1
|
Semchyshyn H. Fructose-mediated AGE-RAGE axis: approaches for mild modulation. Front Nutr 2024; 11:1500375. [PMID: 39698244 PMCID: PMC11652219 DOI: 10.3389/fnut.2024.1500375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Accepted: 11/20/2024] [Indexed: 12/20/2024] Open
Abstract
Fructose is a valuable and healthy nutrient when consumed at normal levels (≤50 g/day). However, long-term consumption of excessive fructose and elevated endogenous production can have detrimental health impacts. Fructose-initiated nonenzymatic glycation (fructation) is considered as one of the most likely mechanisms leading to the generation of reactive species and the propagation of nonenzymatic processes. In the later stages of glycation, poorly degraded advanced glycation products (AGEs) are irreversibly produced and accumulated in the organism in an age- and disease-dependent manner. Fructose, along with various glycation products-especially AGEs-are present in relatively high concentrations in our daily diet. Both endogenous and exogenous AGEs exhibit a wide range of biological effects, mechanisms of which can be associated with following: (1) AGEs are efficient sources of reactive species in vivo, and therefore can propagate nonenzymatic vicious cycles and amplify glycation; and (2) AGEs contribute to upregulation of the specific receptor for AGEs (RAGE), amplifying RAGE-mediated signaling related to inflammation, metabolic disorders, chronic diseases, and aging. Therefore, downregulation of the AGE-RAGE axis appears to be a promising approach for attenuating disease conditions associated with RAGE-mediated inflammation. Importantly, RAGE is not specific only to AGEs; it can bind multiple ligands, initiating a complex RAGE signaling network that is not fully understood. Maintaining an appropriate balance between various RAGE isoforms with different functions is also crucial. In this context, mild approaches related to lifestyle-such as diet optimization, consuming functional foods, intake of probiotics, and regular moderate physical activity-are valuable due to their beneficial effects and their ability to mildly modulate the fructose-mediated AGE-RAGE axis.
Collapse
Affiliation(s)
- Halyna Semchyshyn
- Department of Biochemistry and Biotechnology, Vasyl Stefanyk Precarpathian National University, Ivano-Frankivsk, Ukraine
| |
Collapse
|
2
|
Toader C, Tataru CP, Munteanu O, Serban M, Covache-Busuioc RA, Ciurea AV, Enyedi M. Decoding Neurodegeneration: A Review of Molecular Mechanisms and Therapeutic Advances in Alzheimer's, Parkinson's, and ALS. Int J Mol Sci 2024; 25:12613. [PMID: 39684324 DOI: 10.3390/ijms252312613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Revised: 11/21/2024] [Accepted: 11/22/2024] [Indexed: 12/18/2024] Open
Abstract
Neurodegenerative diseases, such as Alzheimer's, Parkinson's, ALS, and Huntington's, remain formidable challenges in medicine, with their relentless progression and limited therapeutic options. These diseases arise from a web of molecular disturbances-misfolded proteins, chronic neuroinflammation, mitochondrial dysfunction, and genetic mutations-that slowly dismantle neuronal integrity. Yet, recent scientific breakthroughs are opening new paths to intervene in these once-intractable conditions. This review synthesizes the latest insights into the underlying molecular dynamics of neurodegeneration, revealing how intertwined pathways drive the course of these diseases. With an eye on the most promising advances, we explore innovative therapies emerging from cutting-edge research: nanotechnology-based drug delivery systems capable of navigating the blood-brain barrier, gene-editing tools like CRISPR designed to correct harmful genetic variants, and stem cell strategies that not only replace lost neurons but foster neuroprotective environments. Pharmacogenomics is reshaping treatment personalization, enabling tailored therapies that align with individual genetic profiles, while molecular diagnostics and biomarkers are ushering in an era of early, precise disease detection. Furthermore, novel perspectives on the gut-brain axis are sparking interest as mounting evidence suggests that microbiome modulation may play a role in reducing neuroinflammatory responses linked to neurodegenerative progression. Taken together, these advances signal a shift toward a comprehensive, personalized approach that could transform neurodegenerative care. By integrating molecular insights and innovative therapeutic techniques, this review offers a forward-looking perspective on a future where treatments aim not just to manage symptoms but to fundamentally alter disease progression, presenting renewed hope for improved patient outcomes.
Collapse
Affiliation(s)
- Corneliu Toader
- Department of Neurosurgery, "Carol Davila" University of Medicine and Pharmacy, 050474 Bucharest, Romania
- Department of Vascular Neurosurgery, National Institute of Neurology and Neurovascular Diseases, 077160 Bucharest, Romania
| | - Calin Petru Tataru
- Ophthalmology Department, "Carol Davila" University of Medicine and Pharmacy, 020021 Bucharest, Romania
| | - Octavian Munteanu
- Department of Anatomy, "Carol Davila" University of Medicine and Pharmacy, 050474 Bucharest, Romania
| | - Matei Serban
- Department of Neurosurgery, "Carol Davila" University of Medicine and Pharmacy, 050474 Bucharest, Romania
| | - Razvan-Adrian Covache-Busuioc
- Department of Neurosurgery, "Carol Davila" University of Medicine and Pharmacy, 050474 Bucharest, Romania
- Department of Vascular Neurosurgery, National Institute of Neurology and Neurovascular Diseases, 077160 Bucharest, Romania
| | - Alexandru Vlad Ciurea
- Department of Neurosurgery, "Carol Davila" University of Medicine and Pharmacy, 050474 Bucharest, Romania
- Neurosurgery Department, Sanador Clinical Hospital, 010991 Bucharest, Romania
- Medical Section within the Romanian Academy, 010071 Bucharest, Romania
| | - Mihaly Enyedi
- Department of Anatomy, "Carol Davila" University of Medicine and Pharmacy, 050474 Bucharest, Romania
| |
Collapse
|
3
|
Beric A, Cisterna-García A, Martin C, Kumar R, Alfradique-Dunham I, Boyer K, Saliu IO, Yamada S, Sanford J, Western D, Liu M, Alvarez I, Perlmutter JS, Norris SA, Pastor P, Zhao G, Botia J, Ibanez L. Plasma acellular transcriptome contains Parkinson's disease signatures that can inform clinical diagnosis. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.10.18.24315717. [PMID: 39484251 PMCID: PMC11527085 DOI: 10.1101/2024.10.18.24315717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/03/2024]
Abstract
We aimed to identify plasma cell-free transcripts (cfRNA) associated with Parkinson's disease (PD) that also have a high predictive value to differentiate PD from healthy controls. Leveraging two independent populations from two different movement disorder centers we identified 2,188 differentially expressed cfRNAs after meta-analysis. The identified transcripts were enriched in PD relevant pathways, such as PD (p=9.26×10-4), ubiquitin-mediated proteolysis (p=7.41×10-5) and endocytosis (p=4.21×10-6). Utilizing in-house and publicly available brain, whole blood, and acellular plasma transcriptomic and proteomic PD datasets, we found significant overlap across dysregulated biological species in the different tissues and the different biological layers. We developed three predictive models containing increasing number of transcripts that can distinguish PD from healthy control with an area under the ROC Curve (AUC) ≥0.85. Finally, we showed that several of the predictive transcripts significantly correlate with symptom severity measured by UPDRS-III. Overall, we have demonstrated that cfRNA contains pathological signatures and has the potential to be utilized as biomarker to aid in PD diagnostics and monitoring.
