1
|
Zhu K, Wei L, Ma W, Zhao J, Chen M, Wei G, Liu H, Tan P, Peng F. The Integrated Analysis of miRNome and Degradome Sequencing Reveals the Regulatory Mechanisms of Seed Development and Oil Biosynthesis in Pecan ( Carya illinoinensis). Foods 2024; 13:2934. [PMID: 39335863 PMCID: PMC11430883 DOI: 10.3390/foods13182934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 09/08/2024] [Accepted: 09/15/2024] [Indexed: 09/30/2024] Open
Abstract
Pecan seed oil is a valuable source of essential fatty acids and various bioactive compounds; however, the functions of microRNAs and their targets in oil biosynthesis during seed development are still unknown. Here, we found that the oil content increased rapidly in the three early stages in three cultivars, and that oleic acid was the predominant fatty acid component in the mature pecan embryos. We identified, analyzed, and validated the expression levels of miRNAs related to seed development and oil biosynthesis, as well as their potential target genes, using small RNA sequencing data from three stages (120, 135, and 150 days after flowering). During the seed development process, 365 known and 321 novel miRNAs were discovered. In total, 91 known and 181 novel miRNAs were found to be differentially expressed, and 633 target genes were further investigated. The expression trend analysis revealed that the 91 known miRNAs were classified into eight groups, approximately two-thirds of which were up-regulated, whereas most novel miRNAs were down-regulated. The qRT-PCR and degradome sequencing data were used to identify five miRNA- target pairs. Overall, our study provides valuable insights into the molecular regulation of oil biosynthesis in pecan seeds.
Collapse
Affiliation(s)
- Kaikai Zhu
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China
| | - Lu Wei
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China
| | - Wenjuan Ma
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China
| | - Juan Zhao
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China
| | - Mengyun Chen
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China
| | - Guo Wei
- College of Horticulture and Landscape Architecture, Yangzhou University, Yangzhou 225009, China
| | - Hui Liu
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Ministry of Agriculture and Rural Affairs Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crops in East China, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Pengpeng Tan
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China
| | - Fangren Peng
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China
| |
Collapse
|
2
|
Zou X, Zhang K, Wu D, Lu M, Wang H, Shen Q. Integrated analysis of miRNA, transcriptome, and degradome sequencing provides new insights into lipid metabolism in perilla seed. Gene 2024; 895:147953. [PMID: 37925118 DOI: 10.1016/j.gene.2023.147953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 10/19/2023] [Accepted: 10/30/2023] [Indexed: 11/06/2023]
Abstract
MicroRNAs (miRNA) are small noncoding RNAs that play a crucial as molecular regulators in lipid metabolism in various oil crops. Perilla (Perilla frutescens) is a specific oil crop known for its high alpha-linolenic acid (C18:3n3, ALA) content (>65 %) in their seed oils. In view of the regulatory mechanism of miRNAs in perilla remains unclear, we conducted miRNAs and transcriptome sequencing in two cultivars with distinct lipid compositions. A total of 525 unique miRNAs, including 142 differentially expressed miRNAs was identified in perilla seeds. The 318 miRNAs targeted 7,761 genes. Furthermore, we identified 112 regulated miRNAs and their 610 target genes involved in lipid metabolism. MiR159b and miR167a as the core nodes to regulate the expression of genes in oil biosynthesis (e.g., KAS, FATB, GPAT, FAD, DGK, LPAAT) and key regulatory TFs (e.g., MYB, ARF, DOF, SPL, NAC, TCP, and bHLH). The 1,219 miRNA-mRNA regulation modules were confirmed through degradome sequencing. Notably, pf-miR159b-MYBs and pf-miR167a-ARFs regulation modules were confirmed. They exhibited significantly different expression levels in two cultivars and believed to play important roles in oil biosynthesis in perilla seeds. This provides valuable insights into the functional analysis of miRNA-regulated lipid metabolism in perilla seeds.
