1
|
Ayilam Ramachandran R, Titone R, Abdallah JT, Rehman M, Cao M, Baniasadi H, Robertson DM. Inhibition of Unc-51-like-kinase is mitoprotective during Pseudomonas aeruginosa infection in corneal epithelial cells. mSphere 2025:e0053724. [PMID: 39791872 DOI: 10.1128/msphere.00537-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Accepted: 09/10/2024] [Indexed: 01/12/2025] Open
Abstract
Pseudomonas aeruginosa (PA) is an opportunistic gram-negative pathogen that can infect the cornea, leading to permanent vision loss. Autophagy is a cannibalistic process that drives cytoplasmic components to the lysosome for degradation and/or recycling. Autophagy has been shown to play a key role in the removal of intracellular pathogens and, as such, is an important component of the innate immune response. Autophagy is intimately linked to mitochondria, organelles that mediate energy homeostasis, immune signaling, and cell death. Using a combination of biochemical and imaging approaches, we investigated the effects of PA on autophagy and host cell mitochondria in relation to pro-inflammatory cytokine expression. Using a standard invasive test strain of PA, we show that PA infection triggers dephosphorylation of the mechanistic target of rapamycin in corneal epithelial cells, leading to the induction of autophagy through ULK1/2. This was associated with robust mitochondrial depolarization, changes in mitochondrial ultrastructure, and an increase in IL-6 and IL-8 secretion. PA infection was also associated with an increase in purine metabolism by host cells. Treatment with the ULK1/2 inhibitor, MRT68921, which blocks phagophore formation, attenuated levels of intracellular PA in corneal epithelial cells. Unexpectedly, treatment of cells with MRT68921 blocked PA-induced mitochondrial depolarization and downregulated purine and pyrimidine metabolism. While MRT68921 attenuated the PA-induced increase in IL-6, it further increased IL-8 and neutrophil chemotaxis. This was associated with the nuclear internalization of NFκB. Taken together, these findings highlight a novel mechanism whereby the inhibition of ULK1/2 activity confers mitoprotection during PA infection in corneal epithelial cells.IMPORTANCEPseudomonas aeruginosa (PA) is a common pathogen that can cause severe disease in man. In the eye, PA infection can lead to blindness. In this study, we show that PA induces autophagy, a mechanism whereby cells recycle damaged proteins and organelles. PA infection further depolarizes mitochondria, leading to the release of pro-inflammatory mediators. Unexpectedly, the inhibition of ULK1/2, an enzyme involved in the early stages of autophagy, not only inhibits autophagy but enhances mitochondrial polarization. This leads to a reduction in intracellular levels of PA and changes in the inflammatory milieu. Together, these data suggest that the inhibition of ULK1/2 may be mitoprotective in corneal epithelial cells during PA infection.
Collapse
Affiliation(s)
| | | | - Joelle T Abdallah
- Departments of Ophthalmology, The University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Mahad Rehman
- Departments of Ophthalmology, The University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Mou Cao
- Departments of Ophthalmology, The University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Hamid Baniasadi
- Department of Biochemistry, The University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Danielle M Robertson
- Departments of Ophthalmology, The University of Texas Southwestern Medical Center, Dallas, Texas, USA
| |
Collapse
|
2
|
Liu X, Guo B, Li Q, Nie J. mTOR in metabolic homeostasis and disease. Exp Cell Res 2024; 441:114173. [PMID: 39047807 DOI: 10.1016/j.yexcr.2024.114173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 07/20/2024] [Accepted: 07/21/2024] [Indexed: 07/27/2024]
Abstract
The ability to maintain cellular metabolic homeostasis is critical to life, in which mTOR plays an important role. This kinase integrates upstream nutrient signals and performs essential functions in physiology and metabolism by increasing metabolism and suppressing autophagy. Thus, dysregulation of mTOR activity leads to diseases, especially metabolic diseases such as cancer, type 2 diabetes and neurological disorders. Therefore, inhibition of overactivated mTOR becomes a rational approach to treat a variety of metabolic diseases. In this review, we discuss how mTOR responds to upstream signals and how mTOR regulates metabolic processes, including protein, nucleic acid, and lipid metabolism. Furthermore, we discuss the possible causes and consequences of dysregulated mTOR signaling activity, and summarize relevant applications, such as inhibition of mTOR activity to treat these diseases. This review will advance our comprehensive knowledge of the association between mTOR and metabolic homeostasis, which has significant ramifications for human health.
