1
|
Castrogiovanni P, Sanfilippo C, Imbesi R, Lazzarino G, Li Volti G, Tibullo D, Vicario N, Parenti R, Giuseppe L, Barbagallo I, Alanazi AM, Vecchio M, Cappello F, Musumeci G, Di Rosa M. Skeletal muscle of young females under resistance exercise exhibits a unique innate immune cell infiltration profile compared to males and elderly individuals. J Muscle Res Cell Motil 2024; 45:171-190. [PMID: 38578562 DOI: 10.1007/s10974-024-09668-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Accepted: 03/12/2024] [Indexed: 04/06/2024]
Abstract
Muscle damage resulting from physical activities such as exercise triggers an immune response crucial for tissue repair and recovery. This study investigates the immune cell profiles in muscle biopsies of individuals engaged in resistance exercise (RE) and explores the impact of age and sex on the immune response following exercise-induced muscle damage. Microarray datasets from muscle biopsies of young and old subjects were analyzed, focusing on the gene expression patterns associated with immune cell activation. Genes were compared with immune cell signatures to reveal the cellular landscape during exercise. Results show that the most significant modulated gene after RE was Folliculin Interacting Protein 2 (FNIP2) a crucial regulator in cellular homeostasis. Moreover, the transcriptome was stratified based on the expression of FNIP2 and the 203 genes common to the groups obtained based on sex and age. Gene ontology analysis highlighted the FLCN-FNIP1-FNIP2 complex, which exerts as a negative feedback loop to Pi3k-Akt-mTORC1 pathway. Furthermore, we highlighted that the young females exhibit a distinct innate immune cell activation signature compared to males after a RE session. Specifically, young females demonstrate a notable overlap with dendritic cells (DCs), M1 macrophages, M2 macrophages, and neutrophils, while young males overlap with M1 macrophages, M2 macrophages, and motor neurons. Interestingly, in elderly subjects, both sexes display M1 macrophage activation signatures. Comparison of young and elderly signatures reveals an increased M1 macrophage percentage in young subjects. Additionally, common genes were identified in both sexes across different age groups, elucidating biological functions related to cell remodeling and immune activation. This study underscores the intricate interplay between sex, age, and the immune response in muscle tissue following RE, offering potential directions for future research. Nevertheless, there is a need for further studies to delve deeper and confirm the dynamics of immune cells in response to exercise-induced muscle damage.
Collapse
Affiliation(s)
- Paola Castrogiovanni
- Department of Biomedical and Biotechnological Sciences, Anatomy, Histology and Movement Sciences Section, School of Medicine, University of Catania, Catania, 95125, Italy
| | - Cristina Sanfilippo
- Neurologic Unit, Department of Medical, Surgical Sciences and Advanced Technologies, AOU "Policlinico-San Marco", University of Catania, Via Santa Sofia n.78, Sicily, GF, Ingrassia, Catania, 95100, Italy
| | - Rosa Imbesi
- Department of Biomedical and Biotechnological Sciences, Anatomy, Histology and Movement Sciences Section, School of Medicine, University of Catania, Catania, 95125, Italy
| | - Giacomo Lazzarino
- UniCamillus-Saint Camillus International University of Health Sciences, Via di Sant'Alessandro 8, Rome, 00131, Italy
| | - Giovanni Li Volti
- Department of Biomedical and Biotechnological Sciences, Section of Biochemistry, University of Catania, Catania, 95123, Italy
| | - Daniele Tibullo
- Department of Biomedical and Biotechnological Sciences, Section of Biochemistry, University of Catania, Catania, 95123, Italy
| | - Nunzio Vicario
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, 95123, Italy
| | - Rosalba Parenti
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, 95123, Italy
| | - Lazzarino Giuseppe
- Department of Biomedical and Biotechnological Sciences, Section of Biochemistry, University of Catania, Catania, 95123, Italy
| | - Ignazio Barbagallo
- Department of Biomedical and Biotechnological Sciences, Section of Biochemistry, University of Catania, Catania, 95123, Italy
| | - Amer M Alanazi
- Pharmaceutical Biotechnology Laboratory, Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Michele Vecchio
- Section of Pharmacology, Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, 95124, Italy
| | - Francesco Cappello
- Department of Biomedicine, Neuroscience and Advanced Diagnostics (BIND), University of Palermo, Palermo, 90127, Italy
- Euro-Mediterranean Institute of Science and Technology (IEMEST), Palermo, 90139, Italy
| | - Giuseppe Musumeci
- Department of Biomedical and Biotechnological Sciences, Anatomy, Histology and Movement Sciences Section, School of Medicine, University of Catania, Catania, 95125, Italy
| | - Michelino Di Rosa
- Department of Biomedical and Biotechnological Sciences, Anatomy, Histology and Movement Sciences Section, School of Medicine, University of Catania, Catania, 95125, Italy.