Collapse
Affiliation(s)
- Xiuzai Zou
- Institute of Medical Plant Physiology and Ecology, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou 510006, China
| | - Ke Zhang
- Institute of Medical Plant Physiology and Ecology, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou 510006, China
| | - Duan Wu
- Institute of Medical Plant Physiology and Ecology, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou 510006, China
| | - Minting Lu
- Institute of Medical Plant Physiology and Ecology, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou 510006, China
| | - Hongbin Wang
- Institute of Medical Plant Physiology and Ecology, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou 510006, China.
| | - Qi Shen
- Institute of Medical Plant Physiology and Ecology, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou 510006, China.
| |
Collapse
|
3
|
You FM. Plant Genomics-Advancing Our Understanding of Plants. Int J Mol Sci 2023; 24:11528. [PMID: 37511285 PMCID: PMC10380513 DOI: 10.3390/ijms241411528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Accepted: 06/15/2023] [Indexed: 07/30/2023] Open
Abstract
Plant genomics has made significant progress in recent years, enabling researchers to identify genes and genomic regions responsible for plant growth, development, and stress response [...].
Collapse
Affiliation(s)
- Frank M You
- Ottawa Research and Development Centre, Agriculture and Agri-Food Canada, Ottawa, ON K1A 0C6, Canada
| |
Collapse
|
4
|
Yang X, Liu C, Tang Q, Zhang T, Wang L, Han L, Zhang J, Pei X. Identification of LncRNAs and Functional Analysis of ceRNA Related to Fatty Acid Synthesis during Flax Seed Development. Genes (Basel) 2023; 14:genes14050967. [PMID: 37239327 DOI: 10.3390/genes14050967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 04/01/2023] [Accepted: 04/21/2023] [Indexed: 05/28/2023] Open
Abstract
Flax is a flowering plant cultivated for its oil and contains various unsaturated fatty acids. Linseed oil is known as the "deep-sea fish oil" of plants, and is beneficial to brain and blood lipids, among other positive effects. Long non-coding RNAs (lncRNAs) play an important role in plant growth and development. There are not many studies assessing how lncRNAs are related to the fatty acid synthesis of flax. The relative oil contents of the seeds of the variety Heiya NO.14 (for fiber) and the variety Macbeth (for oil) were determined at 5 day, 10 day, 20 day, and 30 day after flowering. We found that 10-20 day is an important period for ALA accumulation in the Macbeth variety. The strand-specific transcriptome data were analyzed at these four time points, and a series of lncRNAs related to flax seed development were screened. A competing endogenous RNA (ceRNA) network was constructed and the accuracy of the network was verified using qRT-PCR. MSTRG.20631.1 could act with miR156 on the same target, squamosa promoter-binding-like protein (SPL), to influence fatty acid biosynthesis through a gluconeogenesis-related pathway during flax seed development. This study provides a theoretical basis for future studies assessing the potential functions of lncRNAs during seed development.
Collapse
Affiliation(s)
- Xinsen Yang
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Caiyue Liu
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Qiaoling Tang
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Tianbao Zhang
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Limin Wang
- Crop Institute, Gansu Academy of Agricultural Sciences, Lanzhou 730070, China
| | - Lida Han
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Jianping Zhang
- Crop Institute, Gansu Academy of Agricultural Sciences, Lanzhou 730070, China
| | - Xinwu Pei
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| |
Collapse
|
5
|
Liu Z, Wang J, Jing H, Li X, Liu T, Ma J, Hu H, Chen M. Linum usitatissimum ABI3 enhances the accumulation of seed storage reserves and tolerance to environmental stresses during seed germination and seedling establishment in Arabidopsis thaliana. JOURNAL OF PLANT PHYSIOLOGY 2023; 280:153893. [PMID: 36502559 DOI: 10.1016/j.jplph.2022.153893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 10/28/2022] [Accepted: 12/05/2022] [Indexed: 06/17/2023]
Abstract
Flax (Linum usitatissimum) is an important oil crop in arid and semi-arid regions of North and Northwest China, and its seeds are rich in nutritious storage reserves, such as polyunsaturated fatty acids (FAs) and proteins. However, the regulatory networks that control the accumulation of seed storage reserves in flax are still largely unknown. In this study, we found that LuABI3-1 and LuABI3-2 homologs from the flax cultivar 'Longya 10' play important roles in regulating the accumulation of seed storage reserves in Arabidopsis thaliana. The results of subcellular localization and transcriptional activity assays showed that both LuABI3-1 and LuABI3-2 function as transcription factors. Overexpression of either LuABI3-1 or LuABI3-2 resulted in the significant increase in the contents of total seed FAs and storage proteins, but did not alter other key agronomic traits in A. thaliana. Accordingly, the expression of key genes involved in the biosynthesis of FAs and storage proteins was also greatly up-regulated in the developing seeds of LuABI3-1-overexpression lines. Additionally, both LuABI3-1 and LuABI3-2 enhanced the tolerance to the high salt and mannitol stresses during seed germination and seedling establishment in A. thaliana. These results increase our understanding of the LuABI3 regulatory functions and provide promising targets for genetic manipulation of L. usitatissimum to innovate the germplasm resources and cultivate high yield and quality varieties.
