1
|
Douglas AJ, Todd LA, Katzenback BA. The amphibian invitrome: Past, present, and future contributions to our understanding of amphibian immunity. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2023; 142:104644. [PMID: 36708792 DOI: 10.1016/j.dci.2023.104644] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Revised: 01/18/2023] [Accepted: 01/18/2023] [Indexed: 06/18/2023]
Abstract
Many amphibian populations are declining worldwide, and infectious diseases are a leading cause. Given the eminent threat infectious diseases pose to amphibian populations, there is a need to understand the host-pathogen-environment interactions that govern amphibian susceptibility to disease and mortality events. However, using animals in research raises an ethical dilemma, which is magnified by the alarming rates at which many amphibian populations are declining. Thus, in vitro study systems such as cell lines represent valuable tools for furthering our understanding of amphibian immune systems. In this review, we curate a list of the amphibian cell lines established to date (the amphibian invitrome), highlight how research using amphibian cell lines has advanced our understanding of the amphibian immune system, anti-ranaviral defence mechanisms, and Batrachochytrium dendrobatidis replication in host cells, and offer our perspective on how future use of amphibian cell lines can advance the field of amphibian immunology.
Collapse
Affiliation(s)
- Alexander J Douglas
- Department of Biology, University of Waterloo, Waterloo, Ontario, N2L 3G1, Canada
| | - Lauren A Todd
- Department of Biology, University of Waterloo, Waterloo, Ontario, N2L 3G1, Canada
| | - Barbara A Katzenback
- Department of Biology, University of Waterloo, Waterloo, Ontario, N2L 3G1, Canada.
| |
Collapse
|
2
|
Four Mx Genes Identified in Andrias davidianus and Characterization of Their Response to Chinese Giant Salamander Iridovirus Infection. Animals (Basel) 2022; 12:ani12162147. [PMID: 36009736 PMCID: PMC9405346 DOI: 10.3390/ani12162147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 07/19/2022] [Accepted: 08/08/2022] [Indexed: 11/25/2022] Open
Abstract
Amphibians, including Andrias davidianus, are declining worldwide partly due to infectious diseases. The Myxovirus resistance (Mx) gene is a typical interferon (IFN)-stimulated gene (ISG) involved in the antiviral immunity. Therefore, knowledge regarding the antiviral immunity of A. davidianus can be used for improved reproduction in captivity and protection in the wild. In this study, we amplified and characterized four different A. davidianus Mx genes (adMx) and generated temporal mRNA expression profiles in healthy and Chinese giant salamander iridovirus (GSIV) infected A. davidianus by qualitative real-time PCR (qPCR). The four adMx genes ranged in length from 2008 to 2840 bp. The sequences revealed conserved protein domains including the dynamin superfamily signature motif and the tripartite guanosine-5-triphosphate (GTP)-binding motif. Gene and deduced amino acid sequence alignment revealed relatively high sequence identity with the Mx genes and proteins of other vertebrates. In phylogenetic analysis, the adMx genes clustered together, but also clustered closely with those of fish species. The four adMx genes were broadly expressed in healthy A. davidianus, but were differentially expressed in the spleen during the GSIV infection. Our results show that the adMx genes share major structural features with their homologs, suggesting similar functions to those in other species.
Collapse
|
3
|
Zhang J, Dai Y, Fan Y, Jiang N, Zhou Y, Zeng L, Li Y. Glycosylphosphatidylinositol Mannosyltransferase Ⅰ Protects Chinese Giant Salamander, Andrias davidianus, against Iridovirus. Int J Mol Sci 2022; 23:ijms23169009. [PMID: 36012277 PMCID: PMC9409044 DOI: 10.3390/ijms23169009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 08/05/2022] [Accepted: 08/09/2022] [Indexed: 11/16/2022] Open
Abstract
Glycosylphosphatidylinositol mannosyltransferase I (GPI-MT-I) is an essential glycosyltransferase of glycosylphosphatidylinositol-anchor proteins (GPI-APs) that transfers the first of the four mannoses in GPI-AP precursors, which have multiple functions, including immune response and signal transduction. In this study, the GPI-MT-I gene that regulates GPI-AP biosynthesis in Andrias davidianus (AdGPI-MT-I) was characterized for the first time. The open reading frame (ORF) of AdGPI-MT-I is 1293 bp and encodes a protein of 430 amino acids that contains a conserved PMT2 superfamily domain. AdGPI-MT-I mRNA was widely expressed in the tissues of the Chinese giant salamander. The mRNA expression level of AdGPI-MT-I in the spleen, kidney, and muscle cell line (GSM cells) was significantly upregulated post Chinese giant salamander iridovirus (GSIV) infection. The mRNA expression of the virus major capsid protein (MCP) in AdGPI-MT-I-overexpressed cells was significantly reduced. Moreover, a lower level of virus MCP synthesis and gene copying in AdGPI-MT-I-overexpressed cells was confirmed by western blot and ddPCR. These results collectively suggest that GSIV replication in GSM cells was significantly reduced by the overexpression of the AdGPI-MT-I protein, which may contribute to a better understanding of the antiviral mechanism against iridovirus infection.