| |
Collapse
|
2
|
Lu Y, Lin L, Lin J, Wu B, Cai G, Wang X, Ma X. Superior detection of low-allele burden Janus kinase 2 V617F mutation and monitoring clonal evolution in myeloproliferative neoplasms using chip-based digital PCR. Ann Hematol 2024; 103:3553-3562. [PMID: 39043913 PMCID: PMC11358234 DOI: 10.1007/s00277-024-05896-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Accepted: 07/12/2024] [Indexed: 07/25/2024]
Abstract
The JAK2 V617F is a prevalent driver mutation in Philadelphia chromosome-negative myeloproliferative neoplasms (Ph-MPNs), significantly affecting disease progression, immunophenotype, and patient outcomes. The World Health Organization (WHO) guidelines highlight the JAK2 V617F mutation as one of the key diagnostic criterions for Ph-MPNs. In this study, we analyzed 283 MPN samples with the JAK2 V617F mutation to assess the effectiveness of three detection technologies: chip-based digital PCR (cdPCR), real-time quantitative PCR (qPCR), and next-generation sequencing (NGS). Additionally, we investigated the relationship between JAK2 V617F mutant allele burden (% JAK2 V617F) and various laboratory characteristics to elucidate potential implications in MPN diagnosis. Our findings demonstrated high conformance of cdPCR with qPCR/NGS for detecting % JAK2 V617F, but the mutant allele burdens detected by qPCR/NGS were lower than those detected by cdPCR. Moreover, the cdPCR exhibited high sensitivity with a limit of detection (LoD) of 0.08% and a limit of quantification (LoQ) of 0.2% for detecting % JAK2 V617F in MPNs. Clinical implications were explored by correlating % JAK2 V617F with various laboratory characteristics in MPN patients, revealing significant associations with white blood cell counts, lactate dehydrogenase levels, and particularly β2-microglobulin (β2-MG) levels. Finally, a case report illustrated the application of cdPCR in detecting low-allele burdens in a de novo chronic myeloid leukemia (CML) patient with a hidden JAK2 V617F subclone, which expanded during tyrosine kinase inhibitor (TKI) treatment. Our findings underscore the superior sensitivity and accuracy of cdPCR, making it a valuable tool for early diagnosis and monitoring clonal evolution.
Collapse
Affiliation(s)
- Yiyi Lu
- Department of Laboratory Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin Er Road, Shanghai, 200025, China
| | - Lin Lin
- Department of Laboratory Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin Er Road, Shanghai, 200025, China
| | - Jiafei Lin
- Department of Laboratory Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin Er Road, Shanghai, 200025, China
| | - Beiying Wu
- Department of Laboratory Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin Er Road, Shanghai, 200025, China
| | - Gang Cai
- Department of Laboratory Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin Er Road, Shanghai, 200025, China
| | - Xuefeng Wang
- Department of Laboratory Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin Er Road, Shanghai, 200025, China.
| | - Xuefei Ma
- Department of Laboratory Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin Er Road, Shanghai, 200025, China.
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
| |
Collapse
|
3
|
Sanfilippo C, Castrogiovanni P, Vinciguerra M, Imbesi R, Ulivieri M, Fazio F, Cantarella A, Nunnari G, Di Rosa M. Neuro-immune deconvolution analysis of OAS3 as a transcriptomic central node in HIV-associated neurocognitive disorders. J Neurol Sci 2023; 446:120562. [PMID: 36706688 DOI: 10.1016/j.jns.2023.120562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Revised: 01/10/2023] [Accepted: 01/16/2023] [Indexed: 01/22/2023]
Abstract
Neurological complications of AIDS (NeuroAIDS) include primary HIV-associated neurocognitive disorder (HAND). OAS3 is an enzyme belonging to the 2', 5' oligoadenylate synthase family induced by type I interferons and involved in the degradation of both viral and endogenous RNA. Here, we used microarray datasets from NCBI of brain samples of non-demented HIV-negative controls (NDC), HIV, deceased patients with HAND and encephalitis (HIVE) (treated and untreated with antiretroviral therapy, ART), and with HAND without HIVE. The HAND/HIVE patients were stratified according to the OAS3 gene expression. The genes positively and negatively correlated to the OAS3 gene expression were used to perform a genomic deconvolution analysis using neuroimmune signatures (NIS) belonging to sixteen signatures. Expression analysis revealed significantly higher OAS3 expression in HAND/HIVE and HAND/HIVE/ART compared with NDC. OAS3 expressed an excellent diagnostic ability to discriminate NDC from HAND/HIVE, HAND from HAND/HIVE, HAND from HAND/HIVE/ART, and HIV from HAND/HIVE. Noteworthy, OAS3 expression levels in the brains of HAND/HIVE patients were positively correlated with viral load in both peripheral blood and cerebrospinal fluid (CSF). Furthermore, deconvolution analysis revealed that the genes positively correlated to OAS3 expression were associated with inflammatory signatures. Neuronal activation profiles were significantly activated by the genes negatively correlated to OAS3 expression levels. Moreover, gene ontology analysis performed on genes characterizing the microglia signature highlighted an immune response as a main biological process. According to our results, genes positively correlated to OAS3 gene expression in the brains of HAND/HIVE patients are associated with inflammatory transcriptomic signatures and likely worse cognitive impairment.