Collapse
Affiliation(s)
- Aleksandra Beric
- Department of Psychiatry, Washington University in Saint Louis School of Medicine, St. Louis, MO 63110, USA
- NeuroGenomics and Informatics Center, Washington University in Saint Louis School of Medicine, St. Louis, MO 63108, USA
| | - Alejandro Cisterna-García
- Departamento de Ingeniería de la Información y las Comunicaciones; Universidad de Murcia, Murcia, Spain
| | - Charissa Martin
- Department of Psychiatry, Washington University in Saint Louis School of Medicine, St. Louis, MO 63110, USA
| | - Ravindra Kumar
- Department of Psychiatry, Washington University in Saint Louis School of Medicine, St. Louis, MO 63110, USA
- NeuroGenomics and Informatics Center, Washington University in Saint Louis School of Medicine, St. Louis, MO 63108, USA
| | - Isabel Alfradique-Dunham
- Department of Neurology, Washington University in Saint Louis School of Medicine, St. Louis, MO 63110, USA
| | - Kevin Boyer
- Department of Genetics, Washington University in Saint Louis School of Medicine, St. Louis, MO 63110, USA
| | - Ibrahim Olabayode Saliu
- Department of Genetics, Washington University in Saint Louis School of Medicine, St. Louis, MO 63110, USA
| | - Shinnosuke Yamada
- Department of Genetics, Washington University in Saint Louis School of Medicine, St. Louis, MO 63110, USA
| | - Jessie Sanford
- Department of Psychiatry, Washington University in Saint Louis School of Medicine, St. Louis, MO 63110, USA
- NeuroGenomics and Informatics Center, Washington University in Saint Louis School of Medicine, St. Louis, MO 63108, USA
| | - Daniel Western
- Department of Psychiatry, Washington University in Saint Louis School of Medicine, St. Louis, MO 63110, USA
- NeuroGenomics and Informatics Center, Washington University in Saint Louis School of Medicine, St. Louis, MO 63108, USA
| | - Menghan Liu
- Department of Psychiatry, Washington University in Saint Louis School of Medicine, St. Louis, MO 63110, USA
- NeuroGenomics and Informatics Center, Washington University in Saint Louis School of Medicine, St. Louis, MO 63108, USA
| | - Ignacio Alvarez
- Department of Pathology, Germans Trias I Pujol Research Institute, Badalona, Spain
| | - Joel S Perlmutter
- Neurology, Radiology, Neuroscience, Physical Therapy, Occupational Therapy, Washington University in Saint Louis School of Medicine, St. Louis, MO 63110, USA
| | - Scott A Norris
- Departments of Neurology and Radiology, Washington University in Saint Louis School of Medicine, St. Louis, MO 63110, USA
| | - Pau Pastor
- Department of Neurology, Hospital Germans Trias i Pujol, and Genomics and Transcriptomics of Synucleinopathies (GTS), The Germans Trias i Pujol Research Institute (IGTP), Badalona, Barcelona, Spain
| | - Guoyan Zhao
- Department of Genetics, Washington University in Saint Louis School of Medicine, St. Louis, MO 63110, USA
- Department of Neurology, Washington University in Saint Louis School of Medicine, St. Louis, MO 63110, USA
| | - Juan Botia
- Departamento de Ingeniería de la Información y las Comunicaciones; Universidad de Murcia, Murcia, Spain
- Department of Neurodegenerative Diseases, Institute of Neurology, University College London, London UK
| | - Laura Ibanez
- Department of Psychiatry, Washington University in Saint Louis School of Medicine, St. Louis, MO 63110, USA
- NeuroGenomics and Informatics Center, Washington University in Saint Louis School of Medicine, St. Louis, MO 63108, USA
- Department of Neurology, Washington University in Saint Louis School of Medicine, St. Louis, MO 63110, USA
| |
Collapse
|
4
|
Dion W, Tao Y, Chambers M, Zhao S, Arbuckle RK, Sun M, Kubra S, Jamal I, Nie Y, Ye M, Larsen MB, Camarco D, Ickes E, DuPont C, Wang H, Wang B, Liu S, Pi S, Chen BB, Chen Y, Chen X, Zhu B. SON-dependent nuclear speckle rejuvenation alleviates proteinopathies. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.18.590103. [PMID: 38659924 PMCID: PMC11042303 DOI: 10.1101/2024.04.18.590103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
Abstract
Current treatments targeting individual protein quality control have limited efficacy in alleviating proteinopathies, highlighting the prerequisite for a common upstream druggable target capable of global proteostasis modulation. Building on our prior research establishing nuclear speckles as a pivotal membrane-less organelle responsible for global proteostasis transcriptional control, we aim to alleviate proteinopathies through nuclear speckle rejuvenation. We identified pyrvinium pamoate as a small-molecule nuclear speckle rejuvenator that enhances protein quality control while suppressing YAP1 signaling via decreasing the surface/interfacial tension of nuclear speckle condensates through interaction with the intrinsically disordered region of nuclear speckle scaffold protein SON. In pre-clinical models, nanomolar pyrvinium pamoate alleviated retina degeneration and reduced tauopathy by promoting autophagy and ubiquitin-proteasome system in a SON-dependent manner without causing cellular stress. Aberrant nuclear speckle morphology, reduced protein quality control and increased YAP1 activity were also observed in human tauopathies. Our study uncovers novel therapeutic targets for tackling protein misfolding disorders within an expanded proteostasis framework encompassing nuclear speckles and YAP1.
Collapse
Affiliation(s)
- William Dion
- Aging Institute of UPMC, University of Pittsburgh School of Medicine, Pittsburgh, PA, U.S.A
| | - Yuren Tao
- Department of Neuroscience, School of Medicine, University of California, San Diego, CA, U.S.A
| | - Maci Chambers
- Aging Institute of UPMC, University of Pittsburgh School of Medicine, Pittsburgh, PA, U.S.A
| | - Shanshan Zhao
- Department of Neuroscience, School of Medicine, University of California, San Diego, CA, U.S.A
| | - Riley K. Arbuckle
- Department of Ophthalmology, University of Pittsburgh School of Medicine, PA, U.S.A
- Department of Human Genetics, University of Pittsburgh Graduate School of Public Health, Pittsburgh, PA, USA
| | - Michelle Sun
- Aging Institute of UPMC, University of Pittsburgh School of Medicine, Pittsburgh, PA, U.S.A
| | - Syeda Kubra
- Aging Institute of UPMC, University of Pittsburgh School of Medicine, Pittsburgh, PA, U.S.A
| | - Imran Jamal
- Aging Institute of UPMC, University of Pittsburgh School of Medicine, Pittsburgh, PA, U.S.A
| | - Yuhang Nie
- Department of Neuroscience, School of Medicine, University of California, San Diego, CA, U.S.A
| | - Megan Ye
- Aging Institute of UPMC, University of Pittsburgh School of Medicine, Pittsburgh, PA, U.S.A
| | - Mads B. Larsen
- Aging Institute of UPMC, University of Pittsburgh School of Medicine, Pittsburgh, PA, U.S.A
| | - Daniel Camarco
- Aging Institute of UPMC, University of Pittsburgh School of Medicine, Pittsburgh, PA, U.S.A
| | - Eleanor Ickes
- Aging Institute of UPMC, University of Pittsburgh School of Medicine, Pittsburgh, PA, U.S.A
| | - Claire DuPont
- Aging Institute of UPMC, University of Pittsburgh School of Medicine, Pittsburgh, PA, U.S.A
| | - Haokun Wang
- Aging Institute of UPMC, University of Pittsburgh School of Medicine, Pittsburgh, PA, U.S.A
| | - Bingjie Wang
- Department of Ophthalmology, University of Pittsburgh School of Medicine, PA, U.S.A
| | - Silvia Liu
- Pittsburgh Liver Research Center, University of Pittsburgh, Pittsburgh, PA, U.S.A
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, PA, U.S.A
| | - Shaohua Pi
- Department of Ophthalmology, University of Pittsburgh School of Medicine, PA, U.S.A
| | - Bill B Chen
- Aging Institute of UPMC, University of Pittsburgh School of Medicine, Pittsburgh, PA, U.S.A
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, U.S.A
| | - Yuanyuan Chen
- Department of Ophthalmology, University of Pittsburgh School of Medicine, PA, U.S.A
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, PA, U.S.A
| | - Xu Chen
- Department of Neuroscience, School of Medicine, University of California, San Diego, CA, U.S.A
| | - Bokai Zhu
- Aging Institute of UPMC, University of Pittsburgh School of Medicine, Pittsburgh, PA, U.S.A
- Pittsburgh Liver Research Center, University of Pittsburgh, Pittsburgh, PA, U.S.A
- Division of Endocrinology and Metabolism, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, U.S.A
| |
Collapse
|
5
|
Zamotina MA, Muranova LK, Zabolotskii AI, Tyurin-Kuzmin PA, Kulebyakin KY, Gusev NB. Universal Adapter Protein Bag3 and Small Heat Shock Proteins. BIOCHEMISTRY. BIOKHIMIIA 2024; 89:1535-1545. [PMID: 39418513 DOI: 10.1134/s0006297924090013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 05/20/2024] [Accepted: 05/24/2024] [Indexed: 10/19/2024]
Abstract
Bag3 (Bcl-2-associated athanogene 3) protein contains a number of functional domains and interacts with a wide range of different partner proteins, including small heat shock proteins (sHsps) and heat shock protein Hsp70. The ternary Bag3-sHsp-and Hsp70 complex binds denatured proteins and transports them to phagosomes, thus playing a key role in the chaperone-assisted selective autophagy (CASA). This complex also participates in the control of formation and disassembly of stress granules (granulostasis) and cytoskeleton regulation. As Bag3 and sHsps participate in multiple cellular processes, mutations in these proteins are often associated with neurodegenerative diseases and cardiomyopathy. The review discusses the role of sHsps in different processes regulated by Bag3.
Collapse
Affiliation(s)
- Maria A Zamotina
- Department of Biochemistry, Faculty of Biology, Lomonosov Moscow State University, Moscow, 119991, Russia
| | - Lidia K Muranova
- Department of Biochemistry, Faculty of Biology, Lomonosov Moscow State University, Moscow, 119991, Russia
| | - Artur I Zabolotskii
- Department of Biochemistry, Faculty of Biology, Lomonosov Moscow State University, Moscow, 119991, Russia
| | - Pyotr A Tyurin-Kuzmin
- Department of Biochemistry and Regenerative Biomedicine, Faculty of Fundamental Medicine, Lomonosov Moscow State University, Moscow, 119991, Russia
| | - Konstantin Yu Kulebyakin
- Department of Biochemistry and Regenerative Biomedicine, Faculty of Fundamental Medicine, Lomonosov Moscow State University, Moscow, 119991, Russia
| | - Nikolai B Gusev
- Department of Biochemistry, Faculty of Biology, Lomonosov Moscow State University, Moscow, 119991, Russia.
