1
|
Zhou T, Zhang C, Wang X, Lin J, Yu J, Liang Y, Guo H, Yang M, Shen X, Li J, Shi R, Wang Y, Yang J, Shu Z. Research on traditional Chinese medicine as an effective drug for promoting wound healing. JOURNAL OF ETHNOPHARMACOLOGY 2024; 332:118358. [PMID: 38763370 DOI: 10.1016/j.jep.2024.118358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Revised: 04/26/2024] [Accepted: 05/16/2024] [Indexed: 05/21/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE The incidence of skin trauma is high and the repair process is complex, often leading to poor healing and other issues, which can result in significant economic and social burdens. Traditional Chinese medicine (TCM) is a valuable resource with proven effectiveness and safety in wound repair, widely utilized in clinical practice. A systematic analysis of wound healing with a focus on TCM research progress holds both academic and clinical importance. AIM OF THE REVIEW This article reviews the research progress of TCM in promoting wound healing, and provides basic data for the development of innovative drugs that promote wound healing. MATERIALS AND METHODS This article provides a review of the literature from the past decade and conducts a thorough analysis of various databases that contain reports on the use of TCM for wound repair. The data for this systematic research was gathered from electronic databases including CNKI, SciFinder, and PubMed. The study explores and summarizes the research findings and patterns by creating relevant charts. RESULTS This study reviewed the mechanism of wound healing, experimental TCM methods to promote wound healing, the theory and mode of action of TCM to promote wound healing, the active ingredients of TCM that promote wound healing, the efficacy of TCM formulae to promote wound healing, and the potential toxicity of TCM and its antidotes. This study enriched the theory of TCM in promoting wound healing. CONCLUSION Skin wound healing is a complex process that can be influenced by various internal and external factors. This article offers a theoretical foundation for exploring and utilizing TCM resources that enhance wound repair. By analyzing a range of TCM that promote wound healing, the article highlights the clinical importance and future potential of these medicines in promoting wound healing.
Collapse
Affiliation(s)
- Tong Zhou
- School of Chinese Materia Medica, Guangdong Pharmaceutical University, Guangzhou, 510006, PR China; Key Laboratory of Cell Proliferation and Regulation Biology, Ministry of Education, Department of Biology, Faculty of Arts and Sciences, Beijing Normal University, Zhuhai, 519087, PR China
| | - Chongyang Zhang
- School of Chinese Materia Medica, Guangdong Pharmaceutical University, Guangzhou, 510006, PR China; Key Laboratory of Cell Proliferation and Regulation Biology, Ministry of Education, Department of Biology, Faculty of Arts and Sciences, Beijing Normal University, Zhuhai, 519087, PR China
| | - Xiao Wang
- School of Chinese Materia Medica, Guangdong Pharmaceutical University, Guangzhou, 510006, PR China; Key Laboratory of Cell Proliferation and Regulation Biology, Ministry of Education, Department of Biology, Faculty of Arts and Sciences, Beijing Normal University, Zhuhai, 519087, PR China
| | - Jiazi Lin
- School of Chinese Materia Medica, Guangdong Pharmaceutical University, Guangzhou, 510006, PR China; Key Laboratory of Cell Proliferation and Regulation Biology, Ministry of Education, Department of Biology, Faculty of Arts and Sciences, Beijing Normal University, Zhuhai, 519087, PR China
| | - Jiamin Yu
- School of Chinese Materia Medica, Guangdong Pharmaceutical University, Guangzhou, 510006, PR China; Key Laboratory of Cell Proliferation and Regulation Biology, Ministry of Education, Department of Biology, Faculty of Arts and Sciences, Beijing Normal University, Zhuhai, 519087, PR China
| | - Yefang Liang