Collapse
Affiliation(s)
- Cristina Sanfilippo
- Neurologic Unit, AOU "Policlinico-San Marco", Department of Medical, Surgical Sciences and Advanced Technologies, GF, Ingrassia, University of Catania, Via Santa Sofia n.78, 95100 Catania, Sicily, Italy
| | - Paola Castrogiovanni
- Department of Biomedical and Biotechnological Sciences, Anatomy, Histology and Movement Sciences Section, School of Medicine, University of Catania, 95125 Catania, Italy
| | - Manlio Vinciguerra
- International Clinical Research Center, St. Anne's University Hospital, Brno, Czech Republic; Department of Translational Stem Cell Biology, Research Institute of the Medical University of Varna, Varna, Bulgaria; Liverpool Center for Cardiovascular Science, Liverpool Johns Moore University & University of Liverpool, Liverpool, UK
| | - Rosa Imbesi
- Department of Biomedical and Biotechnological Sciences, Anatomy, Histology and Movement Sciences Section, School of Medicine, University of Catania, 95125 Catania, Italy
| | - Martina Ulivieri
- University of California San Diego, Department of Psychiatry, Health Science, San Diego La Jolla, CA, USA
| | - Francesco Fazio
- University of California San Diego, Department of Psychiatry, Health Science, San Diego La Jolla, CA, USA
| | - Antonio Cantarella
- Department of Biomedical and Biotechnological Sciences, Anatomy, Histology and Movement Sciences Section, School of Medicine, University of Catania, 95125 Catania, Italy
| | - Giuseppe Nunnari
- Department of Clinical and Experimental Medicine, Unit of Infectious Diseases, University of Messina, 98124 Messina, Italy
| | - Michelino Di Rosa
- Department of Biomedical and Biotechnological Sciences, Anatomy, Histology and Movement Sciences Section, School of Medicine, University of Catania, 95125 Catania, Italy.
| |
Collapse
|
4
|
Sanfilippo C, Castrogiovanni P, Imbesi R, Musumeci G, Vecchio M, Li Volti G, Tibullo D, Broggi G, Caltabiano R, Ulivieri M, Kazakova M, Parenti R, Vicario N, Fazio F, Di Rosa M. Sex-dependent neuro-deconvolution analysis of Alzheimer's disease brain transcriptomes according to CHI3L1 expression levels. J Neuroimmunol 2022; 373:577977. [PMID: 36228382 DOI: 10.1016/j.jneuroim.2022.577977] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Revised: 08/29/2022] [Accepted: 10/01/2022] [Indexed: 11/07/2022]
Abstract
Glial activation and related neuroinflammatory processes play a key role in the aging and progression of Alzheimer's disease (AD). CHI3L1/ YKL40 is a widely investigated chitinase in neurodegenerative diseases and recent studies have shown its involvement in aging and AD. Nevertheless, the biological function of CHI3L1 in AD is still unknown. Here, we collected microarray datasets from the National Center for Biotechnology Information (NCBI) brain samples of not demented healthy controls (NDHC) who died from causes not attributable to neurodegenerative disorders (n = 460), and of deceased patients suffering from Alzheimer's disease (AD) (n = 697). The NDHC and AD patients were stratified according to CHI3L1 expression levels as a cut-off. We identified two groups both males and females, subsequently used for our statistical comparisons: the high CHI3L1 expression group (HCEG) and the low CHI3L1 expression group (LCEG). Comparing HCEG to LCEG, we attained four signatures according to the sex of patients, in order to identify the healthy and AD brain cellular architecture, performing a genomic deconvolution analysis. We used neurological signatures (NS) belonging to six neurological cells populations and nine signatures that included the main physiological neurological processes. We discovered that, in the brains of NDHC the high expression levels of CHI3L1 were associated with astrocyte activation profile, while in AD males and females we showed an inflammatory profile microglia-mediated. The low CHI3L1 brain expression levels in NDHC and AD patients highlighted a neuronal activation profile. Furthermore, using drugs opposing CHI3L1 transcriptomic signatures, we found a specific drug profile for AD males and females characterized by high levels of CHI3L1 composed of fostamatinib, rucaparib, cephaeline, prednisolone, and dinoprostone. Brain levels of CHI3L1 in AD patients represent a biological signature that allows distinguishing between males and females and their likely cellular brain architecture.
Collapse
Affiliation(s)
- Cristina Sanfilippo
- Neurologic Unit, AOU "Policlinico-San Marco", Department of Medical, Surgical Sciences and Advanced Technologies, GF, Ingrassia, University of Catania, Via Santa Sofia n.78, 95100 Catania, Sicily, Italy
| | - Paola Castrogiovanni
- Department of Biomedical and Biotechnological Sciences, Anatomy, Histology and Movement Sciences Section, School of Medicine, University of Catania, 95125 Catania, Italy
| | - Rosa Imbesi
- Department of Biomedical and Biotechnological Sciences, Anatomy, Histology and Movement Sciences Section, School of Medicine, University of Catania, 95125 Catania, Italy
| | - Giuseppe Musumeci
- Department of Biomedical and Biotechnological Sciences, Anatomy, Histology and Movement Sciences Section, School of Medicine, University of Catania, 95125 Catania, Italy
| | - Michele Vecchio
- Rehabilitation Unit, "AOU Policlinico Vittorio Emanuele", Department of Biomedical and Biotechnological Sciences, Section of Pharmacology, University of Catania, Catania 95123, Italy
| | - Giovanni Li Volti
- Department of Biomedical and Biotechnological Sciences, Section of Biochemistry, University of Catania, 95123, Catania, Italy
| | - Daniele Tibullo
- Department of Biomedical and Biotechnological Sciences, Section of Biochemistry, University of Catania, 95123, Catania, Italy
| | - Giuseppe Broggi
- Department of Medical and Surgical Sciences and Advanced Technologies "G. F. Ingrassia", Anatomic Pathology, University of Catania, 95123, Catania, Italy
| | - Rosario Caltabiano
- Department of Medical and Surgical Sciences and Advanced Technologies "G. F. Ingrassia", Anatomic Pathology, University of Catania, 95123, Catania, Italy
| | - Martina Ulivieri
- University of California San Diego, Department of Psychiatry, Health Science, San Diego, La Jolla, CA, USA
| | - Maria Kazakova
- Department of Medical Biology, Medical University, Plovdiv, 4002 Plovdiv, Bulgaria; Research Institute, Medical University-, Plovdiv, 4002 Plovdiv, Bulgaria
| | - Rosalba Parenti
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy
| | - Nunzio Vicario
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy
| | - Francesco Fazio
- University of California San Diego, Department of Psychiatry, Health Science, San Diego, La Jolla, CA, USA
| | - Michelino Di Rosa
- Department of Biomedical and Biotechnological Sciences, Anatomy, Histology and Movement Sciences Section, School of Medicine, University of Catania, 95125 Catania, Italy.
