1
|
Frąk W, Dąbek B, Balcerczyk-Lis M, Motor J, Radzioch E, Młynarska E, Rysz J, Franczyk B. Role of Uremic Toxins, Oxidative Stress, and Renal Fibrosis in Chronic Kidney Disease. Antioxidants (Basel) 2024; 13:687. [PMID: 38929126 PMCID: PMC11200916 DOI: 10.3390/antiox13060687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Revised: 05/20/2024] [Accepted: 05/25/2024] [Indexed: 06/28/2024] Open
Abstract
Affecting millions of people worldwide, chronic kidney disease is a serious medical problem. It results in a decrease in glomerular filtration rate below 60 mL/min/1.73 m, albuminuria, abnormalities in urine sediment and pathologies detected by imaging studies lasting a minimum of 3 months. Patients with CKD develop uremia, and as a result of the accumulation of uremic toxins in the body, patients can be expected to suffer from a number of medical consequences such as progression of CKD with renal fibrosis, development of atherosclerosis or increased incidence of cardiovascular events. Another key element in the pathogenesis of CKD is oxidative stress, resulting from an imbalance between the production of antioxidants and the production of reactive oxygen species. Oxidative stress contributes to damage to cellular proteins, lipids and DNA and increases inflammation, perpetuating kidney dysfunction. Additionally, renal fibrogenesis involving the accumulation of fibrous tissue in the kidneys occurs. In our review, we also included examples of forms of therapy for CKD. To improve the condition of CKD patients, pharmacotherapy can be used, as described in our review. Among the drugs that improve the prognosis of patients with CKD, we can include: GLP-1 analogues, SGLT2 inhibitors, Finerenone monoclonal antibody-Canakinumab and Sacubitril/Valsartan.
Collapse
Affiliation(s)
- Weronika Frąk
- Department of Nephrocardiology, Medical Univeristy of Lodz, ul. Zeromskiego 113, 90-549 Lodz, Poland
| | - Bartłomiej Dąbek
- Department of Nephrocardiology, Medical Univeristy of Lodz, ul. Zeromskiego 113, 90-549 Lodz, Poland
| | - Marta Balcerczyk-Lis
- Department of Nephrocardiology, Medical Univeristy of Lodz, ul. Zeromskiego 113, 90-549 Lodz, Poland
| | - Jakub Motor
- Department of Nephrocardiology, Medical Univeristy of Lodz, ul. Zeromskiego 113, 90-549 Lodz, Poland
| | - Ewa Radzioch
- Department of Nephrocardiology, Medical Univeristy of Lodz, ul. Zeromskiego 113, 90-549 Lodz, Poland
| | - Ewelina Młynarska
- Department of Nephrocardiology, Medical Univeristy of Lodz, ul. Zeromskiego 113, 90-549 Lodz, Poland
| | - Jacek Rysz
- Department of Nephrology, Hypertension and Family Medicine, Medical University of Lodz, ul. Zeromskiego 113, 90-549 Lodz, Poland
| | - Beata Franczyk
- Department of Nephrocardiology, Medical Univeristy of Lodz, ul. Zeromskiego 113, 90-549 Lodz, Poland
| |
Collapse
|
2
|
Xie H, Yang N, Yu C, Lu L. Uremic toxins mediate kidney diseases: the role of aryl hydrocarbon receptor. Cell Mol Biol Lett 2024; 29:38. [PMID: 38491448 PMCID: PMC10943832 DOI: 10.1186/s11658-024-00550-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Accepted: 02/19/2024] [Indexed: 03/18/2024] Open
Abstract
Aryl hydrocarbon receptor (AhR) was originally identified as an environmental sensor that responds to pollutants. Subsequent research has revealed that AhR recognizes multiple exogenous and endogenous molecules, including uremic toxins retained in the body due to the decline in renal function. Therefore, AhR is also considered to be a uremic toxin receptor. As a ligand-activated transcriptional factor, the activation of AhR is involved in cell differentiation and senescence, lipid metabolism and fibrogenesis. The accumulation of uremic toxins in the body is hazardous to all tissues and organs. The identification of the endogenous uremic toxin receptor opens the door to investigating the precise role and molecular mechanism of tissue and organ damage induced by uremic toxins. This review focuses on summarizing recent findings on the role of AhR activation induced by uremic toxins in chronic kidney disease, diabetic nephropathy and acute kidney injury. Furthermore, potential clinical approaches to mitigate the effects of uremic toxins are explored herein, such as enhancing uremic toxin clearance through dialysis, reducing uremic toxin production through dietary interventions or microbial manipulation, and manipulating metabolic pathways induced by uremic toxins through controlling AhR signaling. This information may also shed light on the mechanism of uremic toxin-induced injury to other organs, and provide insights into clinical approaches to manipulate the accumulated uremic toxins.
Collapse
Affiliation(s)
- Hongyan Xie
- Department of Nephrology, Tongji Hospital, Tongji University School of Medicine, 389 Xincun Road, Shanghai, 200065, China
| | - Ninghao Yang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Fudan University, 138 Yixueyuan Road, Shanghai, 200032, China
| | - Chen Yu
- Department of Nephrology, Tongji Hospital, Tongji University School of Medicine, 389 Xincun Road, Shanghai, 200065, China.
| | - Limin Lu
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Fudan University, 138 Yixueyuan Road, Shanghai, 200032, China.