- School of Chinese Materia Medica, Guangdong Pharmaceutical University, Guangzhou, 510006, PR China; Key Laboratory of Cell Proliferation and Regulation Biology, Ministry of Education, Department of Biology, Faculty of Arts and Sciences, Beijing Normal University, Zhuhai, 519087, PR China
| | - Huilin Guo
- School of Chinese Materia Medica, Guangdong Pharmaceutical University, Guangzhou, 510006, PR China; Key Laboratory of Cell Proliferation and Regulation Biology, Ministry of Education, Department of Biology, Faculty of Arts and Sciences, Beijing Normal University, Zhuhai, 519087, PR China
| | - Mengru Yang
- School of Chinese Materia Medica, Guangdong Pharmaceutical University, Guangzhou, 510006, PR China; Key Laboratory of Cell Proliferation and Regulation Biology, Ministry of Education, Department of Biology, Faculty of Arts and Sciences, Beijing Normal University, Zhuhai, 519087, PR China
| | - Xuejuan Shen
- School of Chinese Materia Medica, Guangdong Pharmaceutical University, Guangzhou, 510006, PR China; Key Laboratory of Cell Proliferation and Regulation Biology, Ministry of Education, Department of Biology, Faculty of Arts and Sciences, Beijing Normal University, Zhuhai, 519087, PR China
| | - Jianhua Li
- School of Chinese Materia Medica, Guangdong Pharmaceutical University, Guangzhou, 510006, PR China; Key Laboratory of Cell Proliferation and Regulation Biology, Ministry of Education, Department of Biology, Faculty of Arts and Sciences, Beijing Normal University, Zhuhai, 519087, PR China
| | - Ruixiang Shi
- School of Chinese Materia Medica, Guangdong Pharmaceutical University, Guangzhou, 510006, PR China; Key Laboratory of Cell Proliferation and Regulation Biology, Ministry of Education, Department of Biology, Faculty of Arts and Sciences, Beijing Normal University, Zhuhai, 519087, PR China
| | - Yi Wang
- School of Chinese Materia Medica, Guangdong Pharmaceutical University, Guangzhou, 510006, PR China.
| | - Ji Yang
- School of Chinese Materia Medica, Guangdong Pharmaceutical University, Guangzhou, 510006, PR China.
| | - Zunpeng Shu
- School of Chinese Materia Medica, Guangdong Pharmaceutical University, Guangzhou, 510006, PR China; Key Laboratory of Cell Proliferation and Regulation Biology, Ministry of Education, Department of Biology, Faculty of Arts and Sciences, Beijing Normal University, Zhuhai, 519087, PR China.
| |
Collapse
|
2
|
Shi X, Cao Y, Wang H, Zhao Q, Yan C, Li S, Jing L. Vaccarin Ameliorates Doxorubicin-Induced Cardiotoxicity via Inhibition of p38 MAPK Mediated Mitochondrial Dysfunction. J Cardiovasc Transl Res 2024; 17:1155-1171. [PMID: 38886316 PMCID: PMC11519163 DOI: 10.1007/s12265-024-10525-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Accepted: 05/16/2024] [Indexed: 06/20/2024]
Abstract
Doxorubicin is a frequently used chemotherapeutic agent for treating various malignancies. However, it leads to severe cardiotoxic side effects, such as heart failure, and elevates the risk of sudden cardiac death among cancer patients. While oxidative stress has been identified as the primary cause of doxorubicin-induced cardiotoxicity, therapeutic antioxidant approaches have yielded unsatisfactory outcomes. The aim of this study is to explore the therapeutic potential of vaccarin, an active flavonoid glycoside extracted from traditional Chinese herbal agent Semen Vaccariae, in doxorubicin-induced cardiotoxicity. We observed that vaccarin significantly ameliorates doxorubicin-induced heart dysfunction in mouse model and suppresses oxidative stress mediated cell apoptosis via specifically inhibiting the activation of p38 MAPK pathway. In vitro, we observed that vaccarin alleviates doxorubicin-induced mitochondrial membrane depolarization and ROS generation in H9c2 cell, but the p38 MAPK agonist anisomycin reverses these effects. Our findings provide a promising natural antioxidant to protect against DOX-induced cardiotoxicity.