Collapse
Affiliation(s)
- Zijin Liu
- National Yangling Agricultural Biotechnology & Breeding Center, Shaanxi Key Laboratory of Crop Heterosis, College of Agronomy, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Jianjun Wang
- National Yangling Agricultural Biotechnology & Breeding Center, Shaanxi Key Laboratory of Crop Heterosis, College of Agronomy, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Huafei Jing
- National Yangling Agricultural Biotechnology & Breeding Center, Shaanxi Key Laboratory of Crop Heterosis, College of Agronomy, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Xinye Li
- National Yangling Agricultural Biotechnology & Breeding Center, Shaanxi Key Laboratory of Crop Heterosis, College of Agronomy, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Tiantian Liu
- National Yangling Agricultural Biotechnology & Breeding Center, Shaanxi Key Laboratory of Crop Heterosis, College of Agronomy, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Jun Ma
- National Yangling Agricultural Biotechnology & Breeding Center, Shaanxi Key Laboratory of Crop Heterosis, College of Agronomy, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Huan Hu
- National Yangling Agricultural Biotechnology & Breeding Center, Shaanxi Key Laboratory of Crop Heterosis, College of Agronomy, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Mingxun Chen
- National Yangling Agricultural Biotechnology & Breeding Center, Shaanxi Key Laboratory of Crop Heterosis, College of Agronomy, Northwest A&F University, Yangling, 712100, Shaanxi, China.
| |
Collapse
|
6
|
Developing Genetic Engineering Techniques for Control of Seed Size and Yield. Int J Mol Sci 2022; 23:ijms232113256. [PMID: 36362043 PMCID: PMC9655546 DOI: 10.3390/ijms232113256] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 10/15/2022] [Accepted: 10/15/2022] [Indexed: 11/06/2022] Open
Abstract
Many signaling pathways regulate seed size through the development of endosperm and maternal tissues, which ultimately results in a range of variations in seed size or weight. Seed size can be determined through the development of zygotic tissues (endosperm and embryo) and maternal ovules. In addition, in some species such as rice, seed size is largely determined by husk growth. Transcription regulator factors are responsible for enhancing cell growth in the maternal ovule, resulting in seed growth. Phytohormones induce significant effects on entire features of growth and development of plants and also regulate seed size. Moreover, the vegetative parts are the major source of nutrients, including the majority of carbon and nitrogen-containing molecules for the reproductive part to control seed size. There is a need to increase the size of seeds without affecting the number of seeds in plants through conventional breeding programs to improve grain yield. In the past decades, many important genetic factors affecting seed size and yield have been identified and studied. These important factors constitute dynamic regulatory networks governing the seed size in response to environmental stimuli. In this review, we summarized recent advances regarding the molecular factors regulating seed size in Arabidopsis and other crops, followed by discussions on strategies to comprehend crops' genetic and molecular aspects in balancing seed size and yield.
Collapse
|
7
|
Gao P, Qiu S, Ma X, Parkin IAP, Xiang D, Datla R. Spatiotemporal Transcriptomic Atlas of Developing Embryos and Vegetative Tissues in Flax. PLANTS 2022; 11:plants11152031. [PMID: 35956508 PMCID: PMC9370790 DOI: 10.3390/plants11152031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 07/24/2022] [Accepted: 07/30/2022] [Indexed: 11/16/2022]
Abstract
Flax (Linum usitatissimum L.) is an important multipurpose crop widely grown for oil and fiber. Despite recent advances in genomics, detailed gene activities during the important reproductive phase of its development are not well defined. In this study, we employed high-throughput RNA-sequencing methods to generate in-depth transcriptome profiles of flax tissues with emphasis on the reproductive phases of five key stages of embryogenesis (globular embryo, heart embryo, torpedo embryo, cotyledon embryo, and mature embryo), mature seed, and vegetative tissues viz. ovary, anther, and root. These datasets were used to establish the co-expression networks covering 36 gene modules based on the expression patterns for each gene through weighted gene co-expression network analysis (WGCNA). Functional interrogation with Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) of dominantly expressed genetic modules in tissues revealed pathways involved in the development of different tissues. Moreover, the essential genes in embryo development and synthesis of storage reserves were identified based on their dynamic expression patterns. Together, this comprehensive dataset for developing embryos, mature seeds and vegetative tissues provides new insights into molecular mechanisms of seed development with potential for flax crop improvement.