| |
Collapse
|
3
|
Hui Y, Zhao J, Yu Z, Wang Y, Qin Y, Zhang Y, Xing Y, Han M, Wang A, Guo S, Yuan J, Zhao Y, Ning X, Sun S. The Role of Tryptophan Metabolism in the Occurrence and Progression of Acute and Chronic Kidney Diseases. Mol Nutr Food Res 2023; 67:e2300218. [PMID: 37691068 DOI: 10.1002/mnfr.202300218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 07/10/2023] [Indexed: 09/12/2023]
Abstract
Acute kidney injury (AKI) and chronic kidney disease (CKD) are common kidney diseases in clinics with high morbidity and mortality, but their pathogenesis is intricate. Tryptophan (Trp) is a fundamental amino acid for humans, and its metabolism produces various bioactive substances involved in the pathophysiology of AKI and CKD. Metabolomic studies manifest that Trp metabolites like kynurenine (KYN), 5-hydroxyindoleacetic acid (5-HIAA), and indoxyl sulfate (IS) increase in AKI or CKD and act as biomarkers that facilitate the early identification of diseases. Meanwhile, KYN and IS act as ligands to exacerbate kidney damage by activating aryl hydrocarbon receptor (AhR) signal transduction. The reduction of renal function can cause the accumulation of Trp metabolites which in turn accelerate the progression of AKI or CKD. Besides, gut dysbiosis induces the expansion of Enterobacteriaceae family to produce excessive IS, which cannot be excreted due to the deterioration of renal function. The application of Trp metabolism as a target in AKI and CKD will also be elaborated. Thus, this study aims to elucidate Trp metabolism in the development of AKI and CKD, and explores the relative treatment strategies by targeting Trp from the perspective of metabolomics to provide a reference for their diagnosis and prevention.
Collapse
Affiliation(s)
- Yueqing Hui
- Department of Nephrology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, 710032, China
| | - Jin Zhao
- Department of Nephrology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, 710032, China
| | - Zixian Yu
- Department of Nephrology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, 710032, China
| | - Yuwei Wang
- Department of Nephrology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, 710032, China
- Department of Postgraduate Student, Xi'an Medical University, Xi'an, Shaanxi, 710021, China
| | - Yunlong Qin
- Department of Nephrology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, 710032, China
- Department of Nephrology, 980th Hospital of PLA Joint Logistical Support Force (Bethune International Peace Hospital), Shijiazhuang, Hebei, 050082, China
| | - Yumeng Zhang
- Department of Nephrology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, 710032, China
- Department of Postgraduate Student, Xi'an Medical University, Xi'an, Shaanxi, 710021, China
| | - Yan Xing
- Department of Nephrology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, 710032, China
| | - Mei Han
- Department of Nephrology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, 710032, China
- Department of Postgraduate Student, Xi'an Medical University, Xi'an, Shaanxi, 710021, China
| | - Anjing Wang
- Department of Nephrology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, 710032, China
- Department of Postgraduate Student, Xi'an Medical University, Xi'an, Shaanxi, 710021, China
| | - Shuxian Guo
- Department of Nephrology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, 710032, China
| | - Jinguo Yuan
- Department of Nephrology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, 710032, China
| | - Yueru Zhao
- School of Clinical Medicine, Health Science Center, Xi'an Jiaotong University, Xi'an, Shaanxi, 710049, China
| | - Xiaoxuan Ning
- Department of Geriatric, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, 710032, China
| | - Shiren Sun
- Department of Nephrology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, 710032, China
| |
Collapse
|
4
|
Chen C, Hu X, Chen X. Saikosaponin A protects against uremic toxin indole‑3 acetic acid‑induced damage to the myocardium. Mol Med Rep 2023; 28:159. [PMID: 37417356 PMCID: PMC10407609 DOI: 10.3892/mmr.2023.13046] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Accepted: 05/17/2023] [Indexed: 07/08/2023] Open
Abstract
Chronic kidney disease (CKD)‑associated cardiac injury is a common complication in patients with CKD. Indole‑3 acetic acid (IAA) is a uremic toxin that injures the cardiovascular system. Saikosaponin A (SSA) protects against pressure overload‑induced cardiac fibrosis. However, the role and molecular mechanisms of IAA and SSA in CKD‑associated cardiac injury remain unclear. The present study investigated the effects of IAA and SSA on CKD‑associated cardiac injury in neonatal mouse cardiomyocytes and a mouse model of CKD. The expression of tripartite motif‑containing protein 16 (Trim16), receptor interacting protein kinase 2 (RIP2) and phosphorylated‑p38 were assessed using western blotting. The ubiquitination of RIP2 was measured by coimmunoprecipitation, and mouse cardiac structure and function were evaluated using hematoxylin and eosin staining and echocardiography. The results demonstrated that, SSA inhibited IAA‑induced cardiomyocyte hypertrophy, upregulated Trim16 expression, downregulated RIP2 expression and decreased p38 phosphorylation. Furthermore, Trim16 mediated SSA‑induced degradation of RIP2 by ubiquitination. In a mouse model of IAA‑induced CKD‑associated cardiac injury, SSA upregulated the protein expression levels of Trim16 and downregulated those of RIP2. Moreover, SSA alleviated heart hypertrophy and diastolic dysfunction in IAA‑treated mice. Taken together, these results suggest that SSA is a protective agent against IAA‑induced CKD‑associated cardiac injury and that Trim16‑mediated ubiquitination‑related degradation of RIP2 and p38 phosphorylation may contribute to the development of CKD‑associated cardiac injury.
Collapse
Affiliation(s)
- Cheng Chen
- Department of Medical Science, Yangzhou Polytechnic College, Yangzhou, Jiangsu 225127, P.R. China
| | - Xiaoyuan Hu
- Department of General Surgery, The First Affiliated Hospital of Soochow University, Soochow University, Suzhou, Jiangsu 215006, P.R. China
| | - Xinguang Chen
- Section of Pacing and Electrophysiology, Division of Cardiology, The First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi 341000, P.R. China
| |
Collapse
|
5
|
García-Martínez Y, Borriello M, Capolongo G, Ingrosso D, Perna AF. The Gut Microbiota in Kidney Transplantation: A Target for Personalized Therapy? BIOLOGY 2023; 12:biology12020163. [PMID: 36829442 PMCID: PMC9952448 DOI: 10.3390/biology12020163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 01/15/2023] [Accepted: 01/17/2023] [Indexed: 01/22/2023]
Abstract
Kidney transplantation improves quality of life, morbidity, and mortality of patients with kidney failure. However, integrated immunosuppressive therapy required to preserve graft function is associated with the development of post-transplant complications, including infections, altered immunosuppressive metabolism, gastrointestinal toxicity, and diarrhea. The gut microbiota has emerged as a potential therapeutic target for personalizing immunosuppressive therapy and managing post-transplant complications. This review reports current evidence on gut microbial dysbiosis in kidney transplant recipients, alterations in their gut microbiota associated with kidney transplantation outcomes, and the application of gut microbiota intervention therapies in treating post-transplant complications.