Collapse
Affiliation(s)
- Jingjing Zhang
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan 430223, China
- National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai 201306, China
| | - Yanlin Dai
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan 430223, China
- National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai 201306, China
| | - Yuding Fan
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan 430223, China
| | - Nan Jiang
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan 430223, China
| | - Yong Zhou
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan 430223, China
| | - Lingbing Zeng
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan 430223, China
- National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai 201306, China
- Correspondence: (L.Z.); (Y.L.); Tel.: +86-027-8178-5190 (L.Z.); +86-027-8178-5182 (Y.L.)
| | - Yiqun Li
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan 430223, China
- Correspondence: (L.Z.); (Y.L.); Tel.: +86-027-8178-5190 (L.Z.); +86-027-8178-5182 (Y.L.)
| |
Collapse
|
4
|
Hu X, Jiang N, Li Y, Zhou Y, Fan Y, Xue M, Zeng L, Liu W, Meng Y. Rapid Nucleic Acid Extraction for Aquatic Animal DNA Virus Determination Using Chelex 100 Resin via Conventional PCR and Digital Droplet PCR Detection. Animals (Basel) 2022; 12:ani12151999. [PMID: 35953988 PMCID: PMC9367309 DOI: 10.3390/ani12151999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 07/18/2022] [Accepted: 08/02/2022] [Indexed: 12/05/2022] Open
Abstract
Simple Summary Convenient, fast, and high-quality nucleic acid extraction methods are urgently needed in molecular diagnostic testing for viral pathogens in aquaculture. We developed a viral DNA extraction method from diseased tissues and cells using the Chelex 100 resin solution workflow. The only extraction reagents required are the Chelex 100 resin and phosphate-buffered saline. The whole extraction process only takes about 15 min from the tissue homogenate to obtain the DNA. The concentration of extracted DNA is at least 100 ng/µL. This methodology has clear benefits in terms of cost and time saving compared to the commercial kit extraction for aquatic animal DNA virus determination by PCR in the laboratory. In addition, the simplified method using Chelex 100 resin with a pH value of 10–11 presented excellent results in PCR application and could be a standard for the DNA extraction for DNA virus testing in the future. Abstract Molecular diagnostic testing for viral pathogens is crucial in aquaculture. The efficient and convenient preparation of pathogenic microbial nucleic acids is the basis of molecular diagnosis. Here, we developed a simplified deoxyribonucleic acid (DNA) extraction method from aquatic animal DNA viruses using the Chelex 100 resin. The nucleic acid was extracted from infected tissues and cell culture for the detection of three common aquatic viral pathogens (CEV, CyHV-2, and GSIV). We compared the extraction effects of a current commercial kit extraction method and the Chelex 100 resin extraction method according to nucleic acid concentration, conventional polymerase chain reaction (PCR), and digital droplet PCR (ddPCR). The results indicated that both extraction procedures could obtain high-quality nucleotide samples. Extracting DNA using the Chelex 100 resin led to better detective efficiency for ddPCR molecular diagnostic testing. The whole process took less than 20 min, and only Chelex 100 resin solution was added to the tissues or cells without multiple tubes being transferred several times. The extracted DNA concentration and the detection sensitivity were high. These results indicated that the Chelex 100 resin solution has the advantages of speed, efficiency, and economy compared to the commercial kit. In addition, the higher pH value (10–11) of the Chelex 100 resin solution markedly improved the detection sensitivity compared to a lower pH value (9–10). In conclusion, the comparison of the Chelex 100 Resin and commercial viral DNA extraction kits revealed the good performance of the Chelex 100 resin solution at pH 10–11 in DNA extraction for PCR amplification from aquatic animal viral samples of tissues and cells in molecular diagnostic testing. It is both rapid and cost-effective.