- Department of Biochemistry and Regenerative Biomedicine, Faculty of Fundamental Medicine, Lomonosov Moscow State University, Moscow, 119991, Russia
| |
Collapse
|
6
|
Fote GM, Eapen VV, Lim RG, Yu C, Salazar L, McClure NR, McKnight J, Nguyen TB, Heath MC, Lau AL, Villamil MA, Miramontes R, Kratter IH, Finkbeiner S, Reidling JC, Paulo JA, Kaiser P, Huang L, Housman DE, Thompson LM, Steffan JS. Huntingtin contains an ubiquitin-binding domain and regulates lysosomal targeting of mitochondrial and RNA-binding proteins. Proc Natl Acad Sci U S A 2024; 121:e2319091121. [PMID: 39074279 PMCID: PMC11317567 DOI: 10.1073/pnas.2319091121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 06/20/2024] [Indexed: 07/31/2024] Open
Abstract
Understanding the normal function of the Huntingtin (HTT) protein is of significance in the design and implementation of therapeutic strategies for Huntington's disease (HD). Expansion of the CAG repeat in the HTT gene, encoding an expanded polyglutamine (polyQ) repeat within the HTT protein, causes HD and may compromise HTT's normal activity contributing to HD pathology. Here, we investigated the previously defined role of HTT in autophagy specifically through studying HTT's association with ubiquitin. We find that HTT interacts directly with ubiquitin in vitro. Tandem affinity purification was used to identify ubiquitinated and ubiquitin-associated proteins that copurify with a HTT N-terminal fragment under basal conditions. Copurification is enhanced by HTT polyQ expansion and reduced by mimicking HTT serine 421 phosphorylation. The identified HTT-interacting proteins include RNA-binding proteins (RBPs) involved in mRNA translation, proteins enriched in stress granules, the nuclear proteome, the defective ribosomal products (DRiPs) proteome and the brain-derived autophagosomal proteome. To determine whether the proteins interacting with HTT are autophagic targets, HTT knockout (KO) cells and immunoprecipitation of lysosomes were used to investigate autophagy in the absence of HTT. HTT KO was associated with reduced abundance of mitochondrial proteins in the lysosome, indicating a potential compromise in basal mitophagy, and increased lysosomal abundance of RBPs which may result from compensatory up-regulation of starvation-induced macroautophagy. We suggest HTT is critical for appropriate basal clearance of mitochondrial proteins and RBPs, hence reduced HTT proteostatic function with mutation may contribute to the neuropathology of HD.
Collapse
Affiliation(s)
- Gianna M. Fote
- Department of Biological Chemistry, UC Irvine School of Medicine, Irvine, CA92697
- Department of Neurological Surgery, UC Irvine School of Medicine, Orange, CA92868
| | - Vinay V. Eapen
- Department of Cell Biology, Harvard Medical School, Boston, MA02115
- Casma Therapeutics, Cambridge, MA02139
| | - Ryan G. Lim
- The University of California Irvine Institute for Memory Impairments and Neurological Disorders, University of California, Irvine, CA92697
| | - Clinton Yu
- Department of Physiology and Biophysics, University of California, Irvine, CA92697
| | - Lisa Salazar
- Department of Psychiatry and Human Behavior, UC Irvine School of Medicine, Orange, CA92868
| | - Nicolette R. McClure
- Department of Neurobiology and Behavior, University of California, Irvine, CA92697
| | - Jharrayne McKnight
- Department of Neurobiology and Behavior, University of California, Irvine, CA92697
| | - Thai B. Nguyen
- Department of Neurobiology and Behavior, University of California, Irvine, CA92697
| | - Marie C. Heath
- Department of Neurobiology and Behavior, University of California, Irvine, CA92697
| | - Alice L. Lau
- Department of Psychiatry and Human Behavior, UC Irvine School of Medicine, Orange, CA92868
| | - Mark A. Villamil
- Department of Biological Chemistry, UC Irvine School of Medicine, Irvine, CA92697
| | - Ricardo Miramontes
- Department of Psychiatry and Human Behavior, UC Irvine School of Medicine, Orange, CA92868
| | - Ian H. Kratter
- Center for Systems and Therapeutics, Gladstone Institutes, San Francisco, CA94158
- Stanford Brain Stimulation Lab, Stanford, CA94304
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA94304
| | - Steven Finkbeiner
- Center for Systems and Therapeutics, Gladstone Institutes, San Francisco, CA94158
- Department of Physiology, University of California, San Francisco, CA94158
- Department of Neurology, University of California, San Francisco, CA94158
| | - Jack C. Reidling
- The University of California Irvine Institute for Memory Impairments and Neurological Disorders, University of California, Irvine, CA92697
| | - Joao A. Paulo
- Department of Cell Biology, Harvard Medical School, Boston, MA02115
| | - Peter Kaiser
- Department of Biological Chemistry, UC Irvine School of Medicine, Irvine, CA92697
| | - Lan Huang
- Department of Physiology and Biophysics, University of California, Irvine, CA92697
| | - David E. Housman
- Koch Institute for Integrative Cancer Research, The Massachusetts Institute of Technology, Cambridge, MA02139
| | - Leslie M. Thompson
- Department of Biological Chemistry, UC Irvine School of Medicine, Irvine, CA92697
- The University of California Irvine Institute for Memory Impairments and Neurological Disorders, University of California, Irvine, CA92697
- Department of Psychiatry and Human Behavior, UC Irvine School of Medicine, Orange, CA92868
- Department of Neurobiology and Behavior, University of California, Irvine, CA92697
- Center for Epigenetics and Metabolism, University of California, Irvine School of Medicine, University of California, Irvine, CA92697
| | - Joan S. Steffan
- The University of California Irvine Institute for Memory Impairments and Neurological Disorders, University of California, Irvine, CA92697
- Department of Psychiatry and Human Behavior, UC Irvine School of Medicine, Orange, CA92868
- Center for Epigenetics and Metabolism, University of California, Irvine School of Medicine, University of California, Irvine, CA92697
| |
Collapse
|
7
|
Limanaqi F, Zecchini S, Ogno P, Artusa V, Fenizia C, Saulle I, Vanetti C, Garziano M, Strizzi S, Trabattoni D, Clerici M, Biasin M. Alpha-synuclein shapes monocyte and macrophage cell biology and functions by bridging alterations of autophagy and inflammatory pathways. Front Cell Dev Biol 2024; 12:1421360. [PMID: 39035028 PMCID: PMC11257978 DOI: 10.3389/fcell.2024.1421360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Accepted: 06/17/2024] [Indexed: 07/23/2024] Open
Abstract
Introduction: Abnormal spreading of alpha-synuclein (αS), a hallmark of Parkinson's disease, is known to promote peripheral inflammation, which occurs in part via functional alterations in monocytes/macrophages. However, underlying intracellular mechanisms remain unclear. Methods: Herein we investigate the subcellular, molecular, and functional effects of excess αS in human THP-1 monocytic cell line, THP-1-derived macrophages, and at least preliminarily, in primary monocyte-derived macrophages (MDMs). In cells cultured w/wo recombinant αS (1 μM) for 4 h and 24 h, by Confocal microscopy, Western Blot, RT-qPCR, Elisa, and Flow Cytometry we assessed: i) αS internalization; ii) cytokine/chemokine expression/secretion, and C-C motif chemokine receptor 2 (CCR2) levels; iii) autophagy (LC3II/I, LAMP1/LysoTracker, p62, pS6/total S6); and iv) lipid droplets (LDs) accumulation, and cholesterol pathway gene expression. Transwell migration assay was employed to measure THP-1 cell migration/chemotaxis, while FITC-IgG-bead assay was used to analyze phagocytic capacity, and the fate of phagocytosed cargo in THP-1-derived macrophages. Results: Extracellular αS was internalized by THP-1 cells, THP-1-derived macrophages, and MDMs. In THP1 cells, αS induced a general pro-inflammatory profile and conditioned media from αS-exposed THP-1 cells potently attracted unstimulated cells. However, CCL2 secretion peaked at 4 h αS, consistent with early internalization of its receptor CCR2, while this was blunted at 24 h αS exposure, when CCR2 recycled back to the plasma membrane. Again, 4 h αS-exposed THP-1 cells showed increased spontaneous migration, while 24 h αS-exposed cells showed reduced chemotaxis. This occurred in the absence of cell toxicity and was associated with upregulation of autophagy/lysosomal markers, suggesting a pro-survival/tolerance mechanism against stress-related inflammation. Instead, in THP-1-derived macrophages, αS time-dependently potentiated the intracellular accumulation, and release of pro-inflammatory mediators. This was accompanied by mild toxicity, reduced autophagy-lysosomal markers, defective LDs formation, as well as impaired phagocytosis, and the appearance of stagnant lysosomes engulfed with phagocytosed cargo, suggesting a status of macrophage exhaustion reminiscent of hypophagia. Discussion: In summary, despite an apparently similar pro-inflammatory phenotype, monocytes and macrophages respond differently to intracellular αS accumulation in terms of cell survival, metabolism, and functions. Our results suggest that in periphery, αS exerts cell- and context-specific biological effects bridging alterations of autophagy, lipid dynamics, and inflammatory pathways.