Collapse
MESH Headings
- Animals
- p38 Mitogen-Activated Protein Kinases/metabolism
- p38 Mitogen-Activated Protein Kinases/antagonists & inhibitors
- Doxorubicin/toxicity
- Mitochondria, Heart/drug effects
- Mitochondria, Heart/enzymology
- Mitochondria, Heart/metabolism
- Mitochondria, Heart/pathology
- Cardiotoxicity
- Oxidative Stress/drug effects
- Myocytes, Cardiac/drug effects
- Myocytes, Cardiac/pathology
- Myocytes, Cardiac/enzymology
- Myocytes, Cardiac/metabolism
- Apoptosis/drug effects
- Disease Models, Animal
- Cell Line
- Male
- Antioxidants/pharmacology
- Membrane Potential, Mitochondrial/drug effects
- Mice, Inbred C57BL
- Reactive Oxygen Species/metabolism
- Signal Transduction/drug effects
- Heart Diseases/chemically induced
- Heart Diseases/prevention & control
- Heart Diseases/pathology
- Heart Diseases/metabolism
- Heart Diseases/enzymology
- Rats
- Ventricular Function, Left/drug effects
- Glycosides/pharmacology
- Protein Kinase Inhibitors/pharmacology
Collapse
Affiliation(s)
- Xin Shi
- Department of Cardiology, First Affiliated Hospital of Harbin Medical University, 23 Youzheng Street, Nangang Qu, Harbin, 150001, Heilongjiang, China
| | - Yang Cao
- Department of Cardiology, First Affiliated Hospital of Harbin Medical University, 23 Youzheng Street, Nangang Qu, Harbin, 150001, Heilongjiang, China
| | - Hongyu Wang
- Department of Cardiology, First Affiliated Hospital of Harbin Medical University, 23 Youzheng Street, Nangang Qu, Harbin, 150001, Heilongjiang, China
| | - Qi Zhao
- Department of Cardiology, First Affiliated Hospital of Harbin Medical University, 23 Youzheng Street, Nangang Qu, Harbin, 150001, Heilongjiang, China
| | - Cong Yan
- Department of Cardiology, First Affiliated Hospital of Harbin Medical University, 23 Youzheng Street, Nangang Qu, Harbin, 150001, Heilongjiang, China
| | - Shengzhu Li
- Department of Cardiology, First Affiliated Hospital of Harbin Medical University, 23 Youzheng Street, Nangang Qu, Harbin, 150001, Heilongjiang, China
| | - Ling Jing
- Department of Cardiology, First Affiliated Hospital of Harbin Medical University, 23 Youzheng Street, Nangang Qu, Harbin, 150001, Heilongjiang, China.
