimmune conditions identified by immune system dysregulation. The activation of immune cells, auto-antigen outbreak, inflammation, and multi-organ impairment is observed in these disorders. The immune system is an essential complex network of cells and chemical mediators which defends the organism's integrity against foreign microorganisms, and its precise operation and stability are compulsory to avoid a wide range of medical complications. Curcumin is a phenolic ingredient extracted from turmeric and belongs to the Zingiberaceae, or ginger family. Curcumin has multiple functions, such as inhibiting inflammation, oxidative stress, tumor cell proliferation, cell death, and infection. Nevertheless, the immunomodulatory influence of curcumin on immunological reactions/processes remains mostly unknown. In the present narrative review, we sought to provide current information concerning the preclinical and clinical uses of curcumin in systemic autoimmune diseases.
Collapse
Affiliation(s)
- Sajjad Chamani
- Medical Toxicology and Drug Abuse Research Center (MTDRC), Birjand University of Medical Sciences (BUMS), Birjand, Iran.,Department of Immunology, Faculty of Medicine, Birjand University of Medical Sciences, Birjand, Iran
| | - Maryam Moossavi
- Department of Molecular Medicine, Birjand University of Medical Sciences, Birjand, Iran
| | - Ali Naghizadeh
- Medical Toxicology and Drug Abuse Research Center (MTDRC), Birjand University of Medical Sciences (BUMS), Birjand, Iran
| | - Mitra Abbasifard
- Immunology of Infectious Diseases Research Center, Research Institute of Basic Medical Sciences, Rafsanjan University of Medical Sciences, Rafsanjan, Iran.,Department of Internal Medicine, Ali-Ibn Abi-Talib Hospital, School of Medicine, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| | - Muhammed Majeed
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, India
| | - Thomas P Johnston
- Division of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Missouri-Kansas City, Kansas City, Missouri, USA
| | - Amirhossein Sahebkar
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.,Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.,School of Medicine, The University of Western Australia, Perth, Australia.,Department of Biotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
7
|
Mao CQ, Lu TL, Hao M, Zhao MT, Tong HJ, Ji D, Li L, Su LL, Gu W. Ultra-performance liquid chromatography-quadrupole/time-of-flight mass spectrometry based bile and urine metabonomics study on the ameliorative effects of Curcuma wenyujin rhizoma on acute blood stasis in rats. WORLD JOURNAL OF TRADITIONAL CHINESE MEDICINE 2022. [DOI: 10.4103/2311-8571.336836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
|
8
|
Mao CQ, Lu TL, Hao M, Zhao MT, Tong HJ, Ji D, Li L, Su LL, Gu W. Ultra-performance liquid chromatography-quadrupole/time-of-flight mass spectrometry based bile and urine metabonomics study on the ameliorative effects of Curcuma wenyujin rhizoma on acute blood stasis in rats. WORLD JOURNAL OF TRADITIONAL CHINESE MEDICINE 2022. [DOI: 10.4103/wjtcm.wjtcm_55_21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
|
9
|
Zhao M, Hao M, Tong H, Su L, Fei C, Gu W, Mao J, Lu T, Mao C. Screening of blood-activating active components from Curcuma wenyujin Y.H. Chen et C. Ling rhizome based on spectrum-effect relationship analysis and network pharmacology. J Chromatogr B Analyt Technol Biomed Life Sci 2021; 1188:123022. [PMID: 34933255 DOI: 10.1016/j.jchromb.2021.123022] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 10/09/2021] [Accepted: 10/30/2021] [Indexed: 10/19/2022]
Abstract
Curcuma wenyujin Y.H. Chen et C. Ling rhizome (also called EZhu in China) has long been used as plant medicine for its traditional effect on promoting blood circulation and remove blood stasis. However, the active components of EZhu are still unclear at present. This research is managed to investigate the pharmacodynamics material basis on removing blood stasis of EZhu by exploring the spectrum-effect relationship between UPLC-Q/TOF-MS fingerprints and pharmacologic actions. Hemorheology and related functional parameters were detected to evaluate the pharmacologic actions of EZhu. Relative content Changes of components in rat plasma were detected by UPLC-Q/TOF-MS. A compound-target-pathway network was built to predict the pharmacological activity of components in plasma. Then, bivariate correlation analysis (BCA) was used to explore the correlation degree between components in plasma and pharmacologic actions of EZhu. In UPLC-Q/TOF-MS fingerprints of rat plasma, 10 prototype components were identified. BCA results show that 8 components were concerned with the pharmacological activity for treating blood stasis syndrome (BSS) in varying degrees (R > 0.5, P < 0.05). Among them, zedoarofuran and curzerenone have shown correlation with more pharmacological indicators. The network predicted that 80 targets were closely related to 10 components, in which 48 targets were connected with 159 metabolic pathways including arachidonic acid metabolism, sphingolipid signaling pathway, and linoleic acid metabolism. Overall, this study provided a scientific basis for TCM quality control to ensure its safety and efficacy.