Collapse
Affiliation(s)
- Fiona Limanaqi
- Department of Biomedical and Clinical Sciences, University of Milan, Milan, Italy
| | - Silvia Zecchini
- Department of Biomedical and Clinical Sciences, University of Milan, Milan, Italy
| | - Pasquale Ogno
- Department of Biomedical and Clinical Sciences, University of Milan, Milan, Italy
| | - Valentina Artusa
- Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy
| | - Claudio Fenizia
- Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy
| | - Irma Saulle
- Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy
| | - Claudia Vanetti
- Department of Biomedical and Clinical Sciences, University of Milan, Milan, Italy
| | - Micaela Garziano
- Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy
| | - Sergio Strizzi
- Department of Biomedical and Clinical Sciences, University of Milan, Milan, Italy
| | - Daria Trabattoni
- Department of Biomedical and Clinical Sciences, University of Milan, Milan, Italy
| | - Mario Clerici
- Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy
- IRCCS Fondazione Don Carlo Gnocchi, Milan, Italy
| | - Mara Biasin
- Department of Biomedical and Clinical Sciences, University of Milan, Milan, Italy
| |
Collapse
|
8
|
Sundaresan S, Rajapriya P, Lavanya SK. Aging and cancer: Clinical role of tumor markers in the geriatric population (Review). MEDICINE INTERNATIONAL 2024; 4:21. [PMID: 39640494 PMCID: PMC11618985 DOI: 10.3892/mi.2024.145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Accepted: 02/15/2024] [Indexed: 12/07/2024]
Abstract
Aging, with the progressive deterioration and functional decline of several organ systems, is highly heterogeneous for both between and within individuals. Tumor markers are widely used in clinical practice as a screening test for individuals >50 years of age. More specifically, caring for elderly patients is a public health concern, given the incidence of cancer and its related mortality and morbidity. A multidisciplinary diagnostic procedure known as a geriatric assessment is capable of identifying functional, psychological and physiological issues that are missed by standard evaluation. The present review focuses on cancers affecting the geriatric population, highlights current opportunities and challenges, and highlights the unmet need for clinically relevant tumor markers in elderly patients with cancer. A comprehensive geriatric examination, including a biological assessment, still requires conveniently available tumor markers and their levels in older populations in order to forecast deterioration or loss of functional balance. These tumor indicators ought to make it possible to track patients using other outcomes, such overall survival and functional impairment. Despite the notable progress made in the understanding of human biology, the mechanisms and networks underlying aging remain largely unknown. In addition, as elderly patients are a highly heterogeneous population, age-related changes cannot be distinguished solely by chronological age. Strong clinical studies, well-established protocols and meta-analyses may contribute to the better utilization of tumor biomarkers in the elderly population. Hence, the present review addresses the effects of aging on tumor markers and the usefulness of tumor marker values for the geriatric population.
Collapse
Affiliation(s)
- Sivapatham Sundaresan
- Department of Medical Research, SRM Medical College Hospital and Research Centre, SRM Institute of Science and Technology, SRM Nagar, Kattankulathur, Tamil Nadu 603203, India
| | - Palanirasu Rajapriya
- Department of Liver Sciences, Rela Institute of Medical Sciences, Chennai, Tamil Nadu 600044, India
| | - Selvaraj Kaveri Lavanya
- Department of Medical Research, SRM Medical College Hospital and Research Centre, SRM Institute of Science and Technology, SRM Nagar, Kattankulathur, Tamil Nadu 603203, India
| |
Collapse
|
9
|
Pan Z, Yu CW, Zhao C, Shao M, Yang X, Liang X, Li H, Lu Y, Ye Q, Chern JW, Lu J, Zhou H, Lee SMY. Antagonizing pathological α-synuclein-mediated neurodegeneration by J24335 via the activation of immunoproteasome. Toxicol Appl Pharmacol 2023; 480:116745. [PMID: 37931757 DOI: 10.1016/j.taap.2023.116745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 09/21/2023] [Accepted: 11/01/2023] [Indexed: 11/08/2023]
Abstract
The aggregation of misfolded proteins, such as α-synuclein in Parkinson's disease (PD), occurs intracellularly or extracellularly in the majority of neurodegenerative diseases. The immunoproteasome has more potent chymotrypsin-like activity than normal proteasome. Thus, degradation of α-synuclein aggregation via immunoproteasome is an attractive approach for PD drug development. Herein, we aimed to determine if novel compound, 11-Hydroxy-1-(8-methoxy-5-(trifluoromethyl)quinolin-2-yl)undecan-1-one oxime (named as J24335), is a promising candidate for disease-modifying therapy to prevent the pathological progression of neurodegenerative diseases, such as PD. The effects of J24335 on inducible PC12/A53T-α-syn cell viability and cytotoxicity were evaluated by MTT assay and LDH assay, respectively. Evaluation of various proteasome activities was done by measuring the luminescence of enzymatic activity after the addition of different amounts of aminoluciferin. Immunoblotting and real-time PCR were employed to detect the expression of various proteins and genes, respectively. We also used a transgenic mouse model for behavioral testing and immunochemical analysis, to assess the neuroprotective effects of J24335. J24335 inhibited wild-type and mutant α-synuclein aggregation without affecting the growth or death of neuronal cells. The inhibition of α-synuclein aggregation by J24335 was caused by activation of immunoproteasome, as mediated by upregulation of LMP7, and increased cellular chymotrypsin-like activity in 20S proteasome. J24335-enhanced immunoproteasome activity was mediated by PKA/Akt/mTOR pathway activation. Moreover, animal studies revealed that J24335 treatment markedly mitigated both the loss of tyrosine hydroxylase-positive (TH-) neurons and impaired motor skill development. This is the first report to use J24335 as an immunoproteasome enhancing agent to antagonize pathological α-synuclein-mediated neurodegeneration.
Collapse
Affiliation(s)
- Zhijian Pan
- Department of Bioengineering, Zhuhai Campus of Zunyi Medical University, Zhuhai, Guangdong, China
| | - Chao-Wu Yu
- School of Pharmacy, National Taiwan University, Taipei 10050, Taiwan, China
| | - Chen Zhao
- State Key Laboratory of Quality Research in Chinese Medicine and Institute of Chinese Medical Sciences, University of Macau, Macau, China
| | - Min Shao
- Department of Bioengineering, Zhuhai Campus of Zunyi Medical University, Zhuhai, Guangdong, China
| | - Xuanjun Yang
- State Key Laboratory of Quality Research in Chinese Medicine and Institute of Chinese Medical Sciences, University of Macau, Macau, China; Department of Biology, South University of Science and Technology, Shenzhen, Guangdong, China
| | - Xiaonan Liang
- State Key Laboratory of Quality Research in Chinese Medicine and Institute of Chinese Medical Sciences, University of Macau, Macau, China
| | - Haitao Li
- Department of Bioengineering, Zhuhai Campus of Zunyi Medical University, Zhuhai, Guangdong, China
| | - Yucong Lu
- Department of Bioengineering, Zhuhai Campus of Zunyi Medical University, Zhuhai, Guangdong, China
| | - Qingqing Ye
- School of Pharmacy, National Taiwan University, Taipei 10050, Taiwan, China
| | - Ji-Wang Chern
- School of Pharmacy, National Taiwan University, Taipei 10050, Taiwan, China
| | - Jiahong Lu
- State Key Laboratory of Quality Research in Chinese Medicine and Institute of Chinese Medical Sciences, University of Macau, Macau, China
| | - Hefeng Zhou
- Department of Bioengineering, Zhuhai Campus of Zunyi Medical University, Zhuhai, Guangdong, China.
| | - Simon Ming-Yuen Lee
- State Key Laboratory of Quality Research in Chinese Medicine and Institute of Chinese Medical Sciences, University of Macau, Macau, China; Department of Pharmaceutical Sciences, Faculty of Health Sciences, University of Macau, Avenida da Universidade, Taipa, Macao.
| |
Collapse
|
10
|
Zhou M, Fang R, Colson L, Donovan KA, Hunkeler M, Song Y, Zhang C, Chen S, Lee DH, Bradshaw GA, Eisert R, Ye Y, Kalocsay M, Goldberg A, Fischer ES, Lu Y. HUWE1 Amplifies Ubiquitin Modifications to Broadly Stimulate Clearance of Proteins and Aggregates. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.30.542866. [PMID: 37398461 PMCID: PMC10312588 DOI: 10.1101/2023.05.30.542866] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/04/2023]
Abstract
Selective breakdown of proteins and aggregates is crucial for maintaining normal cellular activities and is involved in the pathogenesis of diverse diseases. How the cell recognizes and tags these targets in different structural states for degradation by the proteasome and autophagy pathways has not been well understood. Here, we discovered that a HECT-family ubiquitin ligase HUWE1 is broadly required for the efficient degradation of soluble factors and for the clearance of protein aggregates/condensates. Underlying this capacity of HUWE1 is a novel Ubiquitin-Directed ubiquitin Ligase (UDL) activity which recognizes both soluble substrates and aggregates that carry a high density of ubiquitin chains and rapidly expand the ubiquitin modifications on these targets. Ubiquitin signal amplification by HUWE1 recruits the ubiquitin-dependent segregase p97/VCP to process these targets for subsequent degradation or clearance. HUWE1 controls the cytotoxicity of protein aggregates, mediates Targeted Protein Degradation and regulates cell-cycle transitions with its UDL activity.