Collapse
Affiliation(s)
- Yuselys García-Martínez
- Department of Translational Medical Science, University of Campania “Luigi Vanvitelli”, Via Pansini, Bldg 17, 80131 Naples, Italy
- Correspondence:
| | - Margherita Borriello
- Department of Precision Medicine, University of Campania “Luigi Vanvitelli”, Via L. De Crecchio 7, 80138 Naples, Italy
| | - Giovanna Capolongo
- Department of Translational Medical Science, University of Campania “Luigi Vanvitelli”, Via Pansini, Bldg 17, 80131 Naples, Italy
| | - Diego Ingrosso
- Department of Precision Medicine, University of Campania “Luigi Vanvitelli”, Via L. De Crecchio 7, 80138 Naples, Italy
| | - Alessandra F. Perna
- Department of Translational Medical Science, University of Campania “Luigi Vanvitelli”, Via Pansini, Bldg 17, 80131 Naples, Italy
| |
Collapse
|
6
|
Liabeuf S, Drueke T, Massy Z. Rôle des toxines urémiques dans la genèse des complications de la maladie rénale chronique. BULLETIN DE L'ACADÉMIE NATIONALE DE MÉDECINE 2023. [DOI: 10.1016/j.banm.2022.10.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
|
7
|
Yang CE, Wang YN, Hua MR, Miao H, Zhao YY, Cao G. Aryl hydrocarbon receptor: From pathogenesis to therapeutic targets in aging-related tissue fibrosis. Ageing Res Rev 2022; 79:101662. [PMID: 35688331 DOI: 10.1016/j.arr.2022.101662] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 04/22/2022] [Accepted: 06/02/2022] [Indexed: 11/27/2022]
Abstract
Aging promotes chronic inflammation, which contributes to fibrosis and decreases organ function. Fibrosis, the excessive synthesis and deposition of extracellular matrix components, is the main cause of most chronic diseases including aging-related organ failure. Organ fibrosis in the heart, liver, and kidneys is the final manifestation of many chronic diseases. The aryl hydrocarbon receptor (AHR) is a cytoplasmic receptor and highly conserved transcription factor that is activated by a variety of small-molecule ligands to affect a wide array of tissue homeostasis functions. In recent years, mounting evidence has revealed that AHR plays an important role in multi-organ fibrosis initiation, progression, and therapy. In this review, we summarise the relationship between AHR and the pathogenesis of aging-related tissue fibrosis, and further discuss how AHR modulates tissue fibrosis by regulating transforming growth factor-β signalling, immune response, and mitochondrial function, which may offer novel targets for the prevention and treatment of this condition.
Collapse
Affiliation(s)
- Chang-E Yang
- Faculty of Life Science & Medicine, Northwest University, No. 229 Taibai North Road, Xi'an, Shaanxi 710069, China
| | - Yan-Ni Wang
- Faculty of Life Science & Medicine, Northwest University, No. 229 Taibai North Road, Xi'an, Shaanxi 710069, China
| | - Meng-Ru Hua
- Faculty of Life Science & Medicine, Northwest University, No. 229 Taibai North Road, Xi'an, Shaanxi 710069, China
| | - Hua Miao
- Faculty of Life Science & Medicine, Northwest University, No. 229 Taibai North Road, Xi'an, Shaanxi 710069, China.
| | - Ying-Yong Zhao
- Faculty of Life Science & Medicine, Northwest University, No. 229 Taibai North Road, Xi'an, Shaanxi 710069, China.
| | - Gang Cao
- School of Pharmacy, Zhejiang Chinese Medical University, No. 548 Binwen Road, Hangzhou, Zhejiang 310053, China.
| |
Collapse
|
8
|
Yu HX, Feng Z, Lin W, Yang K, Liu RQ, Li JQ, Liu XY, Pei M, Yang HT. Ongoing Clinical Trials in Aging-Related Tissue Fibrosis and New Findings Related to AhR Pathways. Aging Dis 2022; 13:732-752. [PMID: 35656117 PMCID: PMC9116921 DOI: 10.14336/ad.2021.1105] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Accepted: 11/05/2021] [Indexed: 11/06/2022] Open
Abstract
Fibrosis is a pathological manifestation of wound healing that replaces dead/damaged tissue with collagen-rich scar tissue to maintain homeostasis, and complications from fibrosis contribute to nearly half of all deaths in the industrialized world. Ageing is closely associated with a progressive decline in organ function, and the prevalence of tissue fibrosis dramatically increases with age. Despite the heavy clinical and economic burden of organ fibrosis as the population ages, to date, there is a paucity of therapeutic strategies that are specifically designed to slow fibrosis. Aryl hydrocarbon receptor (AhR) is an environment-sensing transcription factor that exacerbates aging phenotypes in different tissues that has been brought back into the spotlight again with economic development since AhR could interact with persistent organic pollutants derived from incomplete waste combustion. In addition, gut microbiota dysbiosis plays a pivotal role in the pathogenesis of numerous diseases, and microbiota-associated tryptophan metabolites are dedicated contributors to fibrogenesis by acting as AhR ligands. Therefore, a better understanding of the effects of tryptophan metabolites on fibrosis modulation through AhR may facilitate the exploitation of new therapeutic avenues for patients with organ fibrosis. In this review, we primarily focus on how tryptophan-derived metabolites are involved in renal fibrosis, idiopathic pulmonary fibrosis, hepatic fibrosis and cardiac fibrosis. Moreover, a series of ongoing clinical trials are highlighted.