Collapse
Affiliation(s)
- Mengting Zhao
- College of pharmacy, Guizhou University of Traditional Chinese Medicine, Guizhou (550025), China; College of pharmacy, Zhejiang Chinese Medical University, Hangzhou (310053), China
| | - Min Hao
- College of pharmacy, Zhejiang Chinese Medical University, Hangzhou (310053), China
| | - Huangjin Tong
- Affiliated hospital of integrated traditional Chinese and western medicine, Nanjing university of Chinese medicine, Nanjing (210028), China; College of pharmacy, Nanjing University of Chinese medicine, Nanjing (210023), China
| | - Lianlin Su
- College of pharmacy, Nanjing University of Chinese medicine, Nanjing (210023), China
| | - Chenghao Fei
- College of pharmacy, Nanjing University of Chinese medicine, Nanjing (210023), China
| | - Wei Gu
- College of pharmacy, Nanjing University of Chinese medicine, Nanjing (210023), China
| | - Jing Mao
- School of Medicine and Life Sciences, Nanjing University of Chinese Medicine, Nanjing (210023), China
| | - Tulin Lu
- College of pharmacy, Nanjing University of Chinese medicine, Nanjing (210023), China.
| | - Chunqin Mao
- College of pharmacy, Nanjing University of Chinese medicine, Nanjing (210023), China.
| |
Collapse
|
10
|
Wang S, Zhao P, Zhang Y, Zhu L, Zhu J, Luo Y, Li Q. The Therapeutic Effects of Curcumin in Early Septic Acute Kidney Injury: An Experimental Study. Drug Des Devel Ther 2021; 15:4243-4255. [PMID: 34675487 PMCID: PMC8504871 DOI: 10.2147/dddt.s332623] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Accepted: 09/25/2021] [Indexed: 12/13/2022] Open
Abstract
PURPOSE Sepsis is the leading condition associated with acute kidney injury (AKI) in the hospital and intensive care unit (ICU), sepsis-induced AKI (S-AKI) is strongly associated with poor clinical outcomes. Curcumin possesses an ability to ameliorate renal injury from ischemia-reperfusion, but it is still unknown whether they have the ability to reduce S-AKI. The aim of this study was to investigate the protective effects of curcumin on S-AKI and to assess its therapeutic potential on renal function, inflammatory response, and microcirculatory perfusion. METHODS Male Sprague-Dawley (SD) rats underwent cecal ligation and puncture (CLP) to induce S-AKI and immediately received vehicle (CLP group) or curcumin (CLP+Cur group) after surgery. At 12 and 24h after surgery, serum indexes, inflammatory factors, cardiac output (CO), renal blood flow and microcirculatory flow were measured. RESULTS Serum levels of creatinine (Scr), cystatin C (CysC), IL-6 and TNF-α were significantly lower in the CLP+Cur group than those in the CLP group (P < 0.05). Treatment with curcumin improved renal microcirculation at 24h by measurement of contrast enhanced ultrasound (CEUS) quantitative parameters [peak intensity (PI); half of descending time (DT/2); area under curve (AUC); P < 0.05]. In histopathological analysis, treatment with curcumin reduced damage caused by CLP. CONCLUSION Curcumin can alleviate S-AKI in rats by improving renal microcirculatory perfusion and reducing inflammatory response. Curcumin may be a potential novel therapeutic agent for the prevention or reduction of S-AKI.
