1
|
Wang X, Zhang P, Xie J, Zuo X. USP39 promotes retinal pathological angiogenesis in retinopathy of prematurity by stabilizing SIRT2 expression through deubiquitination. Int Ophthalmol 2025; 45:39. [PMID: 39853525 DOI: 10.1007/s10792-025-03410-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Accepted: 01/03/2025] [Indexed: 01/26/2025]
Abstract
BACKGROUND Retinopathy of prematurity (ROP) is a major cause of childhood blindness worldwide, highlighted by retinal neovascularization. Ubiquitin is present throughout the retina. The deubiquitinating enzyme ubiquitin-specific protease 39 (USP39) has been reported to be involved in angiogenesis. Here, this study aimed to investigate the effects of USP39 on ROP and its associated mechanism. METHODS Hypoxia-induced human retinal microvascular endothelial cells (hRMECs) were adopted for functional analyses. Detection of mRNA and protein was conducted using quantitative real-time PCR and western blotting. Cell migration, invasion and angiogenesis were evaluated using transwell and tube formation assays. Protein interaction was determined by immunoprecipitation assay. Oxygen-induced retinopathy (OIR) mouse models were used for in vivo analysis. RESULTS USP39 level was higher in hypoxia-induced hRMECs, functionally, USP39 silencing reversed hypoxia-induced migration, invasion and angiogenesis in hRMECs. In further mechanism analysis, we found that USP39 stabilized SIRT2 protein expression in hRMECs by inducing SIRT2 deubiquitination. Moreover, SIRT2 up-regulation abated hypoxia-evoked migration, invasion and angiogenesis in hRMECs. Besides that, the inhibitory effects of USP39 silencing on hypoxia-induced metastatic and angiogenic behaviors were abolished after SIRT2 overexpression. In addition, USP39 silencing blocked the activation of phosphoinositide 3-kinase (PI3K)/protein kinase B pathway (AKT) by regulating SIRT2. In vivo assay showed that levels of USP39, SIRT2, matrix metalloproteinase (MMP)-2 (MMP-2), MMP-9 and Vascular endothelial growth factor A (VEGFA) were increased in the retinas of OIR mice, while intravitreal injection of USP39 short hairpin RNA (shRNA) could reduce their expression. CONCLUSION USP39 stabilized SIRT2 expression by deubiquitination and promoted hypoxia-induced metastatic and angiogenic behaviors of RMECs in vitro, as well as retinal angiogenesis in vivo.
Collapse
Affiliation(s)
- Xiuxian Wang
- Department of Ophthalmology, Xingtai People's Hospital, Xingtai, 054001, Hebei, China
| | - Peicheng Zhang
- Department of Ophthalmology, Hebei Provincial Key Laboratory of Ophthalmology, Hebei Provincial Clinical Medical Research Center for Ocular Diseases, Hebei Eye Hospital, No.399, Quanbei East Road, Xingtai, 054001, Hebei, China.
| | - Jing Xie
- Department of Ophthalmology, Xingtai People's Hospital, Xingtai, 054001, Hebei, China
| | - Xiangrong Zuo
- Department of Ophthalmology, Xingtai People's Hospital, Xingtai, 054001, Hebei, China
| |
Collapse
|
2
|
Nam D, Park J, Lee J, Son J, Kim JE. mTOR potentiates senescent phenotypes and primary cilia formation after cisplatin-induced G2 arrest in retinal pigment epithelial cells. Cell Signal 2024; 124:111402. [PMID: 39251051 DOI: 10.1016/j.cellsig.2024.111402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 09/05/2024] [Accepted: 09/06/2024] [Indexed: 09/11/2024]
Abstract
Cisplatin, a platinum-based anticancer drug, is used to treat several types of cancer. Despite its effectiveness, cisplatin-induced side effects have often been reported. Although cisplatin-induced toxicities, such as apoptosis and/or necrosis, have been well studied, the fate of cells after exposure to sublethal doses of cisplatin needs further elucidation. Treatment with a sublethal dose of cisplatin induced cell cycle arrest at the G2 phase in retinal pigment epithelial cells. Following cisplatin withdrawal, the cells irreversibly exited the cell cycle and became senescent. Notably, the progression from the G2 to the G1 phase occurred without mitotic entry, a phenomenon referred to as mitotic bypass, resulting in the accumulation of cells containing 4N DNA content. Cisplatin-exposed cells exhibited morphological changes associated with senescence, including an enlarged size of cell and nucleus and increased granularity. In addition, the senescent cells possessed primary cilia and persistent DNA lesions. Senescence induced by transient exposure to cisplatin involves mTOR activation. Although transient co-exposure with an mTORC1 inhibitor rapamycin did not prevent mitotic bypass and entry into senescence, it delayed the progression of senescence and attenuated senescent phenotypes, resulting in shorter primary cilia formation. Conclusively, cisplatin induces senescence in retinal pigment epithelial cells by promoting mTOR activation.