| |
Collapse
|
3
|
Zhu X, Meng X, Du X, Zhao C, Ma X, Wen Y, Zhang S, Hou B, Cai W, Du B, Han Z, Xu F, Qiu L, Sun H. Vaccarin suppresses diabetic nephropathy through inhibiting the EGFR/ERK1/2 signaling pathway. Acta Biochim Biophys Sin (Shanghai) 2024. [PMID: 39205643 DOI: 10.3724/abbs.2024141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024] Open
Abstract
Diabetic nephropathy (DN) is recognized as one of the primary causes of chronic kidney disease and end-stage renal disease. Vaccarin (VAC) confers favorable effects on cardiovascular and metabolic diseases, including type 2 diabetes mellitus (T2DM). Nonetheless, the potential role and mechanism of VAC in the etiology of DN have yet to be completely elucidated. In this study, a classical mouse model of T2DM is experimentally induced via a high-fat diet (HFD)/streptozocin (STZ) regimen. Renal histological changes are assessed via H&E staining. Masson staining and immunohistochemistry (IHC) are employed to assess renal fibrosis. RT-PCR is utilized to quantify the mRNA levels of renal fibrosis, oxidative stress and inflammation markers. The levels of malondialdehyde (MDA) and reactive oxygen species (ROS), as well as the content of glutathione peroxidase (GSH-Px), are measured. The protein expressions of collagen I, TGF-β1, α-SMA, E-cadherin, Nrf2, catalase, SOD3, SOD2, SOD1, p-ERK, p-EGFR (Y845), p-EGFR (Y1173), p-NFκB P65, t-ERK, t-EGFR and t-NFκB P65 are detected by western blot analysis. Our results reveal that VAC has a beneficial effect on DN mice by improving renal function and mitigating histological damage. This is achieved through its inhibition of renal fibrosis, inflammatory cytokine overproduction, and ROS generation. Moreover, VAC treatment effectively suppresses the process of epithelial-mesenchymal transition (EMT), a crucial characteristic of renal fibrosis, in high glucose (HG)-induced HK-2 cells. Network pharmacology analysis and molecular docking identify epidermal growth factor receptor (EGFR) as a potential target for VAC. Amino acid site mutations reveal that Lys-879, Ile-918, and Ala-920 of EGFR may mediate the direct binding of VAC to EGFR. In support of these findings, VAC reduces the phosphorylation levels of both EGFR and its downstream mediator, extracellular signal-regulated kinase 1/2 (ERK1/2), in diabetic kidneys and HG-treated HK-2 cells. Notably, blocking either EGFR or ERK1/2 yields renal benefits similar to those observed with VAC treatment. Therefore, this study reveals that VAC attenuates renal damage via inactivation of the EGFR/ERK1/2 signaling axis in T2DM patients.
Collapse
Affiliation(s)
- Xuexue Zhu
- Department of Basic Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi 214122, China
| | - Xinyu Meng
- Department of Basic Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi 214122, China
| | - Xinyao Du
- Department of Basic Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi 214122, China
| | - Chenyang Zhao
- Department of Basic Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi 214122, China
| | - Xinyu Ma
- Department of Basic Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi 214122, China
| | - Yuanyuan Wen
- Department of Basic Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi 214122, China
| | - Shijie Zhang
- Department of Basic Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi 214122, China
| | - Bao Hou
- Department of Basic Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi 214122, China
| | - Weiwei Cai
- Department of Basic Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi 214122, China
| | - Bin Du
- Department of Basic Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi 214122, China
| | - Zhijun Han
- Department of Clinical Research Center, Jiangnan University Medical Center, Wuxi 214001, China
| | - Fei Xu
- Department of Basic Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi 214122, China
| | - Liying Qiu
- Department of Basic Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi 214122, China
| | - Haijian Sun
- Department of Basic Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi 214122, China
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China
| |
Collapse
|
4
|
He S, Liu J, Hu L, Zhan Y, Tong H, Zhu H, Guo H, Sun H, Liu M. Design, Synthesis, Biological Evaluation and Molecular Docking Studies of Quercetin-Linker-H 2 S Donor Conjugates for the Treatment of Diabetes and Wound Healing. Chem Biodivers 2023; 20:e202300513. [PMID: 37329234 DOI: 10.1002/cbdv.202300513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2023] [Revised: 06/13/2023] [Accepted: 06/15/2023] [Indexed: 06/18/2023]
Abstract
Based on the use of quercetin for treating diabetes and H2 S for promoting wound healing, a series of three quercetin-linker-H2 S donor conjugates was designed, synthesized and characterized by 1 H-NMR, 13 C-NMR and MS. Meanwhile, in vitro evaluation of these compounds was also researched by IR-HepG2 treatment experiment, MTT assay, scratch test and tubule formation experiment. The three compounds could be used to treat insulin resistance induced by high glucose and promote the proliferation of human umbilical vein endothelial cells, wound healing, and the formation of tubules in vitro under a high-glucose environment. Our results illustrate that these compounds could be used to treat diabetes and promote wound healing at the same time. Furthermore, molecular docking study results of the compounds were consistent with the evaluated biological activity. In vivo research of compounds is underway.
