1
|
Vijayakumar P, Dawson PA. Analytical methods for quantitating sulfate in plasma and serum. Essays Biochem 2024; 68:383-389. [PMID: 38699863 PMCID: PMC11625858 DOI: 10.1042/ebc20230092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 04/14/2024] [Accepted: 04/16/2024] [Indexed: 05/05/2024]
Abstract
Circulating sulfate needs to be maintained at sufficiently high levels for healthy growth and development. Animal studies have shown the adverse physiological consequences of low circulating sulfate level on the skeletal, neurological and reproductive systems. However, sulfate is not routinely measured in clinical investigations, despite the importance of sulfate being documented over the past several decades. Several methods have been developed for measuring serum and plasma sulfate level in animals and humans, including a range of barium sulfate precipitation techniques that have been a major focus of sulfate analytics since the 1960s. Evaluation of an ion chromatography method demonstrated its utility for investigation of sulfate levels in human health. More recently, liquid chromatography-tandem mass spectrometry has been used to show hyposulfatemia in a human case of mild skeletal dysplasia. This article provides an overview of analytical methods for measuring sulfate in serum and plasma, highlighting the strengths and limitations of each method.
Collapse
Affiliation(s)
- Prasidhee Vijayakumar
- Mater Research Institute, The University of Queensland, Woolloongabba QLD, Australia
| | - Paul A Dawson
- Mater Research Institute, The University of Queensland, Woolloongabba QLD, Australia
| |
Collapse
|
2
|
Lai C, Yang L, Pathiranage V, Wang R, Subach FV, Walker AR, Piatkevich KD. Genetically encoded green fluorescent sensor for probing sulfate transport activity of solute carrier family 26 member a2 (Slc26a2) protein. Commun Biol 2024; 7:1375. [PMID: 39443638 PMCID: PMC11499995 DOI: 10.1038/s42003-024-07020-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Accepted: 10/04/2024] [Indexed: 10/25/2024] Open
Abstract
Genetically encoded fluorescent biosensors became indispensable tools for biological research, enabling real-time observation of physiological processes in live cells. Recent protein engineering efforts have resulted in the generation of a large variety of fluorescent biosensors for a wide range of biologically relevant processes, from small ions to enzymatic activity and signaling pathways. However, biosensors for imaging sulfate ions, the fourth most abundant physiological anion, in mammalian cells are still lacking. Here, we report the development and characterization of a green fluorescent biosensor for sulfate named Thyone. Thyone, derived through structure-guided design from bright green fluorescent protein mNeonGreen, exhibited a large negative fluorescence response upon subsecond association with sulfate anion with an affinity of 11 mM in mammalian cells. By integrating mutagenesis analyses with molecular dynamics simulations, we elucidated the molecular mechanism of sulfate binding and revealed key amino acid residues responsible for sulfate sensitivity. High anion selectivity and sensitivity of Thyone allowed for imaging of sulfate anion transients mediated by sulfate transporter heterologously expressed in cultured mammalian cells. We believe that Thyone will find a broad application for assaying the sulfate transport in mammalian cells via anion transporters and exchangers.
Collapse
Affiliation(s)
- Cuixin Lai
- School of Life Science, Westlake University, Hangzhou, Zhejiang, China
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, China
- Institute of Basic Medical Sciences, Westlake Institute for Advance Study, Hangzhou, Zhejiang, China
| | - Lina Yang
- School of Life Science, Westlake University, Hangzhou, Zhejiang, China
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, China
- Institute of Basic Medical Sciences, Westlake Institute for Advance Study, Hangzhou, Zhejiang, China
| | | | - Ruizhao Wang
- School of Life Science, Westlake University, Hangzhou, Zhejiang, China
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, China
- Institute of Basic Medical Sciences, Westlake Institute for Advance Study, Hangzhou, Zhejiang, China
| | - Fedor V Subach
- Complex of NBICS Technologies, National Research Center "Kurchatov Institute", Moscow, Russia
| | - Alice R Walker
- Department of Chemistry, Wayne State University, Detroit, MI, USA.
| | - Kiryl D Piatkevich
- School of Life Science, Westlake University, Hangzhou, Zhejiang, China.
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, China.
- Institute of Basic Medical Sciences, Westlake Institute for Advance Study, Hangzhou, Zhejiang, China.
| |
Collapse
|
3
|
Wardak C, Morawska K, Pietrzak K. New Materials Used for the Development of Anion-Selective Electrodes-A Review. MATERIALS (BASEL, SWITZERLAND) 2023; 16:5779. [PMID: 37687472 PMCID: PMC10488487 DOI: 10.3390/ma16175779] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 08/13/2023] [Accepted: 08/21/2023] [Indexed: 09/10/2023]
Abstract
Ion-selective electrodes are a popular analytical tool useful in the analysis of cations and anions in environmental, industrial and clinical samples. This paper presents an overview of new materials used for the preparation of anion-sensitive ion-selective electrodes during the last five years. Design variants of anion-sensitive electrodes, their advantages and disadvantages as well as research methods used to assess their parameters and analytical usefulness are presented. The work is divided into chapters according to the type of ion to which the electrode is selective. Characteristics of new ionophores used as the electroactive component of ion-sensitive membranes and other materials used to achieve improvement of sensor performance (e.g., nanomaterials, composite and hybrid materials) are presented. Analytical parameters of the electrodes presented in the paper are collected in tables, which allows for easy comparison of different variants of electrodes sensitive to the same ion.