Collapse
Affiliation(s)
- Dajeong Nam
- Department of Biomedical Science, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Jaejung Park
- Department of Biomedical Science, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Jaehong Lee
- Department of Biomedical Science, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Juyoung Son
- Department of Biomedical Science, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Ja-Eun Kim
- Department of Biomedical Science, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea; Department of Precision Medicine, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea; Department of Pharmacology, College of Medicine, Kyung Hee University, Seoul 02447, Republic of Korea.
| |
Collapse
|
3
|
Shi MQ, Xu Y, Fu X, Pan DS, Lu XP, Xiao Y, Jiang YZ. Advances in targeting histone deacetylase for treatment of solid tumors. J Hematol Oncol 2024; 17:37. [PMID: 38822399 PMCID: PMC11143662 DOI: 10.1186/s13045-024-01551-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Accepted: 04/27/2024] [Indexed: 06/03/2024] Open
Abstract
Histone deacetylase (HDAC) serves as a critical molecular regulator in the pathobiology of various malignancies and have garnered attention as a viable target for therapeutic intervention. A variety of HDAC inhibitors (HDACis) have been developed to target HDACs. Many preclinical studies have conclusively demonstrated the antitumor effects of HDACis, whether used as monotherapy or in combination treatments. On this basis, researchers have conducted various clinical studies to evaluate the potential of selective and pan-HDACis in clinical settings. In our work, we extensively summarized and organized current clinical trials, providing a comprehensive overview of the current clinical advancements in targeting HDAC therapy. Furthermore, we engaged in discussions about several clinical trials that did not yield positive outcomes, analyzing the factors that led to their lack of anticipated therapeutic effectiveness. Apart from the experimental design factors, issues such as toxicological side effects, tumor heterogeneity, and unexpected off-target effects also contributed to these less-than-expected results. These challenges have naturally become significant barriers to the application of HDACis. Despite these challenges, we believe that advancements in HDACi research and improvements in combination therapies will pave the way or lead to a broad and hopeful future in the treatment of solid tumors.
Collapse
Affiliation(s)
- Mu-Qi Shi
- Department of Breast Surgery, Fudan University Shanghai Cancer Center, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Ying Xu
- Department of Breast Surgery, Fudan University Shanghai Cancer Center, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Xin Fu
- Shenzhen Chipscreen Biosciences Co., Ltd., Shenzhen, 518055, People's Republic of China
| | - De-Si Pan
- Shenzhen Chipscreen Biosciences Co., Ltd., Shenzhen, 518055, People's Republic of China
| | - Xian-Ping Lu
- Shenzhen Chipscreen Biosciences Co., Ltd., Shenzhen, 518055, People's Republic of China
| | - Yi Xiao
- Department of Breast Surgery, Fudan University Shanghai Cancer Center, Shanghai, 200032, China.
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China.
| | - Yi-Zhou Jiang
- Department of Breast Surgery, Fudan University Shanghai Cancer Center, Shanghai, 200032, China.