Collapse
Affiliation(s)
- Hang-Xing Yu
- 1Department of Nephrology, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China.,2National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| | - Zhe Feng
- 3Shaanxi University of Chinese Medicine, Xianyang, Shaanxi, China
| | - Wei Lin
- 1Department of Nephrology, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China.,2National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| | - Kang Yang
- 4Kidney Disease Treatment Center, The first affiliated hospital of Henan university of CM, Zhengzhou, Henan, China
| | - Rui-Qi Liu
- 1Department of Nephrology, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China.,2National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| | - Jia-Qi Li
- 1Department of Nephrology, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China.,2National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| | - Xin-Yue Liu
- 1Department of Nephrology, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China.,2National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| | - Ming Pei
- 1Department of Nephrology, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China.,2National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| | - Hong-Tao Yang
- 1Department of Nephrology, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China.,2National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| |
Collapse
|
9
|
The Interplay between Uremic Toxins and Albumin, Membrane Transporters and Drug Interaction. Toxins (Basel) 2022; 14:toxins14030177. [PMID: 35324674 PMCID: PMC8949274 DOI: 10.3390/toxins14030177] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 02/21/2022] [Accepted: 02/24/2022] [Indexed: 01/10/2023] Open
Abstract
Uremic toxins are a heterogeneous group of molecules that accumulate in the body due to the progression of chronic kidney disease (CKD). These toxins are associated with kidney dysfunction and the development of comorbidities in patients with CKD, being only partially eliminated by dialysis therapies. Importantly, drugs used in clinical treatments may affect the levels of uremic toxins, their tissue disposition, and even their elimination through the interaction of both with proteins such as albumin and cell membrane transporters. In this context, protein-bound uremic toxins (PBUTs) are highlighted for their high affinity for albumin, the most abundant serum protein with multiple binding sites and an ability to interact with drugs. Membrane transporters mediate the cellular influx and efflux of various uremic toxins, which may also compete with drugs as substrates, and both may alter transporter activity or expression. Therefore, this review explores the interaction mechanisms between uremic toxins and albumin, as well as membrane transporters, considering their potential relationship with drugs used in clinical practice.
Collapse
|
10
|
Curran CS, Kopp JB. Aryl Hydrocarbon Receptor Mechanisms Affecting Chronic Kidney Disease. Front Pharmacol 2022; 13:782199. [PMID: 35237156 PMCID: PMC8882872 DOI: 10.3389/fphar.2022.782199] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Accepted: 01/14/2022] [Indexed: 12/25/2022] Open
Abstract
The aryl hydrocarbon receptor (AHR) is a basic helix-loop-helix transcription factor that binds diverse endogenous and xenobiotic ligands, which regulate AHR stability, transcriptional activity, and cell signaling. AHR activity is strongly implicated throughout the course of chronic kidney disease (CKD). Many diverse organic molecules bind and activate AHR and these ligands are reported to either promote glomerular and tubular damage or protect against kidney injury. AHR crosstalk with estrogen, peroxisome proliferator-activated receptor-γ, and NF-κB pathways may contribute to the diversity of AHR responses during the various forms and stages of CKD. The roles of AHR in kidney fibrosis, metabolism and the renin angiotensin system are described to offer insight into CKD pathogenesis and therapies.
Collapse
Affiliation(s)
- Colleen S. Curran
- Critical Care Medicine Department, Clinical Center, NIH, Bethesda, MD, United States
| | - Jeffrey B. Kopp
- Kidney Disease Section, NIDDK, NIH, Bethesda, MD, United States
| |
Collapse
|
11
|
Cernaro V, Calabrese V, Loddo S, Corsaro R, Macaione V, Ferlazzo VT, Cigala RM, Crea F, De Stefano C, Gembillo G, Romeo A, Longhitano E, Santoro D, Buemi M, Benvenga S. Indole-3-acetic acid correlates with monocyte-to-high-density lipoprotein (HDL) ratio (MHR) in chronic kidney disease patients. Int Urol Nephrol 2022; 54:2355-2364. [PMID: 35147839 DOI: 10.1007/s11255-022-03137-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2021] [Accepted: 01/30/2022] [Indexed: 10/19/2022]
Abstract
PURPOSE Indole-3-acetic acid is a protein-bound indolic uremic toxin deriving from tryptophan metabolism. Increased levels are associated with higher thrombotic risk and both cardiovascular and all-cause mortality. An emerging biomarker of cardiovascular disease is the monocyte-to-high-density lipoprotein ratio (MHR). The main purpose of this study was to investigate the association of indole-3-acetic acid with MHR and other markers of cardiovascular risk in patients with chronic kidney disease (CKD). METHODS We enrolled 61 non-dialysis CKD patients and 6 dialysis patients. Indole-3-acetic acid levels were measured with ELISA technique. RESULTS In the whole cohort of 67 patients, indole-3-acetic acid was directly related to Ca × P (ρ = 0.256; P = 0.0365) and MHR (ρ = 0.321; P = 0.0082). In the 40 patients with previous cardiovascular events, indole-3-acetic acid correlated with uric acid (r = 0.3952; P = 0.0116) and MHR (ρ = 0.380; P = 0.0157). MHR was related with fibrinogen (ρ = 0.426; P = 0.0010), arterial hypertension (ρ = 0.274; P = 0.0251), C-reactive protein (ρ = 0.332; P = 0.0061), gender (ρ = - 0.375; P = 0.0017; 0 = male, 1 = female), and CKD stage (ρ = 0.260; P = 0.0337). A multiple regression analysis suggested that indole-3-acetic acid might be an independent predictor of MHR. CONCLUSION This study shows a significant association between indole-3-acetic acid and MHR. Prospective studies are required to evaluate if decreasing indole-3-acetic acid concentrations may reduce MHR levels and cardiovascular events and improve clinical outcomes.