| |
Collapse
|
5
|
Sanfilippo C, Castrogiovanni P, Vinciguerra M, Imbesi R, Ulivieri M, Fazio F, Blennow K, Zetterberg H, Di Rosa M. A sex-stratified analysis of neuroimmune gene expression signatures in Alzheimer's disease brains. GeroScience 2022; 45:523-541. [PMID: 36136224 PMCID: PMC9886773 DOI: 10.1007/s11357-022-00664-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Accepted: 09/14/2022] [Indexed: 02/03/2023] Open
Abstract
Alzheimer's disease (AD) is the most common form of progressively disabling dementia. The chitinases CHI3L1 and CHI3L2 have long been known as biomarkers for microglial and astrocytic activation in neurodegeneration. Here, we collected microarray datasets from the National Center for Biotechnology Information (NCBI) brain samples of non-demented controls (NDC) (n = 460), and of deceased patients with AD (n = 697). The AD patients were stratified according to sex. Comparing the high CHI3L1 and CHI3L2 expression group (75th percentile), and low CHI3L1 and CHI3L2 expression group (25th percentile), we obtained eight signatures according to the sex of patients and performed a genomic deconvolution analysis using neuroimmune signatures (NIS) belonging to twelve cell populations. Expression analysis revealed significantly higher CHI3L1 and CHI3L2 expression in AD compared with NDC, and positive correlations of these genes with GFAP and TMEM119. Furthermore, deconvolution analysis revealed that CHI3L1 and CHI3L2 high expression was associated with inflammatory signatures in both sexes. Neuronal activation profiles were significantly activated in AD patients with low CHI3L1 and CHI3L2 expression levels. Furthermore, gene ontology analysis of common genes regulated by the two chitinases unveiled immune response as a main biological process. Finally, microglia NIS significantly correlated with CHI3L2 expression levels and were more than 98% similar to microglia NIS determined by CHI3L1. According to our results, high levels of CHI3L1 and CHI3L2 in the brains of AD patients are associated with inflammatory transcriptomic signatures. The high correlation between CHI3L1 and CHI3L2 suggests strong co-regulation.
Collapse
Affiliation(s)
- Cristina Sanfilippo
- Neurologic Unit, AOU “Policlinico-San Marco”, Department of Medical, Surgical Sciences and Advanced Technologies, GF, Ingrassia, University of Catania, Catania, Sicily Italy
| | - Paola Castrogiovanni
- Department of Biomedical and Biotechnological Sciences, Anatomy, Histology and Movement Sciences Section, School of Medicine, University of Catania, Catania, Italy
| | - Manlio Vinciguerra
- International Clinical Research Center, St. Anne’s University Hospital, Brno, Czech Republic ,Department of Translational Stem Cell Biology, Research Institute of the Medical University of Varna, Varna, Bulgaria
| | - Rosa Imbesi
- Department of Biomedical and Biotechnological Sciences, Anatomy, Histology and Movement Sciences Section, School of Medicine, University of Catania, Catania, Italy
| | - Martina Ulivieri
- Department of Psychiatry, University of California San Diego, La Jolla, CA USA
| | - Francesco Fazio
- Department of Psychiatry, University of California San Diego, La Jolla, CA USA
| | - Kaj Blennow
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
| | - Henrik Zetterberg
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden ,Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden ,UK Dementia Research Institute at UCL, London, UK ,Department of Neurodegenerative Disease, UCL Institute of Neurology, London, UK
| | - Michelino Di Rosa
- Department of Biomedical and Biotechnological Sciences, Anatomy, Histology and Movement Sciences Section, School of Medicine, University of Catania, Catania, Italy.