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China.
| |
Collapse
|
4
|
Wang W, Dai X, Li Y, Li M, Chi Z, Hu X, Wang Z. The miR-669a-5p/G3BP/HDAC6/AKAP12 Axis Regulates Primary Cilia Length. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2305068. [PMID: 38088586 PMCID: PMC10853727 DOI: 10.1002/advs.202305068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 11/13/2023] [Indexed: 02/10/2024]
Abstract
Primary cilia are conserved organelles in most mammalian cells, acting as "antennae" to sense external signals. Maintaining a physiological cilium length is required for cilium function. MicroRNAs (miRNAs) are potent gene expression regulators, and aberrant miRNA expression is closely associated with ciliopathies. However, how miRNAs modulate cilium length remains elusive. Here, using the calcium-shock method and small RNA sequencing, a miRNA is identified, namely, miR-669a-5p, that is highly expressed in the cilia-enriched noncellular fraction. It is shown that miR-669a-5p promotes cilium elongation but not cilium formation in cultured cells. Mechanistically, it is demonstrated that miR-669a-5p represses ras-GTPase-activating protein SH3-domain-binding protein (G3BP) expression to inhibit histone deacetylase 6 (HDAC6) expression, which further upregulates A-kinase anchor protein 12 (AKAP12) expression. This effect ultimately blocks cilia disassembly and leads to greater cilium length, which can be restored to wild-type lengths by either upregulating HDAC6 or downregulating AKAP12. Collectively, these results elucidate a previously unidentified miR-669a-5p/G3BP/HDAC6/AKAP12 signaling pathway that regulates cilium length, providing potential pharmaceutical targets for treating ciliopathies.
Collapse
Affiliation(s)
- Weina Wang
- School of Life SciencesInstitute of Life Science and Green DevelopmentHebei UniversityBaoding071002China
| | - Xuyao Dai
- School of Life SciencesInstitute of Life Science and Green DevelopmentHebei UniversityBaoding071002China
| | - Yue Li
- School of Life SciencesInstitute of Life Science and Green DevelopmentHebei UniversityBaoding071002China
| | - Mo Li
- School of Public HealthHebei UniversityBaoding071000China
| | - Zongqi Chi
- School of Public HealthHebei UniversityBaoding071000China
| | - Xiaoyu Hu
- School of Life SciencesInstitute of Life Science and Green DevelopmentHebei UniversityBaoding071002China
| | - Zhenshan Wang
- School of Life SciencesInstitute of Life Science and Green DevelopmentHebei UniversityBaoding071002China
| |
Collapse
|
5
|
Saito M, Otsu W, Miyadera K, Nishimura Y. Recent advances in the understanding of cilia mechanisms and their applications as therapeutic targets. Front Mol Biosci 2023; 10:1232188. [PMID: 37780208 PMCID: PMC10538646 DOI: 10.3389/fmolb.2023.1232188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 08/24/2023] [Indexed: 10/03/2023] Open
Abstract
The primary cilium is a single immotile microtubule-based organelle that protrudes into the extracellular space. Malformations and dysfunctions of the cilia have been associated with various forms of syndromic and non-syndromic diseases, termed ciliopathies. The primary cilium is therefore gaining attention due to its potential as a therapeutic target. In this review, we examine ciliary receptors, ciliogenesis, and ciliary trafficking as possible therapeutic targets. We first discuss the mechanisms of selective distribution, signal transduction, and physiological roles of ciliary receptors. Next, pathways that regulate ciliogenesis, specifically the Aurora A kinase, mammalian target of rapamycin, and ubiquitin-proteasome pathways are examined as therapeutic targets to regulate ciliogenesis. Then, in the photoreceptors, the mechanism of ciliary trafficking which takes place at the transition zone involving the ciliary membrane proteins is reviewed. Finally, some of the current therapeutic advancements highlighting the role of large animal models of photoreceptor ciliopathy are discussed.