Collapse
Affiliation(s)
- Peng Gao
- Global Institute for Food Security, University of Saskatchewan, Saskatoon, SK S7N 4L8, Canada
- Saskatoon Research and Development Centre, Agriculture and Agri-Food Canada, 107 Science Place, Saskatoon, SK S7N 0X2, Canada
| | - Shuqing Qiu
- Aquatic and Crop Resource Development, National Research Council Canada, 110 Gymnasium Place, Saskatoon, SK S7N 0W9, Canada
| | - Xingliang Ma
- Department of Plant Science, University of Saskatchewan, Saskatoon, SK S7N 5A8, Canada
| | - Isobel A. P. Parkin
- Saskatoon Research and Development Centre, Agriculture and Agri-Food Canada, 107 Science Place, Saskatoon, SK S7N 0X2, Canada
- Correspondence: (I.A.P.P.); (D.X.); (R.D.); Tel.: +1-306-3859434 (I.A.P.P.); +1-306-9755580 (D.X.); +1-306-2293924 (R.D.)
| | - Daoquan Xiang
- Aquatic and Crop Resource Development, National Research Council Canada, 110 Gymnasium Place, Saskatoon, SK S7N 0W9, Canada
- Correspondence: (I.A.P.P.); (D.X.); (R.D.); Tel.: +1-306-3859434 (I.A.P.P.); +1-306-9755580 (D.X.); +1-306-2293924 (R.D.)
| | - Raju Datla
- Global Institute for Food Security, University of Saskatchewan, Saskatoon, SK S7N 4L8, Canada
- Correspondence: (I.A.P.P.); (D.X.); (R.D.); Tel.: +1-306-3859434 (I.A.P.P.); +1-306-9755580 (D.X.); +1-306-2293924 (R.D.)
| |
Collapse
|
8
|
Transcriptome and miRNA sequencing analyses reveal the regulatory mechanism of α-linolenic acid biosynthesis in Paeonia rockii. Food Res Int 2022; 155:111094. [DOI: 10.1016/j.foodres.2022.111094] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 02/28/2022] [Accepted: 03/02/2022] [Indexed: 01/05/2023]
|
9
|
Zhang J, Shi J, Yuan C, Liu X, Du G, Fan R, Zhang B. MicroRNA Expression Profile Analysis of Chlamydomonas reinhardtii during Lipid Accumulation Process under Nitrogen Deprivation Stresses. Bioengineering (Basel) 2021; 9:bioengineering9010006. [PMID: 35049715 PMCID: PMC8773410 DOI: 10.3390/bioengineering9010006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 12/14/2021] [Accepted: 12/21/2021] [Indexed: 11/30/2022] Open
Abstract
Lipid accumulation in various microalgae has been found induced by nitrogen deprivation, and it controls many different genes expression. Yet, the underlying molecular mechanisms still remain largely unknown. MicroRNA (miRNAs) play a critical role in post-transcriptional gene regulation. In this study, miRNAs were hypothesized involved in lipid accumulation by nitrogen deprivation. A deep-sequencing platform was used to explore miRNAs-mediated responses induced by nitrogen deprivation in Chlamydomonas reinhardtii. The eukaryotic orthologous groups of proteins (KOG) function in the predicted target genes of miRNA with response to nitrogen deprivation were mainly involved in signal transduction mechanisms, including transcription, lipid transport, and metabolism. A total of 109 miRNA were predicted, including 79 known miRNA and 30 novel miRNA. A total of 29 miRNAs showed significantly differential expressions after nitrogen deprivation, and most of them were upregulated. A total of 10 miRNAs and their targeting genes might involve in lipid transport and metabolism biological process. This study first investigates nitrogen deprivation-regulated miRNAs in microalgae and broadens perspectives on miRNAs importance in microalgae lipid accumulation via nitrogen deprivation. This study provides theoretical guidance for the application of microalgae in bio-oil engineering production.
Collapse
Affiliation(s)
- Jingxian Zhang
- Lab of Biorefinery, Shanghai Advanced Research Institute, Chinese Academy of Sciences, No. 99 Haike Road, Pudong, Shanghai 201210, China; (J.Z.); (J.S.); (C.Y.); (X.L.); (G.D.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jiping Shi
- Lab of Biorefinery, Shanghai Advanced Research Institute, Chinese Academy of Sciences, No. 99 Haike Road, Pudong, Shanghai 201210, China; (J.Z.); (J.S.); (C.Y.); (X.L.); (G.D.)