Collapse
|
11
|
Morrone CD, Raghuraman R, Hussaini SA, Yu WH. Proteostasis failure exacerbates neuronal circuit dysfunction and sleep impairments in Alzheimer's disease. Mol Neurodegener 2023; 18:27. [PMID: 37085942 PMCID: PMC10119020 DOI: 10.1186/s13024-023-00617-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Accepted: 03/29/2023] [Indexed: 04/23/2023] Open
Abstract
Failed proteostasis is a well-documented feature of Alzheimer's disease, particularly, reduced protein degradation and clearance. However, the contribution of failed proteostasis to neuronal circuit dysfunction is an emerging concept in neurodegenerative research and will prove critical in understanding cognitive decline. Our objective is to convey Alzheimer's disease progression with the growing evidence for a bidirectional relationship of sleep disruption and proteostasis failure. Proteostasis dysfunction and tauopathy in Alzheimer's disease disrupts neurons that regulate the sleep-wake cycle, which presents behavior as impaired slow wave and rapid eye movement sleep patterns. Subsequent sleep loss further impairs protein clearance. Sleep loss is a defined feature seen early in many neurodegenerative disorders and contributes to memory impairments in Alzheimer's disease. Canonical pathological hallmarks, β-amyloid, and tau, directly disrupt sleep, and neurodegeneration of locus coeruleus, hippocampal and hypothalamic neurons from tau proteinopathy causes disruption of the neuronal circuitry of sleep. Acting in a positive-feedback-loop, sleep loss and circadian rhythm disruption then increase spread of β-amyloid and tau, through impairments of proteasome, autophagy, unfolded protein response and glymphatic clearance. This phenomenon extends beyond β-amyloid and tau, with interactions of sleep impairment with the homeostasis of TDP-43, α-synuclein, FUS, and huntingtin proteins, implicating sleep loss as an important consideration in an array of neurodegenerative diseases and in cases of mixed neuropathology. Critically, the dynamics of this interaction in the neurodegenerative environment are not fully elucidated and are deserving of further discussion and research. Finally, we propose sleep-enhancing therapeutics as potential interventions for promoting healthy proteostasis, including β-amyloid and tau clearance, mechanistically linking these processes. With further clinical and preclinical research, we propose this dynamic interaction as a diagnostic and therapeutic framework, informing precise single- and combinatorial-treatments for Alzheimer's disease and other brain disorders.
Collapse
Affiliation(s)
- Christopher Daniel Morrone
- Brain Health Imaging Centre, Centre for Addiction and Mental Health, 250 College St., Toronto, ON, M5T 1R8, Canada.
| | - Radha Raghuraman
- Taub Institute, Columbia University Irving Medical Center, 630W 168th Street, New York, NY, 10032, USA
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, 630W 168th Street, New York, NY, 10032, USA
| | - S Abid Hussaini
- Taub Institute, Columbia University Irving Medical Center, 630W 168th Street, New York, NY, 10032, USA.
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, 630W 168th Street, New York, NY, 10032, USA.
| | - Wai Haung Yu
- Brain Health Imaging Centre, Centre for Addiction and Mental Health, 250 College St., Toronto, ON, M5T 1R8, Canada.
- Geriatric Mental Health Research Services, Centre for Addiction and Mental Health, 250 College St., Toronto, ON, M5T 1R8, Canada.
- Department of Pharmacology and Toxicology, University of Toronto, Medical Sciences Building, 1 King's College Circle, Toronto, ON, M5S 1A8, Canada.
| |
Collapse
|
12
|
Eléouët M, Lu C, Zhou Y, Yang P, Ma J, Xu G. Insights on the biological functions and diverse regulation of RNA-binding protein 39 and their implication in human diseases. BIOCHIMICA ET BIOPHYSICA ACTA. GENE REGULATORY MECHANISMS 2023; 1866:194902. [PMID: 36535628 DOI: 10.1016/j.bbagrm.2022.194902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 11/24/2022] [Accepted: 12/12/2022] [Indexed: 12/23/2022]
Abstract
RNA-binding protein 39 (RBM39) involves in pre-mRNA splicing and transcriptional regulation. RBM39 is dysregulated in many cancers and its upregulation enhances cancer cell proliferation. Recently, it has been discovered that aryl sulfonamides act as molecular glues to recruit RBM39 to the CRL4DCAF15 E3 ubiquitin ligase complex for its ubiquitination and proteasomal degradation. Therefore, various studies have focused on the degradation of RBM39 by aryl sulfonamides in the aim of finding new cancer therapeutics. These discoveries also attracted focus for thorough study on the biological functions of RBM39. RBM39 was found to regulate the splicing and transcription of genes mainly involved in pre-mRNA splicing, cell cycle regulation, DNA damage response, and metabolism, but the understanding of these regulations is still in its infancy. This article reviews the advances of the current literature and discusses the remaining key issues on the biological function and dynamic regulation of RBM39 at the post-translational level.
Collapse
Affiliation(s)
- Morgane Eléouët
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Jiangsu Province Engineering Research Center of Precision Diagnostics and Therapeutics Development, Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Suzhou Key Laboratory of Drug Research for Prevention and Treatment of Hyperlipidemic Diseases, Soochow University, 199 Ren'ai Road, Suzhou, Jiangsu 215123, China; Synbio Technologies Company, BioBay C20, 218 Xinghu Street, Suzhou, Jiangsu 215123, China
| | - Chengpiao Lu
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Jiangsu Province Engineering Research Center of Precision Diagnostics and Therapeutics Development, Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Suzhou Key Laboratory of Drug Research for Prevention and Treatment of Hyperlipidemic Diseases, Soochow University, 199 Ren'ai Road, Suzhou, Jiangsu 215123, China
| | - Yijia Zhou
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Jiangsu Province Engineering Research Center of Precision Diagnostics and Therapeutics Development, Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Suzhou Key Laboratory of Drug Research for Prevention and Treatment of Hyperlipidemic Diseases, Soochow University, 199 Ren'ai Road, Suzhou, Jiangsu 215123, China
| | - Ping Yang
- Synbio Technologies Company, BioBay C20, 218 Xinghu Street, Suzhou, Jiangsu 215123, China
| | - Jingjing Ma
- Department of Pharmacy, Medical Center of Soochow University, Dushu Lake Hospital Affiliated to Soochow University, Suzhou, Jiangsu 215123, China.
| | - Guoqiang Xu
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Jiangsu Province Engineering Research Center of Precision Diagnostics and Therapeutics Development, Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Suzhou Key Laboratory of Drug Research for Prevention and Treatment of Hyperlipidemic Diseases, Soochow University, 199 Ren'ai Road, Suzhou, Jiangsu 215123, China.
| |
Collapse
|
13
|
Puglisi-Allegra S, Lazzeri G, Busceti CL, Giorgi FS, Biagioni F, Fornai F. Lithium engages autophagy for neuroprotection and neuroplasticity: translational evidence for therapy. Neurosci Biobehav Rev 2023; 148:105148. [PMID: 36996994 DOI: 10.1016/j.neubiorev.2023.105148] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 03/23/2023] [Accepted: 03/26/2023] [Indexed: 03/30/2023]
Abstract
Here an overview is provided on therapeutic/neuroprotective effects of Lithium (Li+) in neurodegenerative and psychiatric disorders focusing on the conspicuous action of Li+ through autophagy. The effects on the autophagy machinery remain the key molecular mechanisms to explain the protective effects of Li+ for neurodegenerative diseases, offering potential therapeutic strategies for the treatment of neuropsychiatric disorders and emphasizes a crossroad linking autophagy, neurodegenerative disorders, and mood stabilization. Sensitization by psychostimulants points to several mechanisms involved in psychopathology, most also crucial in neurodegenerative disorders. Evidence shows the involvement of autophagy and metabotropic Glutamate receptors-5 (mGluR5) in neurodegeneration due to methamphetamine neurotoxicity as well as in neuroprotection, both in vitro and in vivo models. More recently, Li+ was shown to modulate autophagy through its action on mGluR5, thus pointing to an additional way of autophagy engagement by Li+ and to a substantial role of mGluR5 in neuroprotection related to neural e neuropsychiatry diseases. We propose Li+ engagement of autophagy through the canonical mechanisms of autophagy machinery and through the intermediary of mGluR5.
Collapse
|
14
|
Liu C, Ju R. Manganese-induced neuronal apoptosis: new insights into the role of endoplasmic reticulum stress in regulating autophagy-related proteins. Toxicol Sci 2023; 191:193-200. [PMID: 36519822 DOI: 10.1093/toxsci/kfac130] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Manganese (Mn) is an essential trace element that participates in various physiological and pathological processes. However, epidemiological observations indicate that overexposure to Mn is strongly associated with neurodegenerative disorders and has been recognized as a potential risk factor of neuronal apoptosis. Many mechanisms are involved in the pathogenesis of Mn-induced neuronal apoptosis, such as reactive oxygen species generation, neuroinflammation reactions, protein accumulation, endoplasmic reticulum stress (ER stress), and autophagy, all of which collectively accelerate the process of nerve cell damage. As sophisticated cellular processes for maintaining intracellular homeostasis, ER-mediated unfolded protein response and autophagy both play bilateral roles including cell protection and cell injury under pathophysiological conditions, which might interact with each other. Although emerging evidence suggests that ER stress is involved in regulating the compensatory activation of autophagy to promote cell survival, the inherent relationship between ER stress and autophagy on Mn-induced neurotoxicity remains obscure. Here, our review focuses on discussing the existing mechanisms and connections between ER stress, autophagy, and apoptosis, which provide a new perspective on Mn-induced neuronal apoptosis, and the pathogenesis of neurodegenerative diseases.