Collapse
Affiliation(s)
- Masaki Saito
- Department of Molecular Physiology and Pathology, School of Pharma-Sciences, Teikyo University, Tokyo, Japan
| | - Wataru Otsu
- Department of Biomedical Research Laboratory, Gifu Pharmaceutical University, Gifu, Japan
| | - Keiko Miyadera
- Department of Clinical Sciences and Advanced Medicine, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Yuhei Nishimura
- Department of Integrative Pharmacology, Mie University Graduate School of Medicine, Tsu, Mie, Japan
- Mie University Research Center for Cilia and Diseases, Tsu, Mie, Japan
| |
Collapse
|
6
|
The deacetylase SIRT2 contributes to autoimmune disease pathogenesis by modulating IL-17A and IL-2 transcription. Cell Mol Immunol 2022; 19:738-750. [PMID: 35523941 DOI: 10.1038/s41423-022-00874-1] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Accepted: 04/13/2022] [Indexed: 12/14/2022] Open
Abstract
Aberrant IL-17A expression together with reduced IL-2 production by effector CD4+ T cells contributes to the pathogenesis of systemic lupus erythematosus (SLE). Here, we report that Sirtuin 2 (SIRT2), a member of the family of NAD+-dependent histone deacetylases, suppresses IL-2 production by CD4+ T cells while promoting their differentiation into Th17 cells. Mechanistically, we show that SIRT2 is responsible for the deacetylation of p70S6K, activation of the mTORC1/HIF-1α/RORγt pathway and induction of Th17-cell differentiation. Additionally, SIRT2 was shown to be responsible for the deacetylation of c-Jun and histones at the Il-2 gene, resulting in decreased IL-2 production. We found that the transcription factor inducible cAMP early repressor (ICER), which is overexpressed in T cells from people with SLE and lupus-prone mice, bound directly to the Sirt2 promoter and promoted its transcription. AK-7, a SIRT2 inhibitor, limited the ability of adoptively transferred antigen-specific CD4+ T cells to cause autoimmune encephalomyelitis in mice and limited disease in lupus-prone MRL/lpr mice. Finally, CD4+ T cells from SLE patients exhibited increased expression of SIRT2, and pharmacological inhibition of SIRT2 in primary CD4+ T cells from patients with SLE attenuated the ability of these cells to differentiate into Th17 cells and promoted the generation of IL-2-producing T cells. Collectively, these results suggest that SIRT2-mediated deacetylation is essential in the aberrant expression of IL-17A and IL-2 and that SIRT2 may be a promising molecular target for new SLE therapies.
Collapse
|
7
|
SIRT2 Affects Cell Proliferation and Apoptosis by Suppressing the Level of Autophagy in Renal Podocytes. DISEASE MARKERS 2022; 2022:4586198. [PMID: 35493297 PMCID: PMC9054447 DOI: 10.1155/2022/4586198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 02/21/2022] [Accepted: 02/28/2022] [Indexed: 12/15/2022]
Abstract
Purpose Despite the discovery of many important molecules in diabetic nephropathy, there has been very limited progress in the management of diabetic kidney diseases and the design of new drugs. To fill this gap, the present study explored the expression of SIRT2 in high-glucose murine kidney foot cells and its impact on cell biological functions. Methods Expression levels of SIRT2 in the MPC-5 of murine kidney foot cells after high and normal glucose treatment or in cells targeted with siRNA were detected using qRT-PCR. Cellular proliferation and programmed cell death were analyzed via the CCK8 assay and flow cell technique, separately. Levels of autophagy markers were measured by western blotting, and chloroquine treatment was applied to the cells to observe the effect of SIRT2 on cell proliferation and apoptosis after treatment. Results The expression level of SIRT2 was remarkably upregulated in the high-GLU group in contrast to the low-GLU group. The cell proliferation and autophagy levels were significantly reduced, and apoptosis was remarkably reinforced in the high-GLU group in contrast to the normal GLU group. However, knocking down the expression level of SIRT2 caused an increase in cell proliferation and cell autophagy levels and significantly weakened apoptosis. Chloroquine influenced cell proliferation and apoptosis in cells targeted with SIRT2 siRNA. Conclusion SIRT2 expression was upregulated in hyperglycaemic murine kidney foot cells, and knocking down the expression level of SIRT2 affected the biological function of the cells. We found that SIRT2 may modulate cell proliferation and apoptosis by regulating cell autophagy.