Collapse
Affiliation(s)
- Xi Hu
- National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai 201306, China
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan 430223, China
| | - Nan Jiang
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan 430223, China
| | - Yiqun Li
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan 430223, China
| | - Yong Zhou
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan 430223, China
| | - Yuding Fan
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan 430223, China
| | - Mingyang Xue
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan 430223, China
| | - Lingbing Zeng
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan 430223, China
| | - Wenzhi Liu
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan 430223, China
| | - Yan Meng
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan 430223, China
- Correspondence:
| |
Collapse
|
5
|
Zhang J, Li Y, Zhou Y, Jiang N, Fan Y, Lin G, Zeng L. Characterization, expression pattern and antiviral activities of oligoadenylate synthetase in Chinese Giant Salamander, Andrias davidianus. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2022; 129:104347. [PMID: 35007654 DOI: 10.1016/j.dci.2022.104347] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 01/05/2022] [Accepted: 01/05/2022] [Indexed: 06/14/2023]
Abstract
The enzyme 2'-5'-oligoadenylate synthetase (OAS) is an antiviral protein induced by interferons (IFNs), which plays an important role in IFN-mediated antiviral signaling pathway. In this study, the OAS of Chinese Giant Salamander, Andrias davidianus (AdOAS) was identified for the first time, and the expression profiles in vivo and the antiviral activities in vitro were investigated. The open reading frame (ORF) of AdOAS gene is 1185 bp in length, encoding a putative protein of 394 amino acids, in which a Nucleotidyltransferase (NTase) domain (40-143 aa) and a conserved OAS1 C superfamily domain (165-341 aa) are included. qRT-PCR analysis revealed a broad expression of AdOAS in vivo, with the highest expression level in intestine and heart. After infection with Chinese giant salamander iridovirus (GSIV), the mRNA level of AdOAS in liver increased significantly at 24 h and 48 h post infection and reached the peak at 72 h compared with the control group. The AdOAS mRNA level in kidney increased slightly at 6 h and 12 h post infection, declined to the initial level at 24 h and peaked at 48 h post infection, while in spleen it was slightly up-regulated at 6 h, inhibited at 12 h, 24 h and 48 h, and then significantly increased to the peak at 72 h post infection. In vitro, AdOAS mRNA level in Chinese giant salamander muscle (GSM) cells was not noticeably up-regulated until 24 h and then peaked at 48 h post GSIV infection. In antiviral activity test, the mRNA transcription and protein level of virus major capsid protein (MCP) in AdOAS over-expressed cells was significantly reduced compared with that in control cells by qRT-PCR and western blot analysis. In addition, ddPCR results showed that lower MCP gene copy was found in AdOAS over-expressed cells compared with the control group. These results collectively suggest that AdOAS plays a crucial role against GSIV infection in Chinese giant salamander, and provide a solid base for the further studies on the mechanism of immune defense and the control of the disease in this animal.
Collapse
Affiliation(s)
- Jingjing Zhang
- National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, 201306, China; Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan, 430223, China
| | - Yiqun Li
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan, 430223, China.
| | - Yong Zhou
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan, 430223, China
| | - Nan Jiang
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan, 430223, China
| | - Yuding Fan
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan, 430223, China
| | - Ge Lin
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan, 430223, China
| | - Lingbing Zeng
- National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, 201306, China; Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan, 430223, China.