Collapse
Affiliation(s)
- Shibo He
- Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Hubei University of Technology, 430068, Wuhan, China
- National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei Key Laboratory of Industrial Microbiology, Hubei University of Technology, 430068, Wuhan, China
| | - Jian Liu
- Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Hubei University of Technology, 430068, Wuhan, China
- National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei Key Laboratory of Industrial Microbiology, Hubei University of Technology, 430068, Wuhan, China
| | - Lifei Hu
- Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Hubei University of Technology, 430068, Wuhan, China
- Jing Brand Chizhengtang Pharmaceutical Co., Ltd., 435100, Huangshi, China
| | - Yifeng Zhan
- Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Hubei University of Technology, 430068, Wuhan, China
- National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei Key Laboratory of Industrial Microbiology, Hubei University of Technology, 430068, Wuhan, China
| | - Hang Tong
- Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Hubei University of Technology, 430068, Wuhan, China
- National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei Key Laboratory of Industrial Microbiology, Hubei University of Technology, 430068, Wuhan, China
| | - Hongda Zhu
- Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Hubei University of Technology, 430068, Wuhan, China
- National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei Key Laboratory of Industrial Microbiology, Hubei University of Technology, 430068, Wuhan, China
| | - Huiling Guo
- Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Hubei University of Technology, 430068, Wuhan, China
- National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei Key Laboratory of Industrial Microbiology, Hubei University of Technology, 430068, Wuhan, China
| | - Hongmei Sun
- Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Hubei University of Technology, 430068, Wuhan, China
- National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei Key Laboratory of Industrial Microbiology, Hubei University of Technology, 430068, Wuhan, China
| | - Mingxing Liu
- Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Hubei University of Technology, 430068, Wuhan, China
- National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei Key Laboratory of Industrial Microbiology, Hubei University of Technology, 430068, Wuhan, China
| |
Collapse
|
5
|
LncRNA TTN-AS1 exacerbates extracellular matrix accumulation via miR-493-3p/FOXP2 axis in diabetic nephropathy. J Genet 2022. [DOI: 10.1007/s12041-022-01397-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
6
|
Li T, Yu X, Zhu X, Wen Y, Zhu M, Cai W, Hou B, Xu F, Qiu L. Vaccarin alleviates endothelial inflammatory injury in diabetes by mediating miR-570-3p/HDAC1 pathway. Front Pharmacol 2022; 13:956247. [PMID: 36120375 PMCID: PMC9475173 DOI: 10.3389/fphar.2022.956247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Accepted: 08/11/2022] [Indexed: 11/13/2022] Open
Abstract
Vaccarin is a flavonoid glycoside, which has a variety of pharmacological properties and plays a protective role in diabetes and its complications, but its mechanism is unclear. In this study, we aim to investigate whether histone deacetylase 1(HDAC1), a gene that plays a pivotal role in regulating eukaryotic gene expression, is the target of miR-570-3p in diabetic vascular endothelium, and the potential molecular mechanism of vaccarin regulating endothelial inflammatory injury through miR-570-3p/HDAC1 pathway. The HFD and streptozotocin (STZ) induced diabetes mice model, a classical type 2 diabetic model, was established. The aorta of diabetic mice displayed a decrease of miR-570-3p, the elevation of HDAC1, and inflammatory injury, which were alleviated by vaccarin. Next, we employed the role of vaccarin in regulating endothelial cells miR-570-3p and HDAC1 under hyperglycemia conditions in vitro. We discovered that overexpression of HDAC1 counteracted the inhibitory effect of vaccarin on inflammatory injury in human umbilical vein endothelial cells (HUVECs). Manipulation of miRNA levels in HUVECs was achieved by transfecting cells with miR-570-3p mimic and inhibitor. Overexpression of miR-570-3p could decrease the expression of downstream components of HDAC1 including TNF-α, IL-1β, and malondialdehyde, while increasing GSH-Px activity in HUVECs under hyperglycemic conditions. Nevertheless, such phenomenon was completely reversed by miR-570-3p inhibitor, and administration of miR-570-3p inhibitor could block the inhibition of vaccarin on HDAC1 and inflammatory injury. Luciferase reporter assay confirmed the 3′- UTR of the HDAC1 gene was a direct target of miR-570-3p. In summary, our findings suggest that vaccarin alleviates endothelial inflammatory injury in diabetes by mediating miR-570-3p/HDAC1 pathway. Our study provides a new pathogenic link between deregulation of miRNA expression in the vascular endothelium of diabetes and inflammatory injury and provides new ideas, insights, and choices for the scope of application and medicinal value of vaccarin and some potential biomarkers or targets in diabetic endothelial dysfunction and vascular complications.