Collapse
Affiliation(s)
- Shuo Wang
- Medical School of Chinese PLA, Chinese PLA General Hospital, Beijing, People’s Republic of China
- Department of Ultrasound, The First Medical Center of Chinese PLA General Hospital, Beijing, People’s Republic of China
| | - Ping Zhao
- Medical School of Chinese PLA, Chinese PLA General Hospital, Beijing, People’s Republic of China
- Department of Ultrasound, The First Medical Center of Chinese PLA General Hospital, Beijing, People’s Republic of China
| | - Ying Zhang
- Department of Ultrasound, The First Medical Center of Chinese PLA General Hospital, Beijing, People’s Republic of China
| | - Lianhua Zhu
- Department of Ultrasound, The First Medical Center of Chinese PLA General Hospital, Beijing, People’s Republic of China
| | - Jianing Zhu
- Medical School of Chinese PLA, Chinese PLA General Hospital, Beijing, People’s Republic of China
- Department of Ultrasound, The First Medical Center of Chinese PLA General Hospital, Beijing, People’s Republic of China
| | - Yukun Luo
- Department of Ultrasound, The First Medical Center of Chinese PLA General Hospital, Beijing, People’s Republic of China
| | - Qiuyang Li
- Department of Ultrasound, The First Medical Center of Chinese PLA General Hospital, Beijing, People’s Republic of China
| |
Collapse
|
11
|
Hemshekhar M, Anaparti V, El-Gabalawy H, Mookherjee N. A bioavailable form of curcumin, in combination with vitamin-D- and omega-3-enriched diet, modifies disease onset and outcomes in a murine model of collagen-induced arthritis. Arthritis Res Ther 2021; 23:39. [PMID: 33494792 PMCID: PMC7836561 DOI: 10.1186/s13075-021-02423-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Accepted: 01/11/2021] [Indexed: 02/07/2023] Open
Abstract
OBJECTIVE Curcumin (CUR), vitamin D3 (D3), and omega-3-fatty acids (O3FA) individually modulate inflammation and pain in arthritis. Although these supplements are widely used, their combinatorial effects have not been defined. In this study, we examined the effects of a D3 and O3FA (VO)-enriched diet in conjunction with a highly bioavailable form of CUR (Cureit/Acumin™) in a collagen-induced arthritis (CIA) murine model. METHODS Male DBA/1J mice were acclimatized to VO-enriched diet and challenged with bovine collagen II (CII). Bioavailable CUR was administered daily by oral gavage from the onset of CII challenge. Disease severity was determined by monitoring joint thickness and standardized clinical score. Cellular infiltration and cartilage degradation in the joints were assessed by histology, serum cytokines profiled by Meso Scale Discovery multiplex assay, and joint matrix metalloproteinases examined by western blots. RESULTS CUR by itself significantly decreased disease severity by ~ 60%. Administration of CUR in CIA mice taking a VO-enriched diet decreased disease severity by > 80% and maximally delayed disease onset and progression. Some of the disease-modifying effects was mediated by CUR alone, e.g., suppression of serum anti-collagen antibodies and decrease of cellular infiltration and MMP abundance in the joints of CIA mice. Although CUR alone suppressed inflammatory cytokines in serum of CIA mice, the combination of CUR and VO diet significantly enhanced the suppression (> 2-fold compared to CUR) of TNF, IFN-γ, and MCP-1, all known to be associated with RA pathogenesis. CONCLUSION This study provides proof-of-concept that the combination of bioavailable CUR, vitamin D3, and O3FA substantially delays the development and severity of CIA. These findings provide a rationale for systematically evaluating these widely available supplements in individuals at risk for developing future RA.