| |
Collapse
|
6
|
GJA1/CX43 High Expression Levels in the Cervical Spinal Cord of ALS Patients Correlate to Microglia-Mediated Neuroinflammatory Profile. Biomedicines 2022; 10:biomedicines10092246. [PMID: 36140348 PMCID: PMC9496195 DOI: 10.3390/biomedicines10092246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Revised: 09/04/2022] [Accepted: 09/07/2022] [Indexed: 11/17/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a progressive neurodegenerative disorder affecting motoneurons (MNs) with a fatal outcome. The typical degeneration of cortico-spinal, spinal, and bulbar MNs, observed in post-mortem biopsies, is associated with the activation of neuroimmune cells. GJA1, a member of the connexins (Cxs) gene family, encodes for connexin 43 (Cx43), a core gap junctions (GJs)- and hemichannels (HCs)-forming protein, involved in cell death, proliferation, and differentiation. Recently, Cx43 expression was found to play a role in ALS pathogenesis. Here, we used microarray and RNA-seq datasets from the NCBI of the spinal cord of control (NDC) and ALS patients, which were stratified according to the GJA1 gene expression. Genes that positively or negatively correlated to GJA1 expression were used to perform a genomic deconvolution analysis (GDA) using neuroimmune signatures. Expression analysis revealed a significantly higher GJA1 expression in the MNs of ALS patients as compared to NDC. Gene deconvolution analysis revealed that positively correlated genes were associated with microglia activation, whereas negatively correlated genes were associated with neuronal activation profiles. Moreover, gene ontology analysis, performed on genes characterizing either microglia or neuronal signature, indicated immune activation or neurogenesis as main biological processes. Finally, using a synthetic analysis of drugs able to revert the GJA1 transcriptomic signatures, we found a specific drug profile for ALS patients with high GJA1 expression levels, composed of amlodipine, sertraline, and prednisolone. In conclusion, our exploratory study suggests GJA1 as a new neuro-immunological gene correlated to microglial cellular profile in the spinal cord of ALS patients. Further studies are warranted to confirm these results and to evaluate the therapeutic potential of drugs able to revert typical GJA1/CX43 signature in ALS patients
Collapse
|
7
|
Torres DG, Paes J, da Costa AG, Malheiro A, Silva GV, Mourão LPDS, Tarragô AM. JAK2 Variant Signaling: Genetic, Hematologic and Immune Implication in Chronic Myeloproliferative Neoplasms. Biomolecules 2022; 12:291. [PMID: 35204792 PMCID: PMC8961666 DOI: 10.3390/biom12020291] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 02/04/2022] [Accepted: 02/05/2022] [Indexed: 02/04/2023] Open
Abstract
The JAK2V617F variant constitutes a genetic alteration of higher frequency in BCR/ABL1 negative chronic myeloproliferative neoplasms, which is caused by a substitution of a G ˃ T at position 1849 and results in the substitution of valine with phenylalanine at codon 617 of the polypeptide chain. Clinical, morphological and molecular genetic features define the diagnosis criteria of polycythemia vera, essential thrombocythemia and primary myelofibrosis. Currently, JAK2V617F is associated with clonal hematopoiesis, genomic instability, dysregulations in hemostasis and immune response. JAK2V617F clones induce an inflammatory immune response and lead to a process of immunothrombosis. Recent research has shown great interest in trying to understand the mechanisms associated with JAK2V617F signaling and activation of cellular and molecular responses that progressively contribute to the development of inflammatory and vascular conditions in association with chronic myeloproliferative neoplasms. Thus, the aim of this review is to describe the main genetic, hematological and immunological findings that are linked to JAK2 variant signaling in chronic myeloproliferative neoplasms.
Collapse
Affiliation(s)
- Dania G. Torres
- Programa de Pós-Graduação em Ciências Aplicadas à Hematologia, Universidade do Estado do Amazonas (UEA), Manaus 69850-000, AM, Brazil; (D.G.T.); (J.P.); (A.G.d.C.); (A.M.); (G.V.S.)
| | - Jhemerson Paes
- Programa de Pós-Graduação em Ciências Aplicadas à Hematologia, Universidade do Estado do Amazonas (UEA), Manaus 69850-000, AM, Brazil; (D.G.T.); (J.P.); (A.G.d.C.); (A.M.); (G.V.S.)
| | - Allyson G. da Costa
- Programa de Pós-Graduação em Ciências Aplicadas à Hematologia, Universidade do Estado do Amazonas (UEA), Manaus 69850-000, AM, Brazil; (D.G.T.); (J.P.); (A.G.d.C.); (A.M.); (G.V.S.)
- Programa de Pós-Graduação em Imunologia Básica e Aplicada, Universidade Federal do Amazonas (UFAM), Manaus 69067-005, AM, Brazil
| | - Adriana Malheiro
- Programa de Pós-Graduação em Ciências Aplicadas à Hematologia, Universidade do Estado do Amazonas (UEA), Manaus 69850-000, AM, Brazil; (D.G.T.); (J.P.); (A.G.d.C.); (A.M.); (G.V.S.)
- Programa de Pós-Graduação em Imunologia Básica e Aplicada, Universidade Federal do Amazonas (UFAM), Manaus 69067-005, AM, Brazil
| | - George V. Silva
- Programa de Pós-Graduação em Ciências Aplicadas à Hematologia, Universidade do Estado do Amazonas (UEA), Manaus 69850-000, AM, Brazil; (D.G.T.); (J.P.); (A.G.d.C.); (A.M.); (G.V.S.)
- Fundação Oswaldo Cruz–Instituto Leônidas e Maria Deane (Fiocruz), Manaus 69027-070, AM, Brazil
- Fundação Centro de Controle de Oncologia do Amazonas (FCECON), Manaus 69040-010, AM, Brazil
| | - Lucivana P. de Souza Mourão
- Programa de Pós-Graduação em Ciências Aplicadas à Hematologia, Universidade do Estado do Amazonas (UEA), Manaus 69850-000, AM, Brazil; (D.G.T.); (J.P.); (A.G.d.C.); (A.M.); (G.V.S.)
| | - Andréa M. Tarragô
- Programa de Pós-Graduação em Ciências Aplicadas à Hematologia, Universidade do Estado do Amazonas (UEA), Manaus 69850-000, AM, Brazil; (D.G.T.); (J.P.); (A.G.d.C.); (A.M.); (G.V.S.)