Collapse
Affiliation(s)
- Taiyue Li
- Wuxi Medical School, Jiangnan University, Wuxi, Jiangsu, China
| | - Xiaoyi Yu
- Wuxi Medical School, Jiangnan University, Wuxi, Jiangsu, China
| | - Xuerui Zhu
- School of Life Science and Health Engineering, Jiangnan University, Wuxi, Jiangsu, China
| | - Yuanyuan Wen
- Wuxi Medical School, Jiangnan University, Wuxi, Jiangsu, China
| | - Meizhen Zhu
- Wuxi Medical School, Jiangnan University, Wuxi, Jiangsu, China
| | - Weiwei Cai
- Wuxi Medical School, Jiangnan University, Wuxi, Jiangsu, China
| | - Bao Hou
- Wuxi Medical School, Jiangnan University, Wuxi, Jiangsu, China
| | - Fei Xu
- Wuxi Medical School, Jiangnan University, Wuxi, Jiangsu, China
- *Correspondence: Fei Xu, ; Liying Qiu,
| | - Liying Qiu
- Wuxi Medical School, Jiangnan University, Wuxi, Jiangsu, China
- *Correspondence: Fei Xu, ; Liying Qiu,
| |
Collapse
|
7
|
Zang L, Gao F, Huang A, Zhang Y, Luo Y, Chen L, Mao N. Icariin inhibits epithelial mesenchymal transition of renal tubular epithelial cells via regulating the miR-122-5p/FOXP2 axis in diabetic nephropathy rats. J Pharmacol Sci 2022; 148:204-213. [PMID: 35063135 DOI: 10.1016/j.jphs.2021.10.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 09/27/2021] [Accepted: 10/01/2021] [Indexed: 12/25/2022] Open
Abstract
Epithelial mesenchymal transition (EMT) of renal tubular epithelial cells (RTECs) dominates the pathology of diabetic nephropathy (DN). microRNAs (miRNAs) can influence the fate of DN via regulation of EMT. This study aimed to analyze the role of Icariin (ICA) in EMT of RTECs, hoping to provide theoretical basis for DN management. The DN rat model was established using streptozocin, followed by ICA treatment, histopathological observation, and detection of creatinine and blood urea nitrogen. In vitro cell models were established using high glucose (HG), followed by assessment of cell proliferation, apoptosis, and migration, and E-cadherin, α-SMA, miR-122-5p, and FOXP2 expressions. Cells were transfected with miR-122-5p mimics or si-FOXP2 for joint experiments with ICA. The targeting relationship between miR-122-5p and FOXP2 was verified. ICA repaired renal dysfunctions and glomerular structure abnormities of DN rats in a dose-dependent manner. In vitro, ICA improved proliferation while suppressed migration, apoptosis, and EMT of RTECs. miR-122-5p was up-regulated in DN rats and suppressed by ICA, and miR-122-5p targeted FOXP2. miR-122-5p up-regulation or FOXP2 down-regulation reversed the protective effects of ICA on HG-induced RTECs. Overall, our finding ascertained that ICA inhibited miR-122-5p to promote FOXP2 transcription, thereby attenuating EMT of RTECs and renal injury in DN rats.