Collapse
Affiliation(s)
- Valeria Cernaro
- Unit of Nephrology and Dialysis, Department of Clinical and Experimental Medicine, University of Messina, Via Consolare Valeria n. 1, 98124, Messina, Italy.
| | - Vincenzo Calabrese
- Unit of Nephrology and Dialysis, Department of Clinical and Experimental Medicine, University of Messina, Via Consolare Valeria n. 1, 98124, Messina, Italy
| | - Saverio Loddo
- Department of Clinical and Experimental Medicine, University of Messina, Messina, Italy
| | - Roberta Corsaro
- Department of Clinical and Experimental Medicine, University of Messina, Messina, Italy
| | - Vincenzo Macaione
- Department of Clinical and Experimental Medicine, University of Messina, Messina, Italy
| | | | - Rosalia Maria Cigala
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy
| | - Francesco Crea
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy
| | - Concetta De Stefano
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy
| | - Guido Gembillo
- Unit of Nephrology and Dialysis, Department of Clinical and Experimental Medicine, University of Messina, Via Consolare Valeria n. 1, 98124, Messina, Italy
| | - Adolfo Romeo
- Unit of Nephrology and Dialysis, Department of Clinical and Experimental Medicine, University of Messina, Via Consolare Valeria n. 1, 98124, Messina, Italy
| | - Elisa Longhitano
- Unit of Nephrology and Dialysis, Department of Clinical and Experimental Medicine, University of Messina, Via Consolare Valeria n. 1, 98124, Messina, Italy
| | - Domenico Santoro
- Unit of Nephrology and Dialysis, Department of Clinical and Experimental Medicine, University of Messina, Via Consolare Valeria n. 1, 98124, Messina, Italy
| | - Michele Buemi
- Unit of Nephrology and Dialysis, Department of Clinical and Experimental Medicine, University of Messina, Via Consolare Valeria n. 1, 98124, Messina, Italy
| | - Salvatore Benvenga
- Endocrinology, Department of Clinical and Experimental Medicine, University of Messina, Messina, Italy.,Master Program on Childhood, Adolescent and Women's Endocrine Health, University of Messina, Messina, Italy.,Interdepartmental Program of Molecular and Clinical Endocrinology, and Women's Endocrine Health, University Hospital, Policlinico Universitario G. Martino, Messina, Italy
| |
Collapse
|
12
|
Liabeuf S, Pepin M, Franssen CFM, Viggiano D, Carriazo S, Gansevoort RT, Gesualdo L, Hafez G, Malyszko J, Mayer C, Nitsch D, Ortiz A, Pešić V, Wiecek A, Massy ZA. Chronic kidney disease and neurological disorders: are uraemic toxins the missing piece of the puzzle? Nephrol Dial Transplant 2021; 37:ii33-ii44. [PMID: 34718753 PMCID: PMC8713157 DOI: 10.1093/ndt/gfab223] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Indexed: 02/07/2023] Open
Abstract
Chronic kidney disease (CKD) perturbs the crosstalk with others organs, with the interaction between the kidneys and the heart having been studied most intensively. However, a growing body of data indicates that there is an association between kidney dysfunction and disorders of the central nervous system. In epidemiological studies, CKD is associated with a high prevalence of neurological complications, such as cerebrovascular disorders, movement disorders, cognitive impairment and depression. Along with traditional cardiovascular risk factors (such as diabetes, inflammation, hypertension and dyslipidaemia), non-traditional risk factors related to kidney damage (such as uraemic toxins) may predispose patients with CKD to neurological disorders. There is increasing evidence to show that uraemic toxins, for example indoxyl sulphate, have a neurotoxic effect. A better understanding of factors responsible for the elevated prevalence of neurological disorders among patients with CKD might facilitate the development of novel treatments. Here, we review (i) the potential clinical impact of CKD on cerebrovascular and neurological complications, (ii) the mechanisms underlying the uraemic toxins' putative action (based on pre-clinical and clinical research) and (iii) the potential impact of these findings on patient care.
Collapse
Affiliation(s)
- Sophie Liabeuf
- Department of Pharmacology, Amiens University Medical Center, Amiens, France
- MP3CV Laboratory, EA7517, University of Picardie Jules Verne, Amiens, France
| | - Marion Pepin
- Université Paris-Saclay, UVSQ, Inserm, Clinical Epidemiology Team, CESP (Centre de Recherche en Epidémiologie et Santé des Populations), Villejuif, France
- Department of Geriatrics, Ambroise Paré University Medical Center, APHP, Boulogne-Billancourt, France
| | - Casper F M Franssen
- Department of Nephrology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Davide Viggiano
- Department of Nephrology, University of Campania “Luigi Vanvitelli”, Naples, Italy
| | - Sol Carriazo
- Department of Nephrology and Hypertension, IIS-Fundacion Jimenez Diaz UAM, Madrid, Spain
| | - Ron T Gansevoort
- Department of Nephrology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Loreto Gesualdo
- Department of Emergency and Organ Transplantation, University of Bari “Aldo Moro”, Bari, Italy
| | - Gaye Hafez
- Department of Pharmacology, Faculty of Pharmacy, Altinbas University, Istanbul, Turkey
| | - Jolanta Malyszko
- Department of Nephrology, Dialysis and Internal Medicine, Medical University of Warsaw, Warsaw, Poland
| | - Christopher Mayer
- Center for Health and Bioresources, Biomedical Systems, AIT Austrian Institute of Technology, Vienna, Austria
| | - Dorothea Nitsch
- Faculty of Epidemiology and Population Health, London School of Hygiene & Tropical Medicine, London, UK
| | - Alberto Ortiz
- Department of Nephrology and Hypertension, IIS-Fundacion Jimenez Diaz UAM, Madrid, Spain
| | - Vesna Pešić
- Faculty of Pharmacy, University of Belgrade, Belgrade, Serbia
| | - Andrzej Wiecek
- Department of Nephrology, Transplantation and Internal Medicine, Medical University of Silesia, in Katowice, Katowice, Poland
| | - Ziad A Massy
- Université Paris-Saclay, UVSQ, Inserm, Clinical Epidemiology Team, CESP (Centre de Recherche en Epidémiologie et Santé des Populations), Villejuif, France
- Department of Nephrology, Ambroise Paré University Medical Center, APHP, Boulogne-Billancourt/Paris, France
| |
Collapse
|
13
|