- Fundação Hospitalar de Hematologia e Hemoterapia do Amazonas (FHEMOAM), Manaus 69050-001, AM, Brazil
| |
Collapse
|
8
|
Claudiani S, Mason CC, Milojkovic D, Bianchi A, Pellegrini C, Di Marco A, Fiol CR, Robinson M, Ponnusamy K, Mokretar K, Chowdhury A, Albert M, Reid AG, Deininger MW, Naresh K, Apperley JF, Khorashad JS. Carfilzomib Enhances the Suppressive Effect of Ruxolitinib in Myelofibrosis. Cancers (Basel) 2021; 13:cancers13194863. [PMID: 34638347 PMCID: PMC8507927 DOI: 10.3390/cancers13194863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 09/17/2021] [Accepted: 09/20/2021] [Indexed: 11/16/2022] Open
Abstract
As the first FDA-approved tyrosine kinase inhibitor for treatment of patients with myelofibrosis (MF), ruxolitinib improves clinical symptoms but does not lead to eradication of the disease or significant reduction of the mutated allele burden. The resistance of MF clones against the suppressive action of ruxolitinib may be due to intrinsic or extrinsic mechanisms leading to activity of additional pro-survival genes or signalling pathways that function independently of JAK2/STAT5. To identify alternative therapeutic targets, we applied a pooled-shRNA library targeting ~5000 genes to a JAK2V617F-positive cell line under a variety of conditions, including absence or presence of ruxolitinib and in the presence of a bone marrow microenvironment-like culture medium. We identified several proteasomal gene family members as essential to HEL cell survival. The importance of these genes was validated in MF cells using the proteasomal inhibitor carfilzomib, which also enhanced lethality in combination with ruxolitinib. We also showed that proteasome gene expression is reduced by ruxolitinib in MF CD34+ cells and that additional targeting of proteasomal activity by carfilzomib enhances the inhibitory action of ruxolitinib in vitro. Hence, this study suggests a potential role for proteasome inhibitors in combination with ruxolitinib for management of MF patients.
Collapse
Affiliation(s)
- Simone Claudiani
- Centre for Haematology, Department of Immunology and Inflammation, Imperial College, London W12 0NN, UK; (S.C.); (D.M.); (C.R.F.); (M.R.); (K.P.); (K.M.); (A.C.); (M.A.); (K.N.); (J.F.A.)
| | - Clinton C. Mason
- Department of Pediatrics, Division of Pediatric Hematology and Oncology, University of Utah, Salt Lake City, UT 84108, USA;
| | - Dragana Milojkovic
- Centre for Haematology, Department of Immunology and Inflammation, Imperial College, London W12 0NN, UK; (S.C.); (D.M.); (C.R.F.); (M.R.); (K.P.); (K.M.); (A.C.); (M.A.); (K.N.); (J.F.A.)
| | - Andrea Bianchi
- Department of Information Engineering, University of L’Aquila, 67100 L’Aquila, Italy; (A.B.); (A.D.M.)
| | - Cristina Pellegrini
- Department of Biotechnological and Applied Clinical Science, University of L’Aquila, 67100 L’Aquila, Italy;
| | - Antinisca Di Marco
- Department of Information Engineering, University of L’Aquila, 67100 L’Aquila, Italy; (A.B.); (A.D.M.)
| | - Carme R. Fiol
- Centre for Haematology, Department of Immunology and Inflammation, Imperial College, London W12 0NN, UK; (S.C.); (D.M.); (C.R.F.); (M.R.); (K.P.); (K.M.); (A.C.); (M.A.); (K.N.); (J.F.A.)
| | - Mark Robinson
- Centre for Haematology, Department of Immunology and Inflammation, Imperial College, London W12 0NN, UK; (S.C.); (D.M.); (C.R.F.); (M.R.); (K.P.); (K.M.); (A.C.); (M.A.); (K.N.); (J.F.A.)
| | - Kanagaraju Ponnusamy
- Centre for Haematology, Department of Immunology and Inflammation, Imperial College, London W12 0NN, UK; (S.C.); (D.M.); (C.R.F.); (M.R.); (K.P.); (K.M.); (A.C.); (M.A.); (K.N.); (J.F.A.)
| | - Katya Mokretar
- Centre for Haematology, Department of Immunology and Inflammation, Imperial College, London W12 0NN, UK; (S.C.); (D.M.); (C.R.F.); (M.R.); (K.P.); (K.M.); (A.C.); (M.A.); (K.N.); (J.F.A.)
| | - Avirup Chowdhury
- Centre for Haematology, Department of Immunology and Inflammation, Imperial College, London W12 0NN, UK; (S.C.); (D.M.); (C.R.F.); (M.R.); (K.P.); (K.M.); (A.C.); (M.A.); (K.N.); (J.F.A.)
| | - Michael Albert
- Centre for Haematology, Department of Immunology and Inflammation, Imperial College, London W12 0NN, UK; (S.C.); (D.M.); (C.R.F.); (M.R.); (K.P.); (K.M.); (A.C.); (M.A.); (K.N.); (J.F.A.)