Collapse
Affiliation(s)
- Mahadevappa Hemshekhar
- Manitoba Centre for Proteomics and Systems Biology, Department of Internal Medicine, University of Manitoba, 799 John Buhler Research Centre, 715 McDermot Ave, Winnipeg, MB, Canada
| | - Vidyanand Anaparti
- Manitoba Centre for Proteomics and Systems Biology, Department of Internal Medicine, University of Manitoba, 799 John Buhler Research Centre, 715 McDermot Ave, Winnipeg, MB, Canada
| | - Hani El-Gabalawy
- Manitoba Centre for Proteomics and Systems Biology, Department of Internal Medicine, University of Manitoba, 799 John Buhler Research Centre, 715 McDermot Ave, Winnipeg, MB, Canada.,Division of Rheumatology, Department of Internal Medicine, University of Manitoba, Winnipeg, MB, Canada.,Department of Immunology, University of Manitoba, Winnipeg, MB, R3E3P4, Canada
| | - Neeloffer Mookherjee
- Manitoba Centre for Proteomics and Systems Biology, Department of Internal Medicine, University of Manitoba, 799 John Buhler Research Centre, 715 McDermot Ave, Winnipeg, MB, Canada. .,Department of Immunology, University of Manitoba, Winnipeg, MB, R3E3P4, Canada.
| |
Collapse
|
12
|
Ortega A, Martinez-Arroyo O, Forner MJ, Cortes R. Exosomes as Drug Delivery Systems: Endogenous Nanovehicles for Treatment of Systemic Lupus Erythematosus. Pharmaceutics 2020; 13:pharmaceutics13010003. [PMID: 33374908 PMCID: PMC7821934 DOI: 10.3390/pharmaceutics13010003] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2020] [Revised: 12/17/2020] [Accepted: 12/18/2020] [Indexed: 02/07/2023] Open
Abstract
Exosomes, nanometer-sized lipid-bilayer-enclosed extracellular vesicles (EVs), have attracted increasing attention due to their inherent ability to shuttle proteins, lipids and genes between cells and their natural affinity to target cells. Their intrinsic features such as stability, biocompatibility, low immunogenicity and ability to overcome biological barriers, have prompted interest in using exosomes as drug delivery vehicles, especially for gene therapy. Evidence indicates that exosomes play roles in both immune stimulation and tolerance, regulating immune signaling and inflammation. To date, exosome-based nanocarriers delivering small molecule drugs have been developed to treat many prevalent autoimmune diseases. This review highlights the key features of exosomes as drug delivery vehicles, such as therapeutic cargo, use of targeting peptide, loading method and administration route with a broad focus. In addition, we outline the current state of evidence in the field of exosome-based drug delivery systems in systemic lupus erythematosus (SLE), evaluating exosomes derived from various cell types and engineered exosomes.
Collapse
Affiliation(s)
- Ana Ortega
- Cardiometabolic and Renal Risk Research Group, INCLIVA Biomedical Research Institute, 46010 Valencia, Spain; (A.O.); (O.M.-A.); (M.J.F.)
| | - Olga Martinez-Arroyo
- Cardiometabolic and Renal Risk Research Group, INCLIVA Biomedical Research Institute, 46010 Valencia, Spain; (A.O.); (O.M.-A.); (M.J.F.)
| | - Maria J. Forner
- Cardiometabolic and Renal Risk Research Group, INCLIVA Biomedical Research Institute, 46010 Valencia, Spain; (A.O.); (O.M.-A.); (M.J.F.)
- Internal Medicine Unit, Hospital Clinico Universitario, 46010 Valencia, Spain
| | - Raquel Cortes
- Cardiometabolic and Renal Risk Research Group, INCLIVA Biomedical Research Institute, 46010 Valencia, Spain; (A.O.); (O.M.-A.); (M.J.F.)