Collapse
|
8
|
Lee EJ, Lee MM, Park S, Jeong KS. Sirt2 positively regulates muscle regeneration after Notexin-induced muscle injury. Exp Mol Pathol 2022; 127:104798. [DOI: 10.1016/j.yexmp.2022.104798] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 05/01/2022] [Accepted: 05/24/2022] [Indexed: 01/04/2023]
|
9
|
Han X, Cai L, Shi Y, Hua Z, Lu Y, Li D, Yang J. Integrated Analysis of Long Non-Coding RNA -mRNA Profile and Validation in Diabetic Cataract. Curr Eye Res 2022; 47:382-390. [PMID: 35068271 DOI: 10.1080/02713683.2021.1984536] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Xiaoyan Han
- Eye Institute and Department of Ophthalmology, Eye & ENT Hospital, Fudan University, Shanghai, China
- NHC Key Laboratory of Myopia, Fudan University, Shanghai, China
- Key Laboratory of Myopia, Chinese Academy of Medical Sciences, Shanghai, China
- Shanghai Key Laboratory of Visual Impairment and Restoration, Shanghai, China
| | - Lei Cai
- Eye Institute and Department of Ophthalmology, Eye & ENT Hospital, Fudan University, Shanghai, China
- NHC Key Laboratory of Myopia, Fudan University, Shanghai, China
- Key Laboratory of Myopia, Chinese Academy of Medical Sciences, Shanghai, China
- Shanghai Key Laboratory of Visual Impairment and Restoration, Shanghai, China
| | - Yumeng Shi
- Eye Institute and Department of Ophthalmology, Eye & ENT Hospital, Fudan University, Shanghai, China
- NHC Key Laboratory of Myopia, Fudan University, Shanghai, China
- Key Laboratory of Myopia, Chinese Academy of Medical Sciences, Shanghai, China
- Shanghai Key Laboratory of Visual Impairment and Restoration, Shanghai, China
| | - Zhixiang Hua
- Eye Institute and Department of Ophthalmology, Eye & ENT Hospital, Fudan University, Shanghai, China
- NHC Key Laboratory of Myopia, Fudan University, Shanghai, China
- Key Laboratory of Myopia, Chinese Academy of Medical Sciences, Shanghai, China
- Shanghai Key Laboratory of Visual Impairment and Restoration, Shanghai, China
| | - Yi Lu
- Eye Institute and Department of Ophthalmology, Eye & ENT Hospital, Fudan University, Shanghai, China
| | - Dan Li
- Eye Institute and Department of Ophthalmology, Eye & ENT Hospital, Fudan University, Shanghai, China
- NHC Key Laboratory of Myopia, Fudan University, Shanghai, China
- Key Laboratory of Myopia, Chinese Academy of Medical Sciences, Shanghai, China
- Shanghai Key Laboratory of Visual Impairment and Restoration, Shanghai, China
- State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai, China
| | - Jin Yang
- Eye Institute and Department of Ophthalmology, Eye & ENT Hospital, Fudan University, Shanghai, China
- NHC Key Laboratory of Myopia, Fudan University, Shanghai, China
- Key Laboratory of Myopia, Chinese Academy of Medical Sciences, Shanghai, China
- Shanghai Key Laboratory of Visual Impairment and Restoration, Shanghai, China
| |
Collapse
|
10
|
Pant K, Peixoto E, Richard S, Biswas A, O'Sullivan MG, Giama N, Ha Y, Yin J, Carotenuto P, Salati M, Ren Y, Yang R, Franco B, Roberts LR, Gradilone SA. Histone Deacetylase Sirtuin 1 Promotes Loss of Primary Cilia in Cholangiocarcinoma. Hepatology 2021; 74:3235-3248. [PMID: 34322899 DOI: 10.1002/hep.32080] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Revised: 07/06/2021] [Accepted: 07/08/2021] [Indexed: 12/16/2022]
Abstract
BACKGROUND AND AIMS Sirtuin 1 (SIRT1) is a complex NAD+ -dependent protein deacetylase known to act as a tumor promoter or suppressor in different cancers. Here, we describe a mechanism of SIRT1-induced destabilization of primary cilia in cholangiocarcinoma (CCA). APPROACH AND RESULTS A significant overexpression of SIRT1 was detected in human CCA specimens and CCA cells including HuCCT1, KMCH, and WITT1 as compared with normal cholangiocytes (H69 and NHC). Small interfering RNA (siRNA)-mediated knockdown of SIRT1 in HuCCT1 cells induced cilia formation, whereas overexpression of SIRT1 in normal cholangiocytes suppressed ciliary expression. Activity of SIRT1 was regulated by presence of NAD+ in CCA cells. Inhibition of NAD -producing enzyme nicotinamide phosphoribosyl transferase increased