Collapse
Affiliation(s)
- Xuejia Liu
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, China
| | - Bin Guo
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, China
| | - Qiye Li
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, China
| | - Jing Nie
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, China.
| |
Collapse
|
3
|
Gurunathan S, Ajmani A, Kim JH. Extracellular nanovesicles produced by Bacillus licheniformis: A potential anticancer agent for breast and lung cancer. Microb Pathog 2023; 185:106396. [PMID: 37863272 DOI: 10.1016/j.micpath.2023.106396] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2023] [Revised: 09/26/2023] [Accepted: 10/12/2023] [Indexed: 10/22/2023]
Abstract
Cancer is a major public burden and leading cause of death worldwide; furthermore, it is a significant barrier to increasing life expectancy in most countries of the world. Among various types of cancers, breast and lung cancers lead to significant mortality in both males and females annually. Bacteria-derived products have been explored for their use in cancer therapy. Although bacteria contain significant amounts of anticancer substances, attenuated bacteria may still pose a potential risk for infection owing to the variety of immunomodulatory molecules present in the parental bacteria; therefore, non-cellular bacterial extracellular vesicles (BEVs), which are naturally non-replicating, safer, and are considered to be potential anticancer agents, are preferred for cancer therapy. Gram-positive bacteria actively secrete cytoplasmic membrane vesicles that are spherical and vary between 10 and 400 nm in size. However, no studies have considered cytoplasmic membrane vesicles derived from Bacillus licheniformisin cancer treatment. In this study, we investigated the potential use of B. licheniformis extracellular nanovesicles (BENVs) as therapeutic agents to treat cancer. Purified BENVs from the culture supernatant of B. licheniformis using ultracentrifugation and ExoQuick were characterized using a series of analytical techniques. Human breast cancer cells (MDA-MB-231) and lung cancer cells (A549) were treated with different concentrations of purified BENVs, which inhibited the cell viability and proliferation, and increased cytotoxicity in a dose-dependent manner. To elucidate the mechanism underlying the anticancer activity of BENVs, the oxidative stress markers such as reactive oxygen species (ROS) and glutathione (GSH) levels were measured. The ROS levels were significantly higher in BENV-treated cells, whereas the GSH levels were markedly reduced. Cells treated with BENVs, doxorubicin (DOX), or a combination of BENVs and DOX showed significantly increased expression of p53, p21, caspase-9/3, and Bax, and concomitantly decreased expression of Bcl-2. The combination of BENVs and doxorubicin enhanced mitochondrial dysfunction, DNA damage, and apoptosis. To our knowledge, this is the first study to determine the anticancer properties of BENVs derived from industrially significant probacteria on breast and lung cancer cells.
Collapse
Affiliation(s)
- Sangiliyandi Gurunathan
- Department of Biotechnology, Rathinam College of Arts and Science, RathinamTechzone Campus, Eachanari, Coimbatore, 641 021, Tamil Nadu, India.
| | - Abhishek Ajmani
- Institute of Advanced Virology, Thiruvananthapuram, 695014, Kerala, India
| | - Jin-Hoi Kim
- Department of Stem Cell and Regenerative Biotechnology, Konkuk University, Seoul, 05029, South Korea.