| |
Collapse
|
6
|
Jiang N, Fan Y, Zhou Y, Meng Y, Liu W, Li Y, Xue M, Robert J, Zeng L. The Immune System and the Antiviral Responses in Chinese Giant Salamander, Andrias davidianus. Front Immunol 2021; 12:718627. [PMID: 34675918 PMCID: PMC8524050 DOI: 10.3389/fimmu.2021.718627] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Accepted: 09/16/2021] [Indexed: 12/25/2022] Open
Abstract
The Chinese giant salamander, belonging to an ancient amphibian lineage, is the largest amphibian existing in the world, and is also an important animal for artificial cultivation in China. However, some aspects of the innate and adaptive immune system of the Chinese giant salamander are still unknown. The Chinese giant salamander iridovirus (GSIV), a member of the Ranavirus genus (family Iridoviridae), is a prominent pathogen causing high mortality and severe economic losses in Chinese giant salamander aquaculture. As a serious threat to amphibians worldwide, the etiology of ranaviruses has been mainly studied in model organisms, such as the Ambystoma tigrinum and Xenopus. Nevertheless, the immunity to ranavirus in Chinese giant salamander is distinct from other amphibians and less known. We review the unique immune system and antiviral responses of the Chinese giant salamander, in order to establish effective management of virus disease in Chinese giant salamander artificial cultivation.
Collapse
Affiliation(s)
- Nan Jiang
- Division of Fish Disease, Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan, China
- Department of Microbiology and Immunology, University of Rochester Medical Center, New York, NY, United States
| | - Yuding Fan
- Division of Fish Disease, Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan, China
| | - Yong Zhou
- Division of Fish Disease, Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan, China
| | - Yan Meng
- Division of Fish Disease, Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan, China
| | - Wenzhi Liu
- Division of Fish Disease, Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan, China
| | - Yiqun Li
- Division of Fish Disease, Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan, China
| | - Mingyang Xue
- Division of Fish Disease, Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan, China
| | - Jacques Robert
- Department of Microbiology and Immunology, University of Rochester Medical Center, New York, NY, United States
| | - Lingbing Zeng
- Division of Fish Disease, Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan, China
| |
Collapse
|
7
|
Evidence for a Novel Antiviral Mechanism of Teleost Fish: Serum-Derived Exosomes Inhibit Virus Replication through Incorporating Mx1 Protein. Int J Mol Sci 2021; 22:ijms221910346. [PMID: 34638687 PMCID: PMC8508709 DOI: 10.3390/ijms221910346] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 09/16/2021] [Accepted: 09/23/2021] [Indexed: 12/30/2022] Open
Abstract
Exosomes are associated with cancer progression, pregnancy, cardiovascular diseases, central nervous system-related diseases, immune responses and viral pathogenicity. However, study on the role of exosomes in the immune response of teleost fish, especially antiviral immunity, is limited. Herein, serum-derived exosomes from mandarin fish were used to investigate the antiviral effect on the exosomes of teleost fish. Exosomes isolated from mandarin fish serum by ultra-centrifugation were internalized by mandarin fish fry cells and were able to inhibit Infectious spleen and kidney necrosis virus (ISKNV) infection. To further investigate the underlying mechanisms of exosomes in inhibiting ISKNV infection, the protein composition of serum-derived exosomes was analyzed by mass spectrometry. It was found that myxovirus resistance 1 (Mx1) was incorporated by exosomes. Furthermore, the mandarin fish Mx1 protein was proven to be transferred into the recipient cells though exosomes. Our results showed that the serum-derived exosomes from mandarin fish could inhibit ISKNV replication, which suggested an underlying mechanism of the exosome antivirus in that it incorporates Mx1 protein and delivery into recipient cells. This study provided evidence for the important antiviral role of exosomes in the immune system of teleost fish.