ciliary length and frequency in CCA cells and in SIRT1-overexpressed H69 cells. Furthermore, we also noted that SIRT1 induces the proteasomal mediated degradation of ciliary proteins, including α-tubulin, ARL13B, and KIF3A. Moreover, overexpression of SIRT1 in H69 and NHC cells significantly induced cell proliferation and, conversely, SIRT1 inhibition in HuCCT1 and KMCH cells using siRNA or sirtinol reduced cell proliferation. In an orthotopic transplantation rat CCA model, the SIRT1 inhibitor sirtinol reduced tumor size and tumorigenic proteins (glioma-associated oncogene 1, phosphorylated extracellular signal-regulated kinase, and IL-6) expression. CONCLUSIONS In conclusion, these results reveal the tumorigenic role of SIRT1 through modulation of primary cilia formation and provide the rationale for developing therapeutic approaches for CCA using SIRT1 as a target.
Collapse
Affiliation(s)
- Kishor Pant
- The Hormel Institute, University of Minnesota, Austin, MN
| | | | - Seth Richard
- The Hormel Institute, University of Minnesota, Austin, MN
| | | | - M Gerard O'Sullivan
- Comparative Pathology Shared Resource, Masonic Cancer Center, University of Minnesota, St. Paul, MN
| | - Nasra Giama
- Department of Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN
| | - Yeonjung Ha
- Department of Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN
| | - Jun Yin
- Division of Clinical Trials and Biostatistics, Mayo Clinic, Rochester, MN
| | - Pietro Carotenuto
- TIGEM, Telethon Institute of Genetics and Medicine, and Medical Genetics, Department of Translational Medical Science, Federico II University, Naples, Italy
| | - Massimiliano Salati
- Medical Oncology Unit, Modena Cancer Centre, PhD Program Clinical and Experimental Medicine, University Hospital of Modena, University of Modena and Reggio Emilia, Modena, Italy
| | - Yanan Ren
- The Hormel Institute, University of Minnesota, Austin, MN
| | - Rendong Yang
- The Hormel Institute, University of Minnesota, Austin, MN
| | - Brunella Franco
- TIGEM, Telethon Institute of Genetics and Medicine, and Medical Genetics, Department of Translational Medical Science, Federico II University, Naples, Italy
| | - Lewis R Roberts
- Department of Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN
| | - Sergio A Gradilone
- The Hormel Institute, University of Minnesota, Austin, MN.,Masonic Cancer Center, University of Minnesota, Minneapolis, MN
| |
Collapse
|
11
|
Ki SM, Jeong HS, Lee JE. Primary Cilia in Glial Cells: An Oasis in the Journey to Overcoming Neurodegenerative Diseases. Front Neurosci 2021; 15:736888. [PMID: 34658775 PMCID: PMC8514955 DOI: 10.3389/fnins.2021.736888] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Accepted: 08/31/2021] [Indexed: 12/29/2022] Open
Abstract
Many neurodegenerative diseases have been associated with defects in primary cilia, which are cellular organelles involved in diverse cellular processes and homeostasis. Several types of glial cells in both the central and peripheral nervous systems not only support the development and function of neurons but also play significant roles in the mechanisms of neurological disease. Nevertheless, most studies have focused on investigating the role of primary cilia in neurons. Accordingly, the interest of recent studies has expanded to elucidate the role of primary cilia in glial cells. Correspondingly, several reports have added to the growing evidence that most glial cells have primary cilia and that impairment of cilia leads to neurodegenerative diseases. In this review, we aimed to understand the regulatory mechanisms of cilia formation and the disease-related functions of cilia, which are common or specific to each glial cell. Moreover, we have paid close attention to the signal transduction and pathological mechanisms mediated by glia cilia in representative neurodegenerative diseases. Finally, we expect that this field of research will clarify the mechanisms involved in the formation and function of glial cilia to provide novel insights and ideas for the treatment of neurodegenerative diseases in the future.