Cheddani L, Haymann JP, Liabeuf S, Tabibzadeh N, Boffa JJ, Letavernier E, Essig M, Drüeke TB, Delahousse M, Massy ZA. Less arterial stiffness in kidney transplant recipients than chronic kidney disease patients matched for renal function. Clin Kidney J 2021; 14:1244-1254. [PMID: 34094521 PMCID: PMC8173621 DOI: 10.1093/ckj/sfaa120] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Accepted: 05/27/2020] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Chronic kidney disease is associated with a high cardiovascular risk. Compared with glomerular filtration rate-matched CKD patients (CKDps), we previously reported a 2.7-fold greater risk of global mortality among kidney transplant recipients (KTRs). We then examined aortic stiffness [evaluated by carotid-femoral pulse wave velocity (CF-PWV)] and cardiovascular risk in KTRs compared with CKDps with comparable measured glomerular filtration rate (mGFR). METHODS We analysed CF-PWV in two cohorts: TransplanTest (KTRs) and NephroTest (CKDps). Propensity scores were calculated including six variables: mGFR, age, sex, mean blood pressure (MBP), body mass index (BMI) and heart rate. After propensity score matching, we included 137 KTRs and 226 CKDps. Descriptive data were completed by logistic regression for CF-PWV values higher than the median (>10.6 m/s). RESULTS At 12 months post-transplant, KTRs had significantly lower CF-PWV than CKDps (10.1 versus 11.0 m/s, P = 0.008) despite no difference at 3 months post-transplant (10.5 versus 11.0 m/s, P = 0.242). A lower occurrence of high arterial stiffness was noted among KTRs compared with CKDps (38.0% versus 57.1%, P < 0.001). It was especially associated with lower mGFR, older age, higher BMI, higher MBP, diabetes and higher serum parathyroid hormone levels. After adjustment, the odds ratio for the risk of high arterial stiffness in KTRs was 0.40 (95% confidence interval 0.23-0.68, P < 0.001). CONCLUSIONS Aortic stiffness was significantly less marked in KTRs 1 year post-transplant than in CKDps matched for GFR and other variables. This observation is compatible with the view that the pathogenesis of post-transplant cardiovascular disease differs, at least in part, from that of CKD per se.
Collapse
Affiliation(s)
- Lynda Cheddani
- Université Paris Saclay (Paris Sud et Versailles Saint Quentin en Yvelines), INSERM U1018, Equipe 5, CESP (Centre de Recherche en Épidémiologie et Santé des Populations), France
- Service de Néphrologie et Dialyse, Assistance Publique—Hopitaux de Paris (APHP), Hôpital Ambroise Paré, Boulogne Billancourt, France
| | - Jean Philippe Haymann
- Service d’Explorations Fonctionnelles Multidisciplinaires, Assistance Publique—Hopitaux de Paris (APHP), Hôpital Tenon, Paris, France
- Sorbonne Université, INSERM, UMR_S 1155, APHP, Hôpital Tenon, Paris, France
| | - Sophie Liabeuf
- Service de Pharmacologie Clinique, Centre Hospitalo Universitaire Amiens, Amiens, France
- Laboratoire MP3CV, EA 7517, Université Jules Vernes de Picardie, CURS, Amiens, France
| | - Nahid Tabibzadeh
- Service d’Explorations Fonctionnelles Multidisciplinaires, Assistance Publique—Hopitaux de Paris (APHP), Hôpital Tenon, Paris, France
- Sorbonne Université, INSERM, UMR_S 1155, APHP, Hôpital Tenon, Paris, France
| | - Jean-Jacques Boffa
- Sorbonne Université, INSERM, UMR_S 1155, APHP, Hôpital Tenon, Paris, France
- Service de Néphrologie et Dialyse, Assistance Publique—Hopitaux de Paris (APHP), Hôpital Tenon, Paris, France
| | - Emmanuel Letavernier
- Service d’Explorations Fonctionnelles Multidisciplinaires, Assistance Publique—Hopitaux de Paris (APHP), Hôpital Tenon, Paris, France
- Sorbonne Université, INSERM, UMR_S 1155, APHP, Hôpital Tenon, Paris, France
| | - Marie Essig
- Université Paris Saclay (Paris Sud et Versailles Saint Quentin en Yvelines), INSERM U1018, Equipe 5, CESP (Centre de Recherche en Épidémiologie et Santé des Populations), France
- Service de Néphrologie et Dialyse, Assistance Publique—Hopitaux de Paris (APHP), Hôpital Ambroise Paré, Boulogne Billancourt, France
| | - Tilman B Drüeke
- Université Paris Saclay (Paris Sud et Versailles Saint Quentin en Yvelines), INSERM U1018, Equipe 5, CESP (Centre de Recherche en Épidémiologie et Santé des Populations), France
| | - Michel Delahousse
- Service de Néphrologie et Transplantation Rénale, Hôpital Foch, Suresnes, France
| | - Ziad A Massy
- Université Paris Saclay (Paris Sud et Versailles Saint Quentin en Yvelines), INSERM U1018, Equipe 5, CESP (Centre de Recherche en Épidémiologie et Santé des Populations), France
- Service de Néphrologie et Dialyse, Assistance Publique—Hopitaux de Paris (APHP), Hôpital Ambroise Paré, Boulogne Billancourt, France
| |
Collapse
|
14
|
Uremic Toxins, Oxidative Stress, Atherosclerosis in Chronic Kidney Disease, and Kidney Transplantation. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:6651367. [PMID: 33628373 PMCID: PMC7895596 DOI: 10.1155/2021/6651367] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Revised: 01/25/2021] [Accepted: 01/29/2021] [Indexed: 12/21/2022]
Abstract
Patients with chronic kidney disease (CKD) are at a high risk for cardiovascular disease (CVD), and approximately half of all deaths among patients with CKD are a direct result of CVD. The premature cardiovascular disease extends from mild to moderate CKD stages, and the severity of CVD and the risk of death increase with a decline in kidney function. Successful kidney transplantation significantly decreases the risk of death relative to long-term dialysis treatment; nevertheless, the prevalence of CVD remains high and is responsible for approximately 20-35% of mortality in renal transplant recipients. The prevalence of traditional and nontraditional risk factors for CVD is higher in patients with CKD and transplant recipients compared with the general population; however, it can only partly explain the highly increased cardiovascular burden in CKD patients. Nontraditional risk factors, unique to CKD patients, include proteinuria, disturbed calcium, and phosphate metabolism, anemia, fluid overload, and accumulation of uremic toxins. This accumulation of uremic toxins is associated with systemic alterations including inflammation and oxidative stress which are considered crucial in CKD progression and CKD-related CVD. Kidney transplantation can mitigate the impact of some of these nontraditional factors, but they typically persist to some degree following transplantation. Taking into consideration the scarcity of data on uremic waste products, oxidative stress, and their relation to atherosclerosis in renal transplantation, in the review, we discussed the impact of uremic toxins on vascular dysfunction in CKD patients and kidney transplant recipients. Special attention was paid to the role of native and transplanted kidney function.