Collapse
|
8
|
Lin CH, Chen JJ, Cheng CM. Developing a Virus-Binding Bacterium Expressing Mx Protein on the Bacterial Surface to Prevent Grouper Nervous Necrosis Virus Infection. J Microbiol Biotechnol 2021; 31:1088-1097. [PMID: 34226401 PMCID: PMC9705906 DOI: 10.4014/jmb.2103.03036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 06/06/2021] [Accepted: 06/10/2021] [Indexed: 12/15/2022]
Abstract
Grouper nervous necrosis virus (GNNV) infection causes mass grouper mortality, leading to substantial economic loss in Taiwan. Traditional methods of controlling GNNV infections involve the challenge of controlling disinfectant doses; low doses are ineffective, whereas high doses may cause environmental damage. Identifying potential methods to safely control GNNV infection to prevent viral outbreaks is essential. We engineered a virus-binding bacterium expressing a myxovirus resistance (Mx) protein on its surface for GNNV removal from phosphate-buffered saline (PBS), thus increasing the survival of grouper fin (GF-1) cells. We fused the grouper Mx protein (which recognizes and binds to the coat protein of GNNV) to the C-terminus of outer membrane lipoprotein A (lpp-Mx) and to the N-terminus of a bacterial autotransporter adhesin (Mx-AIDA); these constructs were expressed on the surfaces of Escherichia coli BL21 (BL21/lpp-Mx and BL21/Mx-AIDA). We examined bacterial surface expression capacity and GNNV binding activity through enzyme-linked immunosorbent assay; we also evaluated the GNNV removal efficacy of the bacteria and viral cytotoxicity after bacterial adsorption treatment. Although both constructs were successfully expressed, only BL21/lpp-Mx exhibited GNNV binding activity; BL21/lpp-Mx cells removed GNNV and protected GF-1 cells from GNNV infection more efficiently. Moreover, salinity affected the GNNV removal efficacy of BL21/lpp-Mx. Thus, our GNNV-binding bacterium is an efficient microparticle for removing GNNV from 10‰ brackish water and for preventing GNNV infection in groupers.
Collapse
Affiliation(s)
- Chia-Hua Lin
- Ph.D. Program of Aquatic Science and Technology in Industry, College of Hydrosphere Science, National Kaohsiung University of Science and Technology, Kaohsiung City 80778, Taiwan
| | - Jun-Jie Chen
- Department and Graduate Institute of Aquaculture, National Kaohsiung University of Science and Technology, Kaohsiung City 80778, Taiwan
| | - Chiu-Min Cheng
- Department and Graduate Institute of Aquaculture, National Kaohsiung University of Science and Technology, Kaohsiung City 80778, Taiwan,Corresponding author Phone: +886-7-3617141#23713 Fax: +886-7-6112025 E-mail:
| |
Collapse
|
9
|
Li Y, Liu Y, Zhou Y, Liu W, Fan Y, Jiang N, Xue M, Meng Y, Zeng L. Bid is involved in apoptosis induced by Chinese giant salamander iridovirus and contributes to the viral replication in an amphibian cell line. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2021; 116:103935. [PMID: 33242566 DOI: 10.1016/j.dci.2020.103935] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Revised: 11/16/2020] [Accepted: 11/16/2020] [Indexed: 06/11/2023]
Abstract
Bid is a pro-apoptotic BH3-only member of the Bcl-2 superfamily that functions to link the extrinsic apoptotic pathway and the mitochondrial amplification loop of the intrinsic pathway. In this study, the expression and functions of Chinese giant salamander (Andrias davidianus) Bid (AdBid) were investigated. The AdBid cDNA sequence contains an open reading frame (ORF) of 576 nucleotides, encoding a putative protein of 191 aa. AdBid possesses the conserved BH3 interacting domain and shared 34-52% sequence identities with other amphibian Bid. mRNA expression of AdBid was most abundant in muscle. The expression level of AdBid in Chinese giant salamander muscle, kidney and spleen significantly increased after Chinese giant salamander iridovirus (GSIV) infection. Additionally, a plasmid expressing AdBid was constructed and transfected into the Chinese giant salamander muscle cell line (GSM cells). The morphology and cytopathic effect (CPE) and apoptotic process in AdBid over-expressed GSM cells was significantly enhanced during GSIV infection compared with that in control cells. Moreover, a higher level of the virus major capsid protein (MCP) gene copies and protein synthesis was confirmed in the AdBid over-expressed cells. These results indicated that AdBid played a positive role in GSIV induced apoptosis and the viral replication. This study may contribute to the better understanding on the infection mechanism of iridovirus-induced apoptosis.
Collapse
Affiliation(s)
- Yiqun Li
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan, 430223, China
| | - Yanan Liu
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan, 430223, China
| | - Yong Zhou
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan, 430223, China
| | - Wenzhi Liu
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan, 430223, China
| | - Yuding Fan
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan, 430223, China
| | - Nan Jiang
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan, 430223, China
| | - Mingyang Xue
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan, 430223, China
| | - Yan Meng
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan, 430223, China
| | - Lingbing Zeng
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan, 430223, China.
| |
Collapse
|