Collapse
Affiliation(s)
- Cecylia Wardak
- Department of Analytical Chemistry, Institute of Chemical Sciences, Faculty of Chemistry, Maria Curie-Sklodowska University, Maria Curie-Sklodowska Sq. 3, 20-031 Lublin, Poland;
| | - Klaudia Morawska
- Department of Analytical Chemistry, Institute of Chemical Sciences, Faculty of Chemistry, Maria Curie-Sklodowska University, Maria Curie-Sklodowska Sq. 3, 20-031 Lublin, Poland;
| | - Karolina Pietrzak
- Department of Food and Nutrition, Medical University of Lublin, 4a Chodzki Str., 20-093 Lublin, Poland;
| |
Collapse
|
4
|
Ong WSY, Ji K, Pathiranage V, Maydew C, Baek K, Villones RLE, Meloni G, Walker AR, Dodani SC. Rational Design of the β-Bulge Gate in a Green Fluorescent Protein Accelerates the Kinetics of Sulfate Sensing. Angew Chem Int Ed Engl 2023; 62:e202302304. [PMID: 37059690 PMCID: PMC10330437 DOI: 10.1002/anie.202302304] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 04/11/2023] [Accepted: 04/12/2023] [Indexed: 04/16/2023]
Abstract
Detection of anions in complex aqueous media is a fundamental challenge with practical utility that can be addressed by supramolecular chemistry. Biomolecular hosts such as proteins can be used and adapted as an alternative to synthetic hosts. Here, we report how the mutagenesis of the β-bulge residues (D137 and W138) in mNeonGreen, a bright, monomeric fluorescent protein, unlocks and tunes the anion preference at physiological pH for sulfate, resulting in the turn-off sensor SulfOFF-1. This unprecedented sensing arises from an enhancement in the kinetics of binding, largely driven by position 138. In line with these data, molecular dynamics (MD) simulations capture how the coordinated entry and gating of sulfate into the β-barrel is eliminated upon mutagenesis to facilitate binding and fluorescence quenching.
Collapse
Affiliation(s)
- Whitney S. Y. Ong
- Department of Chemistry and Biochemistry, The University of Texas at Dallas, 800 W. Campbell Road, Richardson, Texas 75080-3021, USA
| | - Ke Ji
- Department of Chemistry and Biochemistry, The University of Texas at Dallas, 800 W. Campbell Road, Richardson, Texas 75080-3021, USA
| | - Vishaka Pathiranage
- Department of Chemistry, Wayne State University, 42 W. Warren Ave. Detroit, MI 48202, USA
| | - Caden Maydew
- Department of Chemistry and Biochemistry, The University of Texas at Dallas, 800 W. Campbell Road, Richardson, Texas 75080-3021, USA
| | - Kiheon Baek
- Department of Chemistry and Biochemistry, The University of Texas at Dallas, 800 W. Campbell Road, Richardson, Texas 75080-3021, USA
| | - Rhiza Lyne E. Villones
- Department of Chemistry and Biochemistry, The University of Texas at Dallas, 800 W. Campbell Road, Richardson, Texas 75080-3021, USA
| | - Gabriele Meloni
- Department of Chemistry and Biochemistry, The University of Texas at Dallas, 800 W. Campbell Road, Richardson, Texas 75080-3021, USA
| | - Alice R. Walker
- Department of Chemistry, Wayne State University, 42 W. Warren Ave. Detroit, MI 48202, USA
| | - Sheel C. Dodani
- Department of Chemistry and Biochemistry, The University of Texas at Dallas, 800 W. Campbell Road, Richardson, Texas 75080-3021, USA
| |
Collapse
|
5
|
Fatima U, Ameen F, Soleja N, Khan P, Almansob A, Ahmad A. A Fluorescence Resonance Energy Transfer-Based Analytical Tool for Nitrate Quantification in Living Cells. ACS OMEGA 2020; 5:30306-30314. [PMID: 33251465 PMCID: PMC7689916 DOI: 10.1021/acsomega.0c04868] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Accepted: 11/02/2020] [Indexed: 05/11/2023]
Abstract
Nitrate (NO3 -) is a critical source of nitrogen (N) available to microorganisms and plants. Nitrate sensing activates signaling pathways in the plant system that impinges upon, developmental, molecular, metabolic, and physiological responses locally, and globally. To sustain, the high crop productivity and high nutritional value along with the sustainable environment, the study of rate-controlling steps of a metabolic network of N assimilation through fluxomics becomes an attractive strategy. To monitor the flux of nitrate, we developed a non-invasive genetically encoded fluorescence resonance energy transfer (FRET)-based tool named "FLIP-NT" that monitors the real-time uptake of nitrate in the living cells. The developed nanosensor is suitable for real-time monitoring of nitrate flux in living cells at subcellular compartments with high spatio-temporal resolution. The developed FLIP-NT nanosensor was not affected by the pH change and have specificity for nitrate with an affinity constant (K d) of ∼5 μM. A series of affinity mutants have also been generated to expand the physiological detection range of the sensor protein with varying K d values. It has been found that this sensor successfully detects the dynamics of nitrate fluctuations in bacteria and yeast, without the disruption of cellular organization. This FLIP-NT nanosensor could be a very important tool that will help us to advance the understanding of nitrate signaling.
Collapse
Affiliation(s)
- Urooj Fatima
- Department
of Botany, Faculty of Life Sciences, Aligarh
Muslim University, Aligarh 202002, India
| | - Fuad Ameen
- Department
of Botany & Microbiology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Neha Soleja
- Department
of Biosciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India
| | - Parvez Khan
- Centre
for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India
| | - Abobakr Almansob
- Department
of Botany & Microbiology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Altaf Ahmad
- Department
of Botany, Faculty of Life Sciences, Aligarh
Muslim University, Aligarh 202002, India
| |
Collapse
|