- Correspondence: ; Tel.: +34-96398-3916; Fax: +34-96398-7860
| |
Collapse
|
13
|
Ailioaie LM, Litscher G. Curcumin and Photobiomodulation in Chronic Viral Hepatitis and Hepatocellular Carcinoma. Int J Mol Sci 2020; 21:ijms21197150. [PMID: 32998270 PMCID: PMC7582680 DOI: 10.3390/ijms21197150] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 09/24/2020] [Accepted: 09/26/2020] [Indexed: 12/13/2022] Open
Abstract
Immune modulation is a very modern medical field for targeting viral infections. In the race to develop the best immune modulator against viruses, curcumin, as a natural product, is inexpensive, without side effects, and can stimulate very well certain areas of the human immune system. As a bright yellow component of turmeric spice, curcumin has been the subject of thousands of scientific and clinical studies in recent decades to prove its powerful antioxidant properties and anticancer effects. Curcumin has been shown to influence inter- and intracellular signaling pathways, with direct effects on gene expression of the antioxidant proteins and those that regulate the immunity. Experimental studies have shown that curcumin modulates several enzyme systems, reduces nitrosative stress, increases the antioxidant capacity, and decreases the lipid peroxidation, protecting against fatty liver pathogenesis and fibrotic changes. Hepatitis B virus (HBV) affects millions of people worldwide, having sometimes a dramatic evolution to chronic aggressive infection, cirrhosis, and hepatocellular carcinoma. All up-to-date treatments are limited, there is still a gap in the scientific knowledge, and a sterilization cure may not yet be possible with the removal of both covalently closed circular DNA (cccDNA) and the embedded HBV DNA. With a maximum light absorption at 420 nm, the cytotoxicity of curcumin as photosensitizer could be expanded by the intravenous blue laser blood irradiation (IVBLBI) or photobiomodulation in patients with chronic hepatitis B infection, Hepatitis B e-antigen (HBeAg)-positive, noncirrhotic, but nonresponsive to classical therapy. Photobiomodulation increases DNA repair by the biosynthesis of complex molecules with antioxidant properties, the outset of repairing enzyme systems and new phospholipids for regenerating the cell membranes. UltraBioavailable Curcumin and blue laser photobiomodulation could suppress the virus and control better the disease by reducing inflammation/fibrosis and stopping the progression of chronic hepatitis, reversing fibrosis, and diminishing the progression of cirrhosis, and decreasing the incidence of hepatocellular carcinoma. Photodynamic therapy with blue light and curcumin opens new avenues for the effective prevention and cure of chronic liver infections and hepatocellular carcinoma. Blue laser light and UltraBioavailable Curcumin could be a new valuable alternative for medical applications in chronic B viral hepatitis and hepatocarcinoma, saving millions of lives.
Collapse
MESH Headings
- Antineoplastic Agents, Phytogenic/therapeutic use
- Antioxidants/therapeutic use
- Carcinoma, Hepatocellular/drug therapy
- Carcinoma, Hepatocellular/etiology
- Carcinoma, Hepatocellular/radiotherapy
- Carcinoma, Hepatocellular/virology
- Curcumin/therapeutic use
- DNA Repair/radiation effects
- DNA, Circular/antagonists & inhibitors
- DNA, Circular/genetics
- DNA, Circular/metabolism
- DNA, Viral/antagonists & inhibitors
- DNA, Viral/genetics
- DNA, Viral/metabolism
- Hepatitis B e Antigens/genetics
- Hepatitis B e Antigens/immunology
- Hepatitis B virus/drug effects
- Hepatitis B virus/growth & development
- Hepatitis B virus/pathogenicity
- Hepatitis B virus/radiation effects
- Hepatitis B, Chronic/complications
- Hepatitis B, Chronic/drug therapy
- Hepatitis B, Chronic/radiotherapy
- Hepatitis B, Chronic/virology
- Humans
- Immunologic Factors/therapeutic use
- Liver/drug effects
- Liver/immunology
- Liver/pathology
- Liver/radiation effects
- Liver Cirrhosis/drug therapy
- Liver Cirrhosis/etiology
- Liver Cirrhosis/radiotherapy
- Liver Cirrhosis/virology
- Liver Neoplasms/drug therapy
- Liver Neoplasms/etiology
- Liver Neoplasms/radiotherapy
- Liver Neoplasms/virology
- Low-Level Light Therapy/methods
- Photosensitizing Agents/therapeutic use
Collapse
Affiliation(s)
- Laura Marinela Ailioaie
- Department of Medical Physics, Alexandru Ioan Cuza University, 11 Carol I Boulevard, 700506 Iasi, Romania;
- Ultramedical & Laser Clinic, 83 Arcu Street, 700135 Iasi, Romania
| | - Gerhard Litscher
- Research Unit of Biomedical Engineering in Anesthesia and Intensive Care Medicine, Research Unit for Complementary and Integrative Laser Medicine, and Traditional Chinese Medicine (TCM) Research Center Graz, Medical University of Graz, Auenbruggerplatz 39, 8036 Graz, Austria
- Correspondence: ; Tel.: +43-316-385-83907
| |
Collapse
|