Collapse
Affiliation(s)
- Soo Mi Ki
- Department of Health Sciences and Technology, Samsung Advanced Institute for Health Sciences and Technology, Sungkyunkwan University, Seoul, South Korea
| | - Hui Su Jeong
- Department of Health Sciences and Technology, Samsung Advanced Institute for Health Sciences and Technology, Sungkyunkwan University, Seoul, South Korea
| | - Ji Eun Lee
- Department of Health Sciences and Technology, Samsung Advanced Institute for Health Sciences and Technology, Sungkyunkwan University, Seoul, South Korea
- Samsung Medical Center, Samsung Biomedical Research Institute, Seoul, South Korea
| |
Collapse
|
12
|
Zhang Y, Chen W, Zeng W, Lu Z, Zhou X. Biallelic loss of function NEK3 mutations deacetylate α-tubulin and downregulate NUP205 that predispose individuals to cilia-related abnormal cardiac left-right patterning. Cell Death Dis 2020; 11:1005. [PMID: 33230144 PMCID: PMC7684299 DOI: 10.1038/s41419-020-03214-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2020] [Accepted: 11/05/2020] [Indexed: 12/18/2022]
Abstract
Defective left–right (LR) organization involving abnormalities in cilia ultrastructure causes laterality disorders including situs inversus (SI) and heterotaxy (Htx) with the prevalence approximately 1/10,000 births. In this study, we describe two unrelated family trios with abnormal cardiac LR patterning. Through whole-exome sequencing (WES), we identified compound heterozygous mutations (c.805-1G >C; p. Ile269GlnfsTer8/c.1117dupA; p.Thr373AsnfsTer19) (c.29T>C; p.Ile10Thr/c.356A>G; p.His119Arg) of NEK3, encoding a NIMA (never in mitosis A)-related kinase, in two affected individuals, respectively. Protein levels of NEK3 were abrogated in Patient-1 with biallelic loss-of function (LoF) NEK3 mutations that causes premature stop codon. Subsequence transcriptome analysis revealed that NNMT (nicotinamide N-methyltransferase) and SIRT2 (sirtuin2) was upregulated by NEK3 knockdown in human retinal pigment epithelial (RPE) cells in vitro, which associates α-tubulin deacetylation by western blot and immunofluorescence. Transmission electron microscopy (TEM) analysis further identified defective ciliary ultrastructure in Patient-1. Furthermore, inner ring components of nuclear pore complex (NPC) including nucleoporin (NUP)205, NUP188, and NUP155 were significantly downregulated in NEK3-silenced cells. In conclusion, we identified biallelic mutations of NEK3 predispose individual to abnormal cardiac left–right patterning via SIRT2-mediated α-tubulin deacetylation and downregulation of inner ring nucleoporins. Our study suggested that NEK3 could be a candidate gene for human ciliopathies.
Collapse
Affiliation(s)
- Yuan Zhang
- Department of Assisted Reproduction, and Clinical and Translational Research Center, Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, 201204, Shanghai, China
| | - Weicheng Chen
- Pediatric Cardiovascular Center, Children's Hospital of Fudan University, 201102, Shanghai, China
| | - Weijia Zeng
- School of Life Sciences, Fudan University, 200433, Shanghai, China
| | - Zhouping Lu
- Clinical and Translational Research Center, Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, 201204, Shanghai, China
| | - Xiangyu Zhou
- Clinical and Translational Research Center, Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, 201204, Shanghai, China.
| |
Collapse
|
13
|
Halder P, Khatun S, Majumder S. Freeing the brake: Proliferation needs primary cilium to disassemble. J Biosci 2020. [DOI: 10.1007/s12038-020-00090-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|