Collapse
Affiliation(s)
- Chang Liu
- School of Medicine, University of Electronic Science and Technology of China, Chengdu Women's and Children's Central Hospital, Chengdu 611731, China
| | - Rong Ju
- School of Medicine, University of Electronic Science and Technology of China, Chengdu Women's and Children's Central Hospital, Chengdu 611731, China
| |
Collapse
|
15
|
Schoger E, Bleckwedel F, Germena G, Rocha C, Tucholla P, Sobitov I, Möbius W, Sitte M, Lenz C, Samak M, Hinkel R, Varga ZV, Giricz Z, Salinas G, Gross JC, Zelarayán LC. Single-cell transcriptomics reveal extracellular vesicles secretion with a cardiomyocyte proteostasis signature during pathological remodeling. Commun Biol 2023; 6:79. [PMID: 36681760 PMCID: PMC9867722 DOI: 10.1038/s42003-022-04402-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Accepted: 12/23/2022] [Indexed: 01/22/2023] Open
Abstract
Aberrant Wnt activation has been reported in failing cardiomyocytes. Here we present single cell transcriptome profiling of hearts with inducible cardiomyocyte-specific Wnt activation (β-catΔex3) as well as with compensatory and failing hypertrophic remodeling. We show that functional enrichment analysis points to an involvement of extracellular vesicles (EVs) related processes in hearts of β-catΔex3 mice. A proteomic analysis of in vivo cardiac derived EVs from β-catΔex3 hearts has identified differentially enriched proteins involving 20 S proteasome constitutes, protein quality control (PQC), chaperones and associated cardiac proteins including α-Crystallin B (CRYAB) and sarcomeric components. The hypertrophic model confirms that cardiomyocytes reacted with an acute early transcriptional upregulation of exosome biogenesis processes and chaperones transcripts including CRYAB, which is ameliorated in advanced remodeling. Finally, human induced pluripotent stem cells (iPSC)-derived cardiomyocytes subjected to pharmacological Wnt activation recapitulated the increased expression of exosomal markers, CRYAB accumulation and increased PQC signaling. These findings reveal that secretion of EVs with a proteostasis signature contributes to early patho-physiological adaptation of cardiomyocytes, which may serve as a read-out of disease progression and can be used for monitoring cellular remodeling in vivo with a possible diagnostic and prognostic role in the future.
Collapse
Affiliation(s)
- Eric Schoger
- Institute of Pharmacology and Toxicology, University Medical Center Göttingen (UMG), 37075, Göttingen, Germany
- German Center for Cardiovascular Research (DZHK) partner site Göttingen, 37075, Göttingen, Germany
- Cluster of Excellence "Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells" (MBExC), University of Göttingen, 37075, Göttingen, Germany
| | - Federico Bleckwedel
- Institute of Pharmacology and Toxicology, University Medical Center Göttingen (UMG), 37075, Göttingen, Germany
- German Center for Cardiovascular Research (DZHK) partner site Göttingen, 37075, Göttingen, Germany
| | - Giulia Germena
- German Center for Cardiovascular Research (DZHK) partner site Göttingen, 37075, Göttingen, Germany
- Laboratory Animal Science Unit, Leibnitz-Institut für Primatenforschung, Deutsches Primatenzentrum GmbH, 37075, Göttingen, Germany
| | - Cheila Rocha
- Laboratory Animal Science Unit, Leibnitz-Institut für Primatenforschung, Deutsches Primatenzentrum GmbH, 37075, Göttingen, Germany
| | - Petra Tucholla
- Institute of Pharmacology and Toxicology, University Medical Center Göttingen (UMG), 37075, Göttingen, Germany
- German Center for Cardiovascular Research (DZHK) partner site Göttingen, 37075, Göttingen, Germany
| | - Izzatullo Sobitov
- Institute of Pharmacology and Toxicology, University Medical Center Göttingen (UMG), 37075, Göttingen, Germany
- German Center for Cardiovascular Research (DZHK) partner site Göttingen, 37075, Göttingen, Germany
| | - Wiebke Möbius
- Max-Planck-Institute for Multidisciplinary Sciences, 37075, Göttingen, Germany
| | - Maren Sitte
- NGS Integrative Genomics Core Unit (NIG), University Medical Center Göttingen (UMG), 37075, Göttingen, Germany
| | - Christof Lenz
- Department of Clinical Chemistry, University Medical Center Göttingen (UMG), 37075, Göttingen, Germany
- Bioanalytical Mass Spectrometry Group, Max Planck Institute for Multidisciplinary Sciences, 37075, Göttingen, Germany
| | - Mostafa Samak
- German Center for Cardiovascular Research (DZHK) partner site Göttingen, 37075, Göttingen, Germany
- Laboratory Animal Science Unit, Leibnitz-Institut für Primatenforschung, Deutsches Primatenzentrum GmbH, 37075, Göttingen, Germany
| | - Rabea Hinkel
- German Center for Cardiovascular Research (DZHK) partner site Göttingen, 37075, Göttingen, Germany
- Laboratory Animal Science Unit, Leibnitz-Institut für Primatenforschung, Deutsches Primatenzentrum GmbH, 37075, Göttingen, Germany
- Institute for Animal Hygiene, Animal Welfare and Farm Animal Behaviour (ITTN), Stiftung Tierärztliche Hochschule Hannover, University of Veterinary Medicine, 30173, Hannover, Germany
| | - Zoltán V Varga
- HCEMM-SU Cardiometabolic Immunology Research Group, Department of Pharmacology and Pharmacotherapy, Semmelweis University, H-1085, Budapest, Hungary
- Pharmahungary Group, H-1085, Budapest, Hungary
| | - Zoltán Giricz
- HCEMM-SU Cardiometabolic Immunology Research Group, Department of Pharmacology and Pharmacotherapy, Semmelweis University, H-1085, Budapest, Hungary
- Pharmahungary Group, H-1085, Budapest, Hungary
| | - Gabriela Salinas
- NGS Integrative Genomics Core Unit (NIG), University Medical Center Göttingen (UMG), 37075, Göttingen, Germany
| | - Julia C Gross
- Health and Medical University, D-14471, Potsdam, Germany
| | - Laura C Zelarayán
- Institute of Pharmacology and Toxicology, University Medical Center Göttingen (UMG), 37075, Göttingen, Germany.
- German Center for Cardiovascular Research (DZHK) partner site Göttingen, 37075, Göttingen, Germany.
- Cluster of Excellence "Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells" (MBExC), University of Göttingen, 37075, Göttingen, Germany.
| |
Collapse
|
16
|
Age-related changes in tau and autophagy in human brain in the absence of neurodegeneration. PLoS One 2023; 18:e0262792. [PMID: 36701399 PMCID: PMC9879510 DOI: 10.1371/journal.pone.0262792] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2021] [Accepted: 08/19/2022] [Indexed: 01/27/2023] Open
Abstract
Tau becomes abnormally hyper-phosphorylated and aggregated in tauopathies like Alzheimers disease (AD). As age is the greatest risk factor for developing AD, it is important to understand how tau protein itself, and the pathways implicated in its turnover, change during aging. We investigated age-related changes in total and phosphorylated tau in brain samples from two cohorts of cognitively normal individuals spanning 19-74 years, without overt neurodegeneration. One cohort utilised resected tissue and the other used post-mortem tissue. Total soluble tau levels declined with age in both cohorts. Phosphorylated tau was undetectable in the post-mortem tissue but was clearly evident in the resected tissue and did not undergo significant age-related change. To ascertain if the decline in soluble tau was correlated with age-related changes in autophagy, three markers of autophagy were tested but only two appeared to increase with age and the third was unchanged. This implies that in individuals who do not develop neurodegeneration, there is an age-related reduction in soluble tau which could potentially be due to age-related changes in autophagy. Thus, to explore how an age-related increase in autophagy might influence tau-mediated dysfunctions in vivo, autophagy was enhanced in a Drosophila model and all age-related tau phenotypes were significantly ameliorated. These data shed light on age-related physiological changes in proteins implicated in AD and highlights the need to study pathways that may be responsible for these changes. It also demonstrates the therapeutic potential of interventions that upregulate turnover of aggregate-prone proteins during aging.
Collapse
|
17
|
Targeting immunoproteasome in neurodegeneration: A glance to the future. Pharmacol Ther 2023; 241:108329. [PMID: 36526014 DOI: 10.1016/j.pharmthera.2022.108329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 12/02/2022] [Accepted: 12/05/2022] [Indexed: 12/15/2022]
Abstract
The immunoproteasome is a specialized form of proteasome equipped with modified catalytic subunits that was initially discovered to play a pivotal role in MHC class I antigen processing and immune system modulation. However, over the last years, this proteolytic complex has been uncovered to serve additional functions unrelated to antigen presentation. Accordingly, it has been proposed that immunoproteasome synergizes with canonical proteasome in different cell types of the nervous system, regulating neurotransmission, metabolic pathways and adaptation of the cells to redox or inflammatory insults. Hence, studying the alterations of immunoproteasome expression and activity is gaining research interest to define the dynamics of neuroinflammation as well as the early and late molecular events that are likely involved in the pathogenesis of a variety of neurological disorders. Furthermore, these novel functions foster the perspective of immunoproteasome as a potential therapeutic target for neurodegeneration. In this review, we provide a brain and retina-wide overview, trying to correlate present knowledge on structure-function relationships of immunoproteasome with the variety of observed neuro-modulatory functions.
Collapse
|
18
|
Mishra J, Bhatti GK, Sehrawat A, Singh C, Singh A, Reddy AP, Reddy PH, Bhatti JS. Modulating autophagy and mitophagy as a promising therapeutic approach in neurodegenerative disorders. Life Sci 2022; 311:121153. [PMID: 36343743 PMCID: PMC9712237 DOI: 10.1016/j.lfs.2022.121153] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Revised: 10/17/2022] [Accepted: 11/01/2022] [Indexed: 11/06/2022]
Abstract
The high prevalence of neurodegenerative diseases has become a major public health challenge and is associated with a tremendous burden on individuals, society and federal governments worldwide. Protein misfolding and aggregation are the major pathological hallmarks of several neurodegenerative disorders. The cells have evolved several regulatory mechanisms to deal with aberrant protein folding, namely the classical ubiquitin pathway, where ubiquitination of protein aggregates marks their degradation via lysosome and the novel autophagy or mitophagy pathways. Autophagy is a catabolic process in eukaryotic cells that allows the lysosome to recycle the cell's own contents, such as organelles and proteins, known as autophagic cargo. Their most significant role is to keep cells alive in distressed situations. Mitophagy is also crucial for reducing abnormal protein aggregation and increasing organelle clearance and partly accounts for maintaining cellular homeostasis. Furthermore, substantial data indicate that any disruption in these homeostatic mechanisms leads to the emergence of several age-associated metabolic and neurodegenerative diseases. So, targeting autophagy and mitophagy might be a potential therapeutic strategy for a variety of health conditions.