Collapse
|
15
|
Glorieux G, Vanholder R, Van Biesen W, Pletinck A, Schepers E, Neirynck N, Speeckaert M, De Bacquer D, Verbeke F. Free p-cresyl sulfate shows the highest association with cardiovascular outcome in chronic kidney disease. Nephrol Dial Transplant 2021; 36:998-1005. [DOI: 10.1093/ndt/gfab004] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Indexed: 12/13/2022] Open
Abstract
Abstract
Background
Several protein-bound uraemic toxins (PBUTs) have been associated with cardiovascular (CV) and all-cause mortality in chronic kidney disease (CKD) but the degree to which this is the case per individual PBUT and the pathophysiological mechanism have only partially been unraveled.
Methods
We compared the prognostic value of both total and free concentrations of five PBUTs [p-cresyl sulfate (pCS), p-cresyl glucuronide, indoxyl sulfate, indole acetic acid and hippuric acid] in a cohort of 523 patients with non-dialysis CKD Stages G1–G5. Patients were followed prospectively for the occurrence of a fatal or non-fatal CV event as the primary endpoint and a number of other major complications as secondary endpoints. In addition, association with and the prognostic value of nine markers of endothelial activation/damage was compared.
Results
After a median follow-up of 5.5 years, 149 patients developed the primary endpoint. In multivariate Cox regression models adjusted for age, sex, systolic blood pressure, diabetes mellitus and estimated glomerular filtration rate, and corrected for multiple testing, only free pCS was associated with the primary endpoint {hazard ratio [HR]1.39 [95% confidence interval (CI) 1.14–1.71]; P = 0.0014}. Free pCS also correlated with a disintegrin and metalloproteinase with a thrombospondin type 1 motif, member 13 (r = −0.114, P < 0.05), angiopoietin-2 (ANGPT2) (r = 0.194, P < 0.001), matrix metallopeptidase 7 (MMP-7; (r = 0.238, P < 0.001) and syndecan 1 (r = 0.235, P < 0.001). Of these markers of endothelial activation/damage, ANGPT2 [HR 1.46 (95% CI 1.25–1.70); P < 0.0001] and MMP-7 [HR 1.31 (95% CI 1.08–1.59); P = 0.0056] were also predictive of the primary outcome.
Conclusions
Among PBUTs, free pCS shows the highest association with CV outcome in non-dialysed patients with CKD. Two markers of endothelial activation/damage that were significantly correlated with free pCS, ANGPT2 and MMP-7 were also associated with CV outcome. The hypothesis that free pCS exerts its CV toxic effects by an adverse effect on endothelial function deserves further exploration.
Collapse
Affiliation(s)
- Griet Glorieux
- Department of Internal Medicine and Pediatrics, Nephrology Section, Ghent University Hospital, Ghent, Belgium
| | - Raymond Vanholder
- Department of Internal Medicine and Pediatrics, Nephrology Section, Ghent University Hospital, Ghent, Belgium
| | - Wim Van Biesen
- Department of Internal Medicine and Pediatrics, Nephrology Section, Ghent University Hospital, Ghent, Belgium
| | - Anneleen Pletinck
- Department of Internal Medicine and Pediatrics, Nephrology Section, Ghent University Hospital, Ghent, Belgium
| | - Eva Schepers
- Department of Internal Medicine and Pediatrics, Nephrology Section, Ghent University Hospital, Ghent, Belgium
| | - Nathalie Neirynck
- Department of Internal Medicine and Pediatrics, Nephrology Section, Ghent University Hospital, Ghent, Belgium
| | - Marijn Speeckaert
- Department of Internal Medicine and Pediatrics, Nephrology Section, Ghent University Hospital, Ghent, Belgium
| | - Dirk De Bacquer
- Department of Public Health and Primary Care, Ghent University, Ghent, Belgium
| | - Francis Verbeke
- Department of Internal Medicine and Pediatrics, Nephrology Section, Ghent University Hospital, Ghent, Belgium
| |
Collapse
|
16
|
Association between Uremic Toxin Concentrations and Bone Mineral Density after Kidney Transplantation. Toxins (Basel) 2020; 12:toxins12110715. [PMID: 33202788 PMCID: PMC7696468 DOI: 10.3390/toxins12110715] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 11/06/2020] [Accepted: 11/12/2020] [Indexed: 12/19/2022] Open
Abstract
Although uremic osteoporosis is a component of mineral and bone disorder in chronic kidney disease, uremic toxin (UT) concentrations in patients with end-stage kidney disease and bone mineral density (BMD) changes after kidney transplantation have not previously been described. We hypothesized that elevated UT concentrations at the time of transplantation could have a negative impact on bone during the early post-transplantation period. Hence, we sought to determine whether concentrations of UTs (trimethylamine-N-oxide, indoxylsulfate, p-cresylsulfate, p-cresylglucuronide, indole-3-acetic acid, hippuric acid, and 3-carboxy-4-methyl-5-propyl-furanpropionic acid) upon transplantation are predictive markers for (i) osteoporosis one month after transplantation, and (ii) a BMD decrease and the occurrence of fractures 12 and 24 months after kidney transplantation. Between 2012 and 2018, 310 kidney transplant recipients were included, and dual-energy X-ray absorptiometry was performed 1, 12, and 24 months after transplantation. The UT concentrations upon transplantation were determined by reverse-phase high-performance liquid chromatography. Indoxylsulfate concentrations upon transplantation were positively correlated with BMD one month after transplantation for the femoral neck but were not associated with osteoporosis status upon transplantation. Concentrations of the other UTs upon transplantation were not associated with osteoporosis or BMD one month after transplantation. None of the UT concentrations were associated with BMD changes and the occurrence of osteoporotic fractures 12 and 24 months after transplantation. Hence, UT concentrations at the time of kidney transplantation were not predictive markers of osteoporosis or fractures.