- University of Chinese Academy of Sciences, Beijing 100049, China
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Chenyang Yuan
- Lab of Biorefinery, Shanghai Advanced Research Institute, Chinese Academy of Sciences, No. 99 Haike Road, Pudong, Shanghai 201210, China; (J.Z.); (J.S.); (C.Y.); (X.L.); (G.D.)
- University of Chinese Academy of Sciences, Beijing 100049, China
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Xiangcen Liu
- Lab of Biorefinery, Shanghai Advanced Research Institute, Chinese Academy of Sciences, No. 99 Haike Road, Pudong, Shanghai 201210, China; (J.Z.); (J.S.); (C.Y.); (X.L.); (G.D.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Guilin Du
- Lab of Biorefinery, Shanghai Advanced Research Institute, Chinese Academy of Sciences, No. 99 Haike Road, Pudong, Shanghai 201210, China; (J.Z.); (J.S.); (C.Y.); (X.L.); (G.D.)
- University of Chinese Academy of Sciences, Beijing 100049, China
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Ruimei Fan
- Sino-UK Joint Laboratory for Brain Function and Injury and Department of Physiology and Neurobiology, Xinxiang Medical University, Xinxiang 453003, China
- Correspondence: (R.F.); (B.Z.)
| | - Baoguo Zhang
- Lab of Biorefinery, Shanghai Advanced Research Institute, Chinese Academy of Sciences, No. 99 Haike Road, Pudong, Shanghai 201210, China; (J.Z.); (J.S.); (C.Y.); (X.L.); (G.D.)
- University of Chinese Academy of Sciences, Beijing 100049, China
- Correspondence: (R.F.); (B.Z.)
| |
Collapse
|
10
|
Dhaka N, Sharma R. MicroRNA-mediated regulation of agronomically important seed traits: a treasure trove with shades of grey! Crit Rev Biotechnol 2021; 41:594-608. [PMID: 33682533 DOI: 10.1080/07388551.2021.1873238] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Seed development is an intricate process with multiple levels of regulation. MicroRNAs (miRNAs) have emerged as one of the crucial components of molecular networks underlying agronomically important seed traits in diverse plant species. In fact, loss of function of the genes regulating miRNA biogenesis also exhibits defects in seed development. A total of 21 different miRNAs have experimentally been shown to regulate seed size, nutritional content, vigor, and shattering, and have been reviewed here. The mechanism details of the associated regulatory cascades mediated through transcriptional regulators, phytohormones, basic metabolic machinery, and secondary siRNAs are elaborated. Co-localization of miRNAs and their target regions with seed-related QTLs provides new avenues for engineering these traits using conventional breeding programs or biotechnological interventions. While global analysis of miRNAs using small RNA sequencing studies are expanding the repertoire of candidate miRNAs, recent revelations on their inheritance, transport, and mechanism of action would be instrumental in designing better strategies for optimizing agronomically relevant seed traits.
Collapse
Affiliation(s)
- Namrata Dhaka
- Department of Biotechnology, School of Interdisciplinary and Applied Sciences, Central University of Haryana, Haryana, India.,Crop Genetics and Informatics Group, School of Computational and Integrative Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Rita Sharma
- Crop Genetics and Informatics Group, School of Computational and Integrative Sciences, Jawaharlal Nehru University, New Delhi, India
| |
Collapse
|
11
|
Xie D, Yu Y, Dai Z, Sun J, Su J. Identification and characterization of miRNAs and target genes in developing flax seeds by multigroup analysis. BIOTECHNOL BIOTEC EQ 2021. [DOI: 10.1080/13102818.2021.1903337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
Affiliation(s)
- Dongwei Xie
- Department of Biotechnology, School of Life Science, Nantong University, Jiangsu, Nantong, PR China
| | - Yue Yu
- Laboratory of Germplasm Resources and Utilization of Economic Crops in South China, Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Hunan, Changsha, PR China
| | - Zhigang Dai
- Laboratory of Germplasm Resources and Utilization of Economic Crops in South China, Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Hunan, Changsha, PR China
| | - Jian Sun
- Department of Biotechnology, School of Life Science, Nantong University, Jiangsu, Nantong, PR China
| | - Jianguang Su
- Laboratory of Germplasm Resources and Utilization of Economic Crops in South China, Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Hunan, Changsha, PR China
| |
Collapse
|