Collapse
Affiliation(s)
- Jayapriya Mishra
- Laboratory of Translational Medicine and Nanotherapeutics, Department of Human Genetics and Molecular Medicine, School of Health Sciences, Central University of Punjab, Bathinda, India
| | - Gurjit Kaur Bhatti
- Department of Medical Lab Technology, University Institute of Applied Health Sciences, Chandigarh University, Mohali, India
| | - Abhishek Sehrawat
- Laboratory of Translational Medicine and Nanotherapeutics, Department of Human Genetics and Molecular Medicine, School of Health Sciences, Central University of Punjab, Bathinda, India
| | - Charan Singh
- Department of Pharmaceutics, ISF College of Pharmacy, Moga, Punjab, India
| | - Arti Singh
- Department of Pharmaceutics, ISF College of Pharmacy, Moga, Punjab, India
| | - Arubala P Reddy
- Department of Nutritional Sciences, Texas Tech University, Lubbock, TX, USA
| | - P Hemachandra Reddy
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA; Department of Pharmacology and Neuroscience and Garrison Institute on Aging, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA; Department of Public Health, Graduate School of Biomedical Sciences, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA; Department of Neurology, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA; Department of Speech, Language, and Hearing Sciences, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
| | - Jasvinder Singh Bhatti
- Laboratory of Translational Medicine and Nanotherapeutics, Department of Human Genetics and Molecular Medicine, School of Health Sciences, Central University of Punjab, Bathinda, India.
| |
Collapse
|
19
|
Liu Z, Zhuang W, Cai M, Lv E, Wang Y, Wu Z, Wang H, Fu W. Kaemperfol Protects Dopaminergic Neurons by Promoting mTOR-Mediated Autophagy in Parkinson’s Disease Models. Neurochem Res 2022; 48:1395-1411. [PMID: 36469163 DOI: 10.1007/s11064-022-03819-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 10/18/2022] [Accepted: 11/09/2022] [Indexed: 12/12/2022]
Abstract
We previously showed that kaempferol (KAE) could exert neuroprotective effects against PD. It has been demonstrated that abnormal autophagy plays a key role in the development of PD. Mitochondrial dysfunction, involved in the development of PD, can damage dopaminergic neurons. Whether the protective effects of KAE were exerted via regulating autophagy remains largely undefined, however. This study aimed to investigate whether KAE could protect dopaminergic neurons via autophagy and the underlying mechanisms using a MPTP/MPP+-stimulated PD model. Cell viability was detected by cell counting kit-8 (CCK-8) assay, and protein levels of autophagy mediators along with mTOR signaling pathway molecules were investigated by immunohistochemistry and Western blot analyses. The results showed that KAE could ameliorate the behavioral impairments of mice, reduce the loss of tyrosine hydroxylase (TH)-positive neurons in the substantia nigra pars compacta, and reduce α-synuclein (α-syn) levels. Furthermore, KAE upregulated levels of autophagy effector protein of Beclin-1 and autophagy microtubule associated protein of light chain 3 (LC3) in the substantia nigra (SN) while rescuing mitochondrial integrity, and downregulated levels of ubiquitin binding protein p62 and cleaved caspase-3, probably by decreasing the mammalian target of rapamycin (mTOR) signaling pathway. Further in vitro experiments demonstrated similar results. In conclusion, KAE exerts neuroprotective effects against PD potentially by promoting autophagy via inhibiting the mTOR signaling pathway.
Collapse
Affiliation(s)
- Zhan Liu
- Department of Histology and Embryology, Weifang Medical University, Weifang, 261053, Shandong, China
| | - Wenxin Zhuang
- Center for Experimental Medical Research, Weifang Medical University, Weifang, 261053, Shandong, China
| | - Meiyun Cai
- Department of Histology and Embryology, Weifang Medical University, Weifang, 261053, Shandong, China
| | - E Lv
- Department of Histology and Embryology, Weifang Medical University, Weifang, 261053, Shandong, China
| | - Yanqiang Wang
- Department of Neurology, Affiliated Hospital of Weifang Medical University, Weifang, 261053, Shandong, China
| | - Zhengyan Wu
- Department of Biotechnology, Weifang Medical University, Weifang, 261053, Shandong, China
| | - Hongyu Wang
- Department of Biotechnology, Weifang Medical University, Weifang, 261053, Shandong, China
| | - Wenyu Fu
- Department of Histology and Embryology, Weifang Medical University, Weifang, 261053, Shandong, China.
| |
Collapse
|
20
|
Caponio D, Veverová K, Zhang SQ, Shi L, Wong G, Vyhnalek M, Fang EF. Compromised autophagy and mitophagy in brain ageing and Alzheimer's diseases. AGING BRAIN 2022; 2:100056. [PMID: 36908880 PMCID: PMC9997167 DOI: 10.1016/j.nbas.2022.100056] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 11/04/2022] [Accepted: 11/16/2022] [Indexed: 11/25/2022] Open
Abstract
Alzheimer's disease (AD) is one of the most persistent and devastating neurodegenerative disorders of old age, and is characterized clinically by an insidious onset and a gradual, progressive deterioration of cognitive abilities, ranging from loss of memory to impairment of judgement and reasoning. Despite years of research, an effective cure is still not available. Autophagy is the cellular 'garbage' clearance system which plays fundamental roles in neurogenesis, neuronal development and activity, and brain health, including memory and learning. A selective sub-type of autophagy is mitophagy which recognizes and degrades damaged or superfluous mitochondria to maintain a healthy and necessary cellular mitochondrial pool. However, emerging evidence from animal models and human samples suggests an age-dependent reduction of autophagy and mitophagy, which are also compromised in AD. Upregulation of autophagy/mitophagy slows down memory loss and ameliorates clinical features in animal models of AD. In this review, we give an overview of autophagy and mitophagy and their link to the progression of AD. We also summarize approaches to upregulate autophagy/mitophagy. We hypothesize that age-dependent compromised autophagy/mitophagy is a cause of brain ageing and a risk factor for AD, while restoration of autophagy/mitophagy to more youthful levels could return the brain to health.
Collapse
Affiliation(s)
- Domenica Caponio
- Department of Clinical Molecular Biology, University of Oslo and Akershus University Hospital, 1478 Lørenskog, Norway
| | - Kateřina Veverová
- Memory Clinic, Department of Neurology, Charles University, 2nd Faculty of Medicine and Motol University Hospital, Prague, Czech Republic
| | - Shi-qi Zhang
- Department of Clinical Molecular Biology, University of Oslo and Akershus University Hospital, 1478 Lørenskog, Norway
| | - Liu Shi
- Department of Psychiatry, University of Oxford, Oxford, UK
- Novo Nordisk Research Centre Oxford (NNRCO)
| | - Garry Wong
- Centre of Reproduction, Development and Aging, Faculty of Health Sciences, University of Macau, Macau 999078, China
| | - Martin Vyhnalek
- Memory Clinic, Department of Neurology, Charles University, 2nd Faculty of Medicine and Motol University Hospital, Prague, Czech Republic
| | - Evandro F. Fang
- Department of Clinical Molecular Biology, University of Oslo and Akershus University Hospital, 1478 Lørenskog, Norway
- The Norwegian Centre on Healthy Ageing (NO-Age), Oslo, Norway
| |
Collapse
|
21
|
Tyler SEB, Tyler LDK. Therapeutic roles of plants for 15 hypothesised causal bases of Alzheimer's disease. NATURAL PRODUCTS AND BIOPROSPECTING 2022; 12:34. [PMID: 35996065 PMCID: PMC9395556 DOI: 10.1007/s13659-022-00354-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Accepted: 06/15/2022] [Indexed: 05/26/2023]
Abstract
Alzheimer's disease (AD) is progressive and ultimately fatal, with current drugs failing to reverse and cure it. This study aimed to find plant species which may provide therapeutic bioactivities targeted to causal agents proposed to be driving AD. A novel toolkit methodology was employed, whereby clinical symptoms were translated into categories recognized in ethnomedicine. These categories were applied to find plant species with therapeutic effects, mined from ethnomedical surveys. Survey locations were mapped to assess how this data is at risk. Bioactivities were found of therapeutic relevance to 15 hypothesised causal bases for AD. 107 species with an ethnological report of memory improvement demonstrated therapeutic activity for all these 15 causal bases. The majority of the surveys were found to reside within biodiversity hotspots (centres of high biodiversity under threat), with loss of traditional knowledge the most common threat. Our findings suggest that the documented plants provide a large resource of AD therapeutic potential. In demonstrating bioactivities targeted to these causal bases, such plants may have the capacity to reduce or reverse AD, with promise as drug leads to target multiple AD hallmarks. However, there is a need to preserve ethnomedical knowledge, and the habitats on which this knowledge depends.