| | - Alistair G. Reid
- Molecular Pathology Unit, Liverpool University, Liverpool L7 8XP, UK;
| | - Michael W. Deininger
- Versiti Blood Research Institute, Division of Hematology and Oncology, Department of Medicine, Medical College of Wisconsin, Milwaukee, WI 53226, USA;
| | - Kikkeri Naresh
- Centre for Haematology, Department of Immunology and Inflammation, Imperial College, London W12 0NN, UK; (S.C.); (D.M.); (C.R.F.); (M.R.); (K.P.); (K.M.); (A.C.); (M.A.); (K.N.); (J.F.A.)
| | - Jane F. Apperley
- Centre for Haematology, Department of Immunology and Inflammation, Imperial College, London W12 0NN, UK; (S.C.); (D.M.); (C.R.F.); (M.R.); (K.P.); (K.M.); (A.C.); (M.A.); (K.N.); (J.F.A.)
| | - Jamshid S. Khorashad
- Centre for Haematology, Department of Immunology and Inflammation, Imperial College, London W12 0NN, UK; (S.C.); (D.M.); (C.R.F.); (M.R.); (K.P.); (K.M.); (A.C.); (M.A.); (K.N.); (J.F.A.)
- Correspondence:
| |
Collapse
|
9
|
Immunoproteasome Function in Normal and Malignant Hematopoiesis. Cells 2021; 10:cells10071577. [PMID: 34206607 PMCID: PMC8305381 DOI: 10.3390/cells10071577] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 06/16/2021] [Accepted: 06/16/2021] [Indexed: 12/19/2022] Open
Abstract
The ubiquitin-proteasome system (UPS) is a central part of protein homeostasis, degrading not only misfolded or oxidized proteins but also proteins with essential functions. The fact that a healthy hematopoietic system relies on the regulation of protein homeostasis and that alterations in the UPS can lead to malignant transformation makes the UPS an attractive therapeutic target for the treatment of hematologic malignancies. Herein, inhibitors of the proteasome, the last and most important component of the UPS enzymatic cascade, have been approved for the treatment of these malignancies. However, their use has been associated with side effects, drug resistance, and relapse. Inhibitors of the immunoproteasome, a proteasomal variant constitutively expressed in the cells of hematopoietic origin, could potentially overcome the encountered problems of non-selective proteasome inhibition. Immunoproteasome inhibitors have demonstrated their efficacy and safety against inflammatory and autoimmune diseases, even though their development for the treatment of hematologic malignancies is still in the early phases. Various immunoproteasome inhibitors have shown promising preliminary results in pre-clinical studies, and one inhibitor is currently being investigated in clinical trials for the treatment of multiple myeloma. Here, we will review data on immunoproteasome function and inhibition in hematopoietic cells and hematologic cancers.
Collapse
|
10
|
Spampinato M, Giallongo C, Romano A, Longhitano L, La Spina E, Avola R, Scandura G, Dulcamare I, Bramanti V, Di Rosa M, Vicario N, Parenti R, Li Volti G, Tibullo D, Palumbo GA. Focus on Osteosclerotic Progression in Primary Myelofibrosis. Biomolecules 2021. [PMID: 33477816 DOI: 10.3390/biom11010122.pmid:33477816;pmcid:pmc7832894] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/09/2023] Open
Abstract
Primary myelofibrosis (PMF) is a myeloproliferative neoplasm characterized by hematopoietic stem-cell-derived clonal proliferation, leading to bone marrow (BM) fibrosis. Hematopoiesis alterations are closely associated with modifications of the BM microenvironment, characterized by defective interactions between vascular and endosteal niches. As such, neoangiogenesis, megakaryocytes hyperplasia and extensive bone marrow fibrosis, followed by osteosclerosis and bone damage, are the most relevant consequences of PMF. Moreover, bone tissue deposition, together with progressive fibrosis, represents crucial mechanisms of disabilities in patients. Although the underlying mechanisms of bone damage observed in PMF are still unclear, the involvement of cytokines, growth factors and bone marrow microenvironment resident cells have been linked to disease progression. Herein, we focused on the role of megakaryocytes and their alterations, associated with cytokines and chemokines release, in modulating functions of most of the bone marrow cell populations and in creating a complex network where impaired signaling strongly contributes to progression and disabilities.