Collapse
Affiliation(s)
- Li Zang
- Department of Nephrology, The First Affiliated Hospital of Chengdu Medical College, Chengdu City, 610500, Sichuan province, China
| | - Fang Gao
- Department of Nephrology, The First Affiliated Hospital of Chengdu Medical College, Chengdu City, 610500, Sichuan province, China
| | - Aijing Huang
- Department of Nephrology, The First Affiliated Hospital of Chengdu Medical College, Chengdu City, 610500, Sichuan province, China
| | - Yalan Zhang
- Department of Nephrology, The First Affiliated Hospital of Chengdu Medical College, Chengdu City, 610500, Sichuan province, China
| | - Yangyan Luo
- Department of Nephrology, The First Affiliated Hospital of Chengdu Medical College, Chengdu City, 610500, Sichuan province, China
| | - Lijia Chen
- Department of Nephrology, The First Affiliated Hospital of Chengdu Medical College, Chengdu City, 610500, Sichuan province, China
| | - Nan Mao
- Department of Nephrology, The First Affiliated Hospital of Chengdu Medical College, Chengdu City, 610500, Sichuan province, China.
| |
Collapse
|
8
|
Ke W, Chen Y, Zheng L, Zhang Y, Wu Y, Li L. miR-134-5p promotes inflammation and apoptosis of trophoblast cells via regulating FOXP2 transcription in gestational diabetes mellitus. Bioengineered 2022; 13:319-330. [PMID: 34969354 PMCID: PMC8805916 DOI: 10.1080/21655979.2021.2001219] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 10/27/2021] [Accepted: 10/28/2021] [Indexed: 02/05/2023] Open
Abstract
Gestational diabetes mellitus (GDM) is a prevalent and risky pregnant complication which warrants targeted therapy for restriction the inflammation and apoptosis of trophoblast cells. This study sought to analyze the aberrant expression and regulatory mechanism of microRNA (miR)-134-5p in GDM. The miR-134-5p expression in the serum of GDM patients and normal participants was detected via qRT-PCR, followed by receiver operating characteristic (ROC) curve analysis. In vitro GDM cell model was established in the HTR-8/SVneo cells using 25 mmol/L glucose, followed by transfection with miR-134-5p inhibitor and si-Forkhead box p2(FOXP2). The miR-134-5p and FOXP2 expressions, TNF-α, IL-1β, and IL-10 levels, cell proliferation, migration, and apoptosis were determined by a combination of qRT-PCR, western blot, ELISA, and cell counting Kit-8, Transwell assay, and flow cytometry. The binding relationship between miR-134-5p and FOXP2 was predicted and verified. Our results revealed that miR-134-5p was increased in the serum of GDM patients and could serve as a critical diagnostic marker for GDM. Moreover, miR-134-5p was upregulated in the high glucose (HG)-induced HTR-8/SVneo cells. The miR-134-5p inhibition suppressed the inflammation and apoptosis of HG-induced HTR-8/SVneo cells. miR-134-5p inhibited FOXP2 expression. FOXP2 expression was decreased in GDM. FOXP2 inhibition attenuated the function of miR-134-5p in HG-induced HTR-8/SVneo cells. Overall, miR-134-5p inhibited the FOXP2 expression to facilitate the inflammation and apoptosis of trophoblast cells, thereby exacerbating GDM.