Collapse
|
17
|
Cheng TH, Ma MC, Liao MT, Zheng CM, Lu KC, Liao CH, Hou YC, Liu WC, Lu CL. Indoxyl Sulfate, a Tubular Toxin, Contributes to the Development of Chronic Kidney Disease. Toxins (Basel) 2020; 12:E684. [PMID: 33138205 PMCID: PMC7693919 DOI: 10.3390/toxins12110684] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 10/27/2020] [Accepted: 10/28/2020] [Indexed: 12/22/2022] Open
Abstract
Indoxyl sulfate (IS), a uremic toxin, causes chronic kidney disease (CKD) progression via its tubulotoxicity. After cellular uptake, IS directly induces apoptotic and necrotic cell death of tubular cells. Additionally, IS increases oxidative stress and decreases antioxidant capacity, which are associated with tubulointerstitial injury. Injured tubular cells are a major source of transforming growth factor-β1 (TGF-β1), which induces myofibroblast transition from residual renal cells in damaged kidney, recruits inflammatory cells and thereby promotes extracellular matrix deposition in renal fibrosis. Moreover, IS upregulates signal transducers and activators of transcription 3 phosphorylation, followed by increases in TGF-β1, monocyte chemotactic protein-1 and α-smooth muscle actin production, which participate in interstitial inflammation, renal fibrosis and, consequently, CKD progression. Clinically, higher serum IS levels are independently associated with renal function decline and predict all-cause mortality in CKD. The poor removal of serum IS in conventional hemodialysis is also significantly associated with all-cause mortality and heart failure incidence in end-stage renal disease patients. Scavenging the IS precursor by AST-120 can markedly reduce tubular IS staining that attenuates renal tubular injury, ameliorates IS-induced oxidative stress and rescues antioxidant glutathione activity in tubular epithelial cells, thereby providing a protective role against tubular injury and ultimately retarding renal function decline.
Collapse
Affiliation(s)
- Tong-Hong Cheng
- School of Medicine, Fu Jen Catholic University, New Taipei 242, Taiwan; (T.-H.C.); (M.-C.M.); (C.-H.L.); (Y.-C.H.)
- Department of Internal Medicine, Taoyuan Armed Forces General Hospital, Taoyuan 325, Taiwan
| | - Ming-Chieh Ma
- School of Medicine, Fu Jen Catholic University, New Taipei 242, Taiwan; (T.-H.C.); (M.-C.M.); (C.-H.L.); (Y.-C.H.)
| | - Min-Tser Liao
- Department of Pediatrics, Taoyuan Armed Forces General Hospital, Taoyuan 325, Taiwan;
- Department of Pediatrics, Tri-Service General Hospital, National Defense Medical Center, Taipei 114, Taiwan
| | - Cai-Mei Zheng
- Division of Nephrology, Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei 110, Taiwan;
- Division of Nephrology, Department of Internal Medicine, Taipei Medical University Shuang Ho Hospital, New Taipei 235, Taiwan
- Taipei Medical University-Research Center of Urology and Kidney, Taipei Medical University, Taipei 110, Taiwan
| | - Kuo-Cheng Lu
- Division of Nephrology, Department of Medicine, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, New Taipei 231, Taiwan;
| | - Chun-Hou Liao
- School of Medicine, Fu Jen Catholic University, New Taipei 242, Taiwan; (T.-H.C.); (M.-C.M.); (C.-H.L.); (Y.-C.H.)
- Divisions of Urology, Department of Surgery, Cardinal Tien Hospital, New Taipei 23148, Taiwan
| | - Yi-Chou Hou
- School of Medicine, Fu Jen Catholic University, New Taipei 242, Taiwan; (T.-H.C.); (M.-C.M.); (C.-H.L.); (Y.-C.H.)
- Division of Nephrology, Department of Medicine, Cardinal-Tien Hospital, School of Medicine, Fu-Jen Catholic University, New Taipei 234, Taiwan
| | - Wen-Chih Liu
- Division of Nephrology, Department of Medicine, Taipei Hospital, Ministry of Health and Welfare, New Taipei 242, Taiwan;
| | - Chien-Lin Lu
- School of Medicine, Fu Jen Catholic University, New Taipei 242, Taiwan; (T.-H.C.); (M.-C.M.); (C.-H.L.); (Y.-C.H.)
- Division of Nephrology, Department of Medicine, Fu Jen Catholic University Hospital, New Taipei 242, Taiwan
| |
Collapse
|