Collapse
Affiliation(s)
- Mariarita Spampinato
- Section of Biochemistry, Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy
| | - Cesarina Giallongo
- Department of Medical and Surgical Sciences and Advanced Technologies "G.F. Ingrassia", University of Catania, 95123 Catania, Italy
| | - Alessandra Romano
- Department of General Surgery and Medical-Surgical Specialties, Division of Hematology, A.O.U. "Policlinico-Vittorio Emanuele", University of Catania, 95123 Catania, Italy
| | - Lucia Longhitano
- Section of Biochemistry, Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy
| | - Enrico La Spina
- Department of General Surgery and Medical-Surgical Specialties, Division of Hematology, A.O.U. "Policlinico-Vittorio Emanuele", University of Catania, 95123 Catania, Italy
| | - Roberto Avola
- Section of Biochemistry, Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy
| | - Grazia Scandura
- Department of General Surgery and Medical-Surgical Specialties, Division of Hematology, A.O.U. "Policlinico-Vittorio Emanuele", University of Catania, 95123 Catania, Italy
| | - Ilaria Dulcamare
- Department of General Surgery and Medical-Surgical Specialties, Division of Hematology, A.O.U. "Policlinico-Vittorio Emanuele", University of Catania, 95123 Catania, Italy
| | - Vincenzo Bramanti
- Division of Clinical Pathology, "Giovanni Paolo II" Hospital-A.S.P. Ragusa, 97100 Ragusa, Italy
| | - Michelino Di Rosa
- Section of Human Anatomy and Histology, Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy
| | - Nunzio Vicario
- Section of Physiology, Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy
| | - Rosalba Parenti
- Section of Physiology, Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy
| | - Giovanni Li Volti
- Section of Biochemistry, Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy
| | - Daniele Tibullo
- Section of Biochemistry, Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy
| | - Giuseppe A Palumbo
- Department of Medical and Surgical Sciences and Advanced Technologies "G.F. Ingrassia", University of Catania, 95123 Catania, Italy
| |
Collapse
|
11
|
Spampinato M, Giallongo C, Romano A, Longhitano L, La Spina E, Avola R, Scandura G, Dulcamare I, Bramanti V, Di Rosa M, Vicario N, Parenti R, Li Volti G, Tibullo D, Palumbo GA. Focus on Osteosclerotic Progression in Primary Myelofibrosis. Biomolecules 2021; 11:biom11010122. [PMID: 33477816 PMCID: PMC7832894 DOI: 10.3390/biom11010122] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2020] [Revised: 01/09/2021] [Accepted: 01/16/2021] [Indexed: 12/22/2022] Open
Abstract
Primary myelofibrosis (PMF) is a myeloproliferative neoplasm characterized by hematopoietic stem-cell-derived clonal proliferation, leading to bone marrow (BM) fibrosis. Hematopoiesis alterations are closely associated with modifications of the BM microenvironment, characterized by defective interactions between vascular and endosteal niches. As such, neoangiogenesis, megakaryocytes hyperplasia and extensive bone marrow fibrosis, followed by osteosclerosis and bone damage, are the most relevant consequences of PMF. Moreover, bone tissue deposition, together with progressive fibrosis, represents crucial mechanisms of disabilities in patients. Although the underlying mechanisms of bone damage observed in PMF are still unclear, the involvement of cytokines, growth factors and bone marrow microenvironment resident cells have been linked to disease progression. Herein, we focused on the role of megakaryocytes and their alterations, associated with cytokines and chemokines release, in modulating functions of most of the bone marrow cell populations and in creating a complex network where impaired signaling strongly contributes to progression and disabilities.
Collapse
Affiliation(s)
- Mariarita Spampinato
- Section of Biochemistry, Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy; (M.S.); (L.L.); (R.A.); (D.T.)
| | - Cesarina Giallongo
- Department of Medical and Surgical Sciences and Advanced Technologies “G.F. Ingrassia”, University of Catania, 95123 Catania, Italy;
| | - Alessandra Romano
- Department of General Surgery and Medical-Surgical Specialties, Division of Hematology, A.O.U. “Policlinico-Vittorio Emanuele”, University of Catania, 95123 Catania, Italy; (A.R.); (E.L.S.); (G.S.); (I.D.)
| | - Lucia Longhitano
- Section of Biochemistry, Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy; (M.S.); (L.L.); (R.A.); (D.T.)
| | - Enrico La Spina
- Department of General Surgery and Medical-Surgical Specialties, Division of Hematology, A.O.U. “Policlinico-Vittorio Emanuele”, University of Catania, 95123 Catania, Italy; (A.R.); (E.L.S.); (G.S.); (I.D.)
| | - Roberto Avola
- Section of Biochemistry, Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy; (M.S.); (L.L.); (R.A.); (D.T.)
| | - Grazia Scandura
- Department of General Surgery and Medical-Surgical Specialties, Division of Hematology, A.O.U. “Policlinico-Vittorio Emanuele”, University of Catania, 95123 Catania, Italy; (A.R.); (E.L.S.); (G.S.); (I.D.)
| | - Ilaria Dulcamare
- Department of General Surgery and Medical-Surgical Specialties, Division of Hematology, A.O.U. “Policlinico-Vittorio Emanuele”, University of Catania, 95123 Catania, Italy; (A.R.); (E.L.S.); (G.S.); (I.D.)
| | - Vincenzo Bramanti
- Division of Clinical Pathology, “Giovanni Paolo II” Hospital–A.S.P. Ragusa, 97100 Ragusa, Italy;
| | - Michelino Di Rosa
- Section of Human Anatomy and Histology, Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy;
| | - Nunzio Vicario
- Section of Physiology, Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy; (N.V.); (R.P.)
| | - Rosalba Parenti
- Section of Physiology, Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy; (N.V.); (R.P.)
| | - Giovanni Li Volti
- Section of Biochemistry, Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy; (M.S.); (L.L.); (R.A.); (D.T.)
- Correspondence: (G.L.V.); (G.A.P.)
| | - Daniele Tibullo
- Section of Biochemistry, Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy; (M.S.); (L.L.); (R.A.); (D.T.)
| | - Giuseppe A. Palumbo
- Department of Medical and Surgical Sciences and Advanced Technologies “G.F. Ingrassia”, University of Catania, 95123 Catania, Italy;
- Correspondence: (G.L.V.); (G.A.P.)
| |
Collapse
|