Collapse
Affiliation(s)
- Weiqi Ke
- Department of Anesthesiology, The First Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong Province, China
| | - Yixiang Chen
- Department of Gynecology and Obstetrics, The First Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong Province, China
| | - Lijing Zheng
- Department of Gynecology and Obstetrics, The First Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong Province, China
| | - Yuting Zhang
- Department of Gynecology and Obstetrics, The First Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong Province, China
| | - Yudan Wu
- Department of Gynecology and Obstetrics, The First Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong Province, China
| | - Li Li
- Department of Gynecology and Obstetrics, The First Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong Province, China
- Department of Gynecology and Obstetrics, The First Affiliated Hospital of Shantou University Medical College, No.57 Changping Road, Shantou, Guangdong Province, China
| |
Collapse
|
9
|
Liu Y, Xiong W, Wang CW, Shi JP, Shi ZQ, Zhou JD. Resveratrol promotes skin wound healing by regulating the miR-212/CASP8 axis. J Transl Med 2021; 101:1363-1370. [PMID: 34234270 DOI: 10.1038/s41374-021-00621-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2020] [Revised: 05/18/2021] [Accepted: 05/20/2021] [Indexed: 11/09/2022] Open
Abstract
The wound-healing process is a natural response to burn injury. Resveratrol (RES) may have potential as a therapy for wound healing, but how and whether RES regulates skin repair remains poorly understood. Human epidermal keratinocyte (HaCaT) cells were treated with lipopolysaccharide (LPS), and a mouse skin wound-healing model was established. Cell viability and apoptosis were analyzed by 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2-H-tetrazolium bromide or flow cytometry. Cell proliferation was assessed by cell viability and colony-formation analyses. Cell migration was tested by wound-healing analysis. The microRNA-212 (miR-212) and caspase-8 (CASP8) levels were determined by quantitative reverse transcription polymerase chain reaction and western blotting. The correlation between miR-212 and CASP8 was analyzed by dual-luciferase reporter analysis. Skin wound healing in mice was assessed by measuring the wound area and gap after hematoxylin-eosin (HE) staining. RES reduced the LPS-induced reduction in viability and apoptosis in HaCaT cells. miR-212 expression was reduced by LPS and increased by exposure to RES. RES promoted cell proliferation and migration after LPS treatment by increasing miR-212 levels. CASP8 was a target of miR-212. CASP8 silencing promoted cell proliferation and migration, which was reversed by miR-212 knockdown in LPS-treated HaCaT cells. RES promoted skin wound healing in mice, which was reduced by miR-212 knockdown. Thus, RES facilitates cell proliferation and migration in LPS-treated HaCaT cells and promotes skin wound-healing in a mouse model by regulating the miR-212/CASP8 axis.
Collapse
Affiliation(s)
- Yu Liu
- Postdoctoral Research Station of Clinical Medicine, The Third Xiangya Hospital, Central South University, Changsha, 410000, Hunan Province, P.R. China
- Department of Plastic Surgery, The Third Xiangya Hospital, Central South University, Changsha, 410000, Hunan Province, P.R. China
- Inner Mongolia Medical University, Hohhot, 010000, Inner Mongolia Autonomous Region, P.R. China
| | - Wu Xiong
- Department of Burn & Plastic Surgery, The First Affiliated Hospital of Hunan University of Chinese Medicine, Changsha, 410007, Hunan Province, P.R. China
| | - Chu-Wang Wang
- Department of Plastic Surgery, The Third Xiangya Hospital, Central South University, Changsha, 410000, Hunan Province, P.R. China
| | - Jian-Ping Shi
- Inner Mongolia Medical University, Hohhot, 010000, Inner Mongolia Autonomous Region, P.R. China
| | - Zhi-Qiang Shi
- Inner Mongolia Medical University, Hohhot, 010000, Inner Mongolia Autonomous Region, P.R. China
| | - Jian-Da Zhou
- Department of Plastic Surgery, The Third Xiangya Hospital, Central South University, Changsha, 410000, Hunan Province, P.R. China.
| |
Collapse
|