| |
Collapse
|
4
|
Blandino G, Fiorani M, Canonico B, De Matteis R, Guidarelli A, Montanari M, Buffi G, Coppo L, Arnér ESJ, Cantoni O. Clozapine suppresses NADPH oxidase activation, counteracts cytosolic H 2O 2, and triggers early onset mitochondrial dysfunction during adipogenesis of human liposarcoma SW872 cells. Redox Biol 2023; 67:102915. [PMID: 37866162 PMCID: PMC10623370 DOI: 10.1016/j.redox.2023.102915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 09/29/2023] [Accepted: 10/01/2023] [Indexed: 10/24/2023] Open
Abstract
Long-term treatment of schizophrenia with clozapine (CLZ), an atypical antipsychotic drug, is associated with an increased incidence of metabolic disorders mediated by poorly understood mechanisms. We herein report that CLZ, while slowing down the morphological changes and lipid accumulation occurring during SW872 cell adipogenesis, also causes an early (day 3) inhibition of the expression/nuclear translocation of CAAT/enhancer-binding protein β and peroxisome proliferator-activated receptor γ. Under the same conditions, CLZ blunts NADPH oxidase-derived reactive oxygen species (ROS) by a dual mechanism involving enzyme inhibition and ROS scavenging. These effects were accompanied by hampered activation of the nuclear factor (erythroid-derived2)-like 2 (Nrf2)-dependent antioxidant responses compared to controls, and by an aggravated formation of mitochondrial superoxide. CLZ failed to exert ROS scavenging activities in the mitochondrial compartment but appeared to actively scavenge cytosolic H2O2 derived from mitochondrial superoxide. The early formation of mitochondrial ROS promoted by CLZ was also associated with signs of mitochondrial dysfunction. Some of the above findings were recapitulated using mouse embryonic fibroblasts. We conclude that the NADPH oxidase inhibitory and cytosolic ROS scavenging activities of CLZ slow down SW872 cell adipogenesis and suppress their Nrf2 activation, an event apparently connected with increased mitochondrial ROS formation, which is associated with insulin resistance and metabolic syndrome. Thus, the cellular events characterised herein may help to shed light on the more detailed molecular mechanisms explaining some of the adverse metabolic effects of CLZ.
Collapse
Affiliation(s)
- Giulia Blandino
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, Urbino, Italy
| | - Mara Fiorani
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, Urbino, Italy.
| | - Barbara Canonico
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, Urbino, Italy
| | - Rita De Matteis
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, Urbino, Italy
| | - Andrea Guidarelli
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, Urbino, Italy
| | - Mariele Montanari
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, Urbino, Italy
| | - Gloria Buffi
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, Urbino, Italy
| | - Lucia Coppo
- Division of Biochemistry, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Elias S J Arnér
- Division of Biochemistry, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden; Department of Selenoprotein Research and the National Tumor Biology Laboratory, National Institute of Oncology, Budapest, Hungary
| | - Orazio Cantoni
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, Urbino, Italy
| |
Collapse
|
5
|
Isidoro C. Pathophysiology of Lysosomes in a Nutshell. Int J Mol Sci 2023; 24:10688. [PMID: 37445864 DOI: 10.3390/ijms241310688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Accepted: 06/16/2023] [Indexed: 07/15/2023] Open
Abstract
Lysosomes are acidic organelles present in all nucleated mammalian cells [...].
Collapse
Affiliation(s)
- Ciro Isidoro
- Laboratory of Molecular Pathology and NanoBioImaging, Department of Health Sciences, Università del Piemonte Orientale, 28100 Novara, Italy
| |
Collapse
|
6
|
Montanari M, Guescini M, Gundogdu O, Luchetti F, Lanuti P, Ciacci C, Burattini S, Campana R, Ortolani C, Papa S, Canonico B. Extracellular Vesicles from Campylobacter jejuni CDT-Treated Caco-2 Cells Inhibit Proliferation of Tumour Intestinal Caco-2 Cells and Myeloid U937 Cells: Detailing the Global Cell Response for Potential Application in Anti-Tumour Strategies. Int J Mol Sci 2022; 24:ijms24010487. [PMID: 36613943 PMCID: PMC9820799 DOI: 10.3390/ijms24010487] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 12/15/2022] [Accepted: 12/23/2022] [Indexed: 12/30/2022] Open
Abstract
Cytolethal distending toxin (CDT) is produced by a range of Gram-negative pathogenic bacteria such as Campylobacter jejuni. CDT represents an important virulence factor that is a heterotrimeric complex composed of CdtA, CdtB, and CdtC. CdtA and CdtC constitute regulatory subunits whilst CdtB acts as the catalytic subunit exhibiting phosphatase and DNase activities, resulting in cell cycle arrest and cell death. Extracellular vesicle (EV) secretion is an evolutionarily conserved process that is present throughout all kingdoms. Mammalian EVs play important roles in regular cell-to-cell communications but can also spread pathogen- and host-derived molecules during infections to alter immune responses. Here, we demonstrate that CDT targets the endo-lysosomal compartment, partially evading lysosomal degradation and exploiting unconventional secretion (EV release), which is largely involved in bacterial infections. CDT-like effects are transferred by Caco-2 cells to uninfected heterologous U937 and homologous Caco-2 cells. The journey of EVs derived from CDT-treated Caco-2 cells is associated with both intestinal and myeloid tumour cells. EV release represents the primary route of CDT dissemination, revealing an active toxin as part of the cargo. We demonstrated that bacterial toxins could represent suitable tools in cancer therapy, highlighting both the benefits and limitations. The global cell response involves a moderate induction of apoptosis and autophagic features may play a protective role against toxin-induced cell death. EVs from CDT-treated Caco-2 cells represent reliable CDT carriers, potentially suitable in colorectal cancer treatments. Our data present a potential bacterial-related biotherapeutic supporting a multidrug anticancer protocol.
Collapse
Affiliation(s)
- Mariele Montanari
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, 61029 Urbino, Italy
| | - Michele Guescini
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, 61029 Urbino, Italy
| | - Ozan Gundogdu
- Faculty of Infectious and Tropical Diseases, London School of Hygiene & Tropical Medicine, London WC1E 7HT, UK
| | - Francesca Luchetti
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, 61029 Urbino, Italy
| | - Paola Lanuti
- Department of Medicine and Aging Science, “G. d’Annunzio” University of Chieti-Pescara, 66100 Chieti, Italy
| | - Caterina Ciacci
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, 61029 Urbino, Italy
| | - Sabrina Burattini
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, 61029 Urbino, Italy
| | - Raffaella Campana
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, 61029 Urbino, Italy
| | - Claudio Ortolani
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, 61029 Urbino, Italy
| | - Stefano Papa
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, 61029 Urbino, Italy
- Correspondence:
| | - Barbara Canonico
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, 61029 Urbino, Italy
| |
Collapse
|
7
|
Sharma MK, Priyam K, Kumar P, Garg PK, Roy TS, Jacob TG. Effect of calorie-restriction and rapamycin on autophagy and the severity of caerulein-induced experimental acute pancreatitis in mice. FRONTIERS IN GASTROENTEROLOGY 2022; 1. [DOI: 10.3389/fgstr.2022.977169] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
Abstract
BackgroundImpaired autophagy contributes to development of acute pancreatitis (AP). We studied the effect of inducing autophagy by calorie-restriction and rapamycin, separately, in the caerulein-induced model of severe AP.MethodsAdult, male, Swiss albino mice were given eight, hourly, intraperitoneal injections of caerulein (Ce) (50µg/Kg/dose). The interventions were calorie restriction (CR) and rapamycin (2mg/Kg). Mice were sacrificed at the 9th hour. Pancreas was harvested for histopathology and immunoblotting. Amylase activity and the levels of cytokines were measured in plasma.ResultsThe histopathological score and amylase activity were significantly lower in calorie-restricted caerulein-induced AP (CRCeAP) in comparison to animals that had unrestricted access to chow. In the CRCeAP group, levels of IL-6 and GM-CSF in plasma were lower and the expression of LC3II and Beclin-1 were higher. On transmission electron-microscopy, the area occupied by autophagic vacuoles was higher in CRCeAP. The expression of caspase-8 and caspase-9 was also higher in CRCeAP. In rapamycin with caerulein-induced AP (Rapa+CeAP), the histopathological score and amylase activity were significantly lower than caerulein-induced AP (CeAP). In Rapa+CeAP, the expression of LC3II and Beclin-1 were higher, whereas; SQSTM1 was decreased. The number of autophagic vacuoles in Rapa+CeAP group was fewer. Interleukin-6 (IL-6), tumor necrosis factor-α (TNF-α) and monocyte chemoattractant protein-1 (MCP-1) were lower in Rapa+CeAP. Caspase-3 increased and high mobility group box 1 (HMGB1) decreased in Rapa+CeAP.ConclusionCalorie-restriction and rapamycin can individually decrease the severity of injury in the caerulein-induced model of severe AP.
Collapse
|
8
|
Sola F, Montanari M, Fiorani M, Barattini C, Ciacci C, Burattini S, Lopez D, Ventola A, Zamai L, Ortolani C, Papa S, Canonico B. Fluorescent Silica Nanoparticles Targeting Mitochondria: Trafficking in Myeloid Cells and Application as Doxorubicin Delivery System in Breast Cancer Cells. Int J Mol Sci 2022; 23:ijms23063069. [PMID: 35328491 PMCID: PMC8954043 DOI: 10.3390/ijms23063069] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 02/28/2022] [Accepted: 03/03/2022] [Indexed: 11/16/2022] Open
Abstract
Fluorescent silica nanoparticles (SiNPs) appear to be a promising imaging platform, showing a specific subcellular localization. In the present study, we first investigated their preferential mitochondrial targeting in myeloid cells, by flow cytometry, confocal microscopy and TEM on both cells and isolated mitochondria, to acquire knowledge in imaging combined with therapeutic applications. Then, we conjugated SiNPs to one of the most used anticancer drugs, doxorubicin (DOX). As an anticancer agent, DOX has high efficacy but also an elevated systemic toxicity, causing multiple side effects. Nanostructures are usually employed to increase the drug circulation time and accumulation in target tissues, reducing undesired cytotoxicity. We tested these functionalized SiNPs (DOX-NPs) on breast cancer cell line MCF-7. We evaluated DOX-NP cytotoxicity, the effect on the cell cycle and on the expression of CD44 antigen, a molecule involved in adhesion and in tumor invasion, comparing DOX-NP to free DOX and stand-alone SiNPs. We found a specific ability to release a minor amount of CD44+ extracellular vesicles (EVs), from both CD81 negative and CD81 positive pools. Modulating the levels of CD44 at the cell surface in cancer cells is thus of great importance for disrupting the signaling pathways that favor tumor progression.
Collapse
Affiliation(s)
- Federica Sola
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, 61029 Urbino, Italy; (F.S.); (M.M.); (M.F.); (C.B.); (C.C.); (S.B.); (D.L.); (L.Z.); (C.O.); (S.P.)
- AcZon s.r.l., 40050 Monte San Pietro, Italy;
| | - Mariele Montanari
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, 61029 Urbino, Italy; (F.S.); (M.M.); (M.F.); (C.B.); (C.C.); (S.B.); (D.L.); (L.Z.); (C.O.); (S.P.)
| | - Mara Fiorani
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, 61029 Urbino, Italy; (F.S.); (M.M.); (M.F.); (C.B.); (C.C.); (S.B.); (D.L.); (L.Z.); (C.O.); (S.P.)
| | - Chiara Barattini
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, 61029 Urbino, Italy; (F.S.); (M.M.); (M.F.); (C.B.); (C.C.); (S.B.); (D.L.); (L.Z.); (C.O.); (S.P.)
- AcZon s.r.l., 40050 Monte San Pietro, Italy;
| | - Caterina Ciacci
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, 61029 Urbino, Italy; (F.S.); (M.M.); (M.F.); (C.B.); (C.C.); (S.B.); (D.L.); (L.Z.); (C.O.); (S.P.)
| | - Sabrina Burattini
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, 61029 Urbino, Italy; (F.S.); (M.M.); (M.F.); (C.B.); (C.C.); (S.B.); (D.L.); (L.Z.); (C.O.); (S.P.)
| | - Daniele Lopez
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, 61029 Urbino, Italy; (F.S.); (M.M.); (M.F.); (C.B.); (C.C.); (S.B.); (D.L.); (L.Z.); (C.O.); (S.P.)
- Department of Pure and Applied Sciences (DiSPeA), University of Urbino Carlo Bo, 61029 Urbino, Italy
| | | | - Loris Zamai
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, 61029 Urbino, Italy; (F.S.); (M.M.); (M.F.); (C.B.); (C.C.); (S.B.); (D.L.); (L.Z.); (C.O.); (S.P.)
| | - Claudio Ortolani
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, 61029 Urbino, Italy; (F.S.); (M.M.); (M.F.); (C.B.); (C.C.); (S.B.); (D.L.); (L.Z.); (C.O.); (S.P.)
| | - Stefano Papa
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, 61029 Urbino, Italy; (F.S.); (M.M.); (M.F.); (C.B.); (C.C.); (S.B.); (D.L.); (L.Z.); (C.O.); (S.P.)
| | - Barbara Canonico
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, 61029 Urbino, Italy; (F.S.); (M.M.); (M.F.); (C.B.); (C.C.); (S.B.); (D.L.); (L.Z.); (C.O.); (S.P.)
- Correspondence: ; Tel.: +39-0722304280
| |
Collapse
|
9
|
Cytolysin A (ClyA): A Bacterial Virulence Factor with Potential Applications in Nanopore Technology, Vaccine Development, and Tumor Therapy. Toxins (Basel) 2022; 14:toxins14020078. [PMID: 35202106 PMCID: PMC8880466 DOI: 10.3390/toxins14020078] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 01/14/2022] [Accepted: 01/18/2022] [Indexed: 12/26/2022] Open
Abstract
Cytolysin A (ClyA) is a pore-forming toxin that is produced by some bacteria from the Enterobacteriaceae family. This review provides an overview of the current state of knowledge regarding ClyA, including the prevalence of the encoding gene and its transcriptional regulation, the secretion pathway used by the protein, and the mechanism of protein assembly, and highlights potential applications of ClyA in biotechnology. ClyA expression is regulated at the transcriptional level, primarily in response to environmental stressors, and ClyA can exist stably both as a soluble monomer and as an oligomeric membrane complex. At high concentrations, ClyA induces cytolysis, whereas at low concentrations ClyA can affect intracellular signaling. ClyA is secreted in outer membrane vesicles (OMVs), which has important implications for biotechnology applications. For example, the native pore-forming ability of ClyA suggests that it could be used as a component of nanopore-based technologies, such as sequencing platforms. ClyA has also been exploited in vaccine development owing to its ability to present antigens on the OMV surface and provoke a robust immune response. In addition, ClyA alone or OMVs carrying ClyA fusion proteins have been investigated for their potential use as anti-tumor agents.
Collapse
|
10
|
Sola F, Canonico B, Montanari M, Volpe A, Barattini C, Pellegrino C, Cesarini E, Guescini M, Battistelli M, Ortolani C, Ventola A, Papa S. Uptake and Intracellular Trafficking Studies of Multiple Dye-Doped Core-Shell Silica Nanoparticles in Lymphoid and Myeloid Cells. Nanotechnol Sci Appl 2021; 14:29-48. [PMID: 33727804 PMCID: PMC7954439 DOI: 10.2147/nsa.s290867] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Accepted: 01/22/2021] [Indexed: 12/27/2022] Open
Abstract
Introduction Since most biologically active macromolecules are natural nanostructures, operating in the same scale of biomolecules gives the great advantage to enhance the interaction with cellular components. Noteworthy efforts in nanotechnology, particularly in biomedical and pharmaceutical fields, have propelled a high number of studies on the biological effects of nanomaterials. Moreover, the determination of specific physicochemical properties of nanomaterials is crucial for the evaluation and design of novel safe and efficient therapeutics and diagnostic tools. In this in vitro study, we report a physicochemical characterisation of fluorescent silica nanoparticles (NPs), interacting with biological models (U937 and PBMC cells), describing the specific triggered biologic response. Methods Flow Cytometric and Confocal analyses are the main method platforms. However TEM, NTA, DLS, and chemical procedures to synthesize NPs were employed. Results NTB700 NPs, employed in this study, are fluorescent core-shell silica nanoparticles, synthesized through a micelle-assisted method, where the fluorescence energy transfer process, known as FRET, occurs at a high efficiency rate. Using flow cytometry and confocal microscopy, we observed that NTB700 NP uptake seemed to be a rapid, concentration-, energy- and cell type-dependent process, which did not induce significant cytotoxic effects. We did not observe a preferred route of internalization, although their size and the possible aggregated state could influence their extrusion. At this level of analysis, our investigation focuses on lysosome and mitochondria pathways, highlighting that both are involved in NP co-localization. Despite the main mitochondria localization, NPs did not induce a significant increase of intracellular ROS, known inductors of apoptosis, during the time course of analyses. Finally, both lymphoid and myeloid cells are able to release NPs, essential to their biosafety. Discussion These data allow to consider NTB700 NPs a promising platform for future development of a multifunctional system, by combining imaging and localized therapeutic applications in a unique tool.
Collapse
Affiliation(s)
- Federica Sola
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, Urbino, PU, 61029, Italy.,AcZon Srl, Monte San Pietro, BO, 40050, Italy
| | - Barbara Canonico
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, Urbino, PU, 61029, Italy
| | - Mariele Montanari
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, Urbino, PU, 61029, Italy
| | | | - Chiara Barattini
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, Urbino, PU, 61029, Italy.,AcZon Srl, Monte San Pietro, BO, 40050, Italy
| | | | - Erica Cesarini
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, Urbino, PU, 61029, Italy
| | - Michele Guescini
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, Urbino, PU, 61029, Italy
| | - Michela Battistelli
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, Urbino, PU, 61029, Italy
| | - Claudio Ortolani
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, Urbino, PU, 61029, Italy
| | | | - Stefano Papa
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, Urbino, PU, 61029, Italy
| |
Collapse
|