Collapse
Affiliation(s)
| | - Luke D K Tyler
- School of Natural Sciences, Bangor University, Gwynedd, UK
| |
Collapse
|
22
|
Pérez-Carrión MD, Posadas I, Solera J, Ceña V. LRRK2 and Proteostasis in Parkinson's Disease. Int J Mol Sci 2022; 23:6808. [PMID: 35743250 PMCID: PMC9224256 DOI: 10.3390/ijms23126808] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 06/16/2022] [Accepted: 06/17/2022] [Indexed: 02/01/2023] Open
Abstract
Parkinson's disease is a neurodegenerative condition initially characterized by the presence of tremor, muscle stiffness and impaired balance, with the deposition of insoluble protein aggregates in Lewy's Bodies the histopathological hallmark of the disease. Although different gene variants are linked to Parkinson disease, mutations in the Leucine-Rich Repeat Kinase 2 (LRRK2) gene are one of the most frequent causes of Parkinson's disease related to genetic mutations. LRRK2 toxicity has been mainly explained by an increase in kinase activity, but alternative mechanisms have emerged as underlying causes for Parkinson's disease, such as the imbalance in LRRK2 homeostasis and the involvement of LRRK2 in aggregation and spreading of α-synuclein toxicity. In this review, we recapitulate the main LRRK2 pathological mutations that contribute to Parkinson's disease and the different cellular and therapeutic strategies devised to correct LRRK2 homeostasis. In this review, we describe the main cellular control mechanisms that regulate LRRK2 folding and aggregation, such as the chaperone network and the protein-clearing pathways such as the ubiquitin-proteasome system and the autophagic-lysosomal pathway. We will also address the more relevant strategies to modulate neurodegeneration in Parkinson's disease through the regulation of LRRK2, using small molecules or LRRK2 silencing.
Collapse
Affiliation(s)
- María Dolores Pérez-Carrión
- Unidad Asociada Neurodeath, Universidad de Castilla-La Mancha, 02006 Albacete, Spain; (M.D.P.-C.); (I.P.)
- Centro de Investigación Biomédica en Red Sobre Enfermedades Neurodegenerativas, Consorcio CIBER, Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Inmaculada Posadas
- Unidad Asociada Neurodeath, Universidad de Castilla-La Mancha, 02006 Albacete, Spain; (M.D.P.-C.); (I.P.)
- Centro de Investigación Biomédica en Red Sobre Enfermedades Neurodegenerativas, Consorcio CIBER, Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Javier Solera
- Servicio de Medicina Interna, Complejo Hospitalario Universitario de Albacete, 02006 Albacete, Spain;
- Facultad de Medicina de Albacete, Universidad de Castilla-La Mancha, 02006 Albacete, Spain
| | - Valentín Ceña
- Unidad Asociada Neurodeath, Universidad de Castilla-La Mancha, 02006 Albacete, Spain; (M.D.P.-C.); (I.P.)
- Centro de Investigación Biomédica en Red Sobre Enfermedades Neurodegenerativas, Consorcio CIBER, Instituto de Salud Carlos III, 28029 Madrid, Spain
| |
Collapse
|
23
|
Hilt S, Liu R, Maezawa I, Rojalin T, Aung HH, Budamagunta M, Slez R, Gong Q, Carney RP, Voss JC. Novel Stilbene-Nitroxyl Hybrid Compounds Display Discrete Modulation of Amyloid Beta Toxicity and Structure. Front Chem 2022; 10:896386. [PMID: 35720993 PMCID: PMC9204515 DOI: 10.3389/fchem.2022.896386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Accepted: 04/21/2022] [Indexed: 11/13/2022] Open
Abstract
Several neurodegenerative diseases are driven by misfolded proteins that assemble into soluble aggregates. These "toxic oligomers" have been associated with a plethora of cellular dysfunction and dysregulation, however the structural features underlying their toxicity are poorly understood. A major impediment to answering this question relates to the heterogeneous nature of the oligomers, both in terms of structural disorder and oligomer size. This not only complicates elucidating the molecular etiology of these disorders, but also the druggability of these targets as well. We have synthesized a class of bifunctional stilbenes to modulate both the conformational toxicity within amyloid beta oligomers (AβO) and the oxidative stress elicited by AβO. Using a neuronal culture model, we demonstrate this bifunctional approach has the potential to counter the molecular pathogenesis of Alzheimer's disease in a powerful, synergistic manner. Examination of AβO structure by various biophysical tools shows that each stilbene candidate uniquely alters AβO conformation and toxicity, providing insight towards the future development of structural correctors for AβO. Correlations of AβO structural modulation and bioactivity displayed by each provides insights for future testing in vivo. The multi-target activity of these hybrid molecules represents a highly advantageous feature for disease modification in Alzheimer's, which displays a complex, multifactorial etiology. Importantly, these novel small molecules intervene with intraneuronal AβO, a necessary feature to counter the cycle of dysregulation, oxidative stress and inflammation triggered during the earliest stages of disease progression.
Collapse
Affiliation(s)
- Silvia Hilt
- Department of Biochemistry and Molecular Medicine, University of California, Davis, Davis, CA, United States
| | - Ruiwu Liu
- Department of Biochemistry and Molecular Medicine, University of California, Davis, Davis, CA, United States
| | - Izumi Maezawa
- M.I.N.D. Institute and Department of Pathology and Laboratory Medicine, University of California, Davis, Davis, CA, United States
| | - Tatu Rojalin
- Department of Biomedical Engineering, University of California, Davis, Davis, CA, United States
| | - Hnin H. Aung
- Division of Cardiovascular Medicine, Department of Internal Medicine, School of Medicine, University of California, Davis, Davis, CA, United States
- Research Division, California Air Resource Board, Sacramento, CA, United States
| | - Madhu Budamagunta
- Department of Biochemistry and Molecular Medicine, University of California, Davis, Davis, CA, United States
| | - Ryan Slez
- Department of Biochemistry and Molecular Medicine, University of California, Davis, Davis, CA, United States
| | - Qizhi Gong
- Department of Cell Biology and Human Anatomy, School of Medicine, University of California, Davis, Davis, CA, United States
| | - Randy P. Carney
- Department of Biomedical Engineering, University of California, Davis, Davis, CA, United States
| | - John C. Voss
- Department of Biochemistry and Molecular Medicine, University of California, Davis, Davis, CA, United States
- Paramag Biosciences Inc., Davis, CA, United States
| |
Collapse
|
24
|
Yurduseven K, Babal YK, Celik E, Kerman BE, Kurnaz IA. Multiple Sclerosis Biomarker Candidates Revealed by Cell-Type-Specific Interactome Analysis. OMICS : A JOURNAL OF INTEGRATIVE BIOLOGY 2022; 26:305-317. [PMID: 35483054 DOI: 10.1089/omi.2022.0023] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Multiple sclerosis (MS) is a demyelinating disorder that affects multiple regions of the central nervous system such as the brain, spinal cord, and optic nerves. Susceptibility to MS, as well as disease progression rates, displays marked patient-to-patient variability. To date, biomarkers that forecast differences in clinical phenotypes and outcomes have been limited. In this context, cell-type-specific interactome analyses offer important prospects and hope for novel diagnostics and therapeutics. We report here an original study using bioinformatic analysis of MS data sets that revealed interaction profiles as well as specific hub proteins in white matter (WM) and gray matter (GM) that appear critical for disease mechanisms. First, cell-type-specific interactome analyses suggested that while interactions within the WM were focused on oligodendrocytes, interactions within the GM were mostly neuron centric. Second, hub proteins such as APP, EGLN3, PTEN, and LRRK2 were identified to be differentially regulated in MS data sets. Lastly, a comparison of the brain and peripheral blood samples identified biomarker candidates such as NRGN, CRTC1, CDC42, and IFITM3 to be differentially expressed in different types of MS. These findings offer a unique cell-type-specific cell-to-cell interaction network in MS and identify potential biomarkers by comparative analysis of the brain and the blood transcriptomics. From a study design and methodology perspective, we suggest that the cell-type-specific interactome analysis is an important systems science frontier that might offer new insights on other neurodegenerative and brain disorders as well.
Collapse
Affiliation(s)
- Kübra Yurduseven
- Institute of Biotechnology, Gebze Technical University, Kocaeli, Turkey
- Regenerative and Restorative Medical Research Center (REMER), Research Institute for Health Sciences and Technologies (SABITA), Istanbul Medipol University, Istanbul, Turkey
| | - Yigit Koray Babal
- Institute of Biotechnology, Gebze Technical University, Kocaeli, Turkey
| | - Esref Celik
- Regenerative and Restorative Medical Research Center (REMER), Research Institute for Health Sciences and Technologies (SABITA), Istanbul Medipol University, Istanbul, Turkey
| | - Bilal Ersen Kerman
- Regenerative and Restorative Medical Research Center (REMER), Research Institute for Health Sciences and Technologies (SABITA), Istanbul Medipol University, Istanbul, Turkey
| | - Işıl Aksan Kurnaz
- Institute of Biotechnology, Gebze Technical University, Kocaeli, Turkey
| |
Collapse
|
25
|
Al-Nusaif M, Cheng C, Li T, Jia C, Wang P, Li S, Le W. Abnormal Vacuole Membrane Protein-1 Expression in Parkinson’s Disease Patients. Front Neurosci 2022; 16:760932. [PMID: 35464320 PMCID: PMC9019220 DOI: 10.3389/fnins.2022.760932] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Accepted: 03/03/2022] [Indexed: 11/13/2022] Open
Abstract
Background Parkinson’s disease (PD) is pathologically characterized by progressive dopaminergic (DAergic) neuron loss in the substantia nigra pars compacta (SNpc) and accumulation of intracytoplasmic α-synuclein-containing Lewy bodies. Autophagy has been identified as a critical component in the development and progression of PD. Several autophagy genes have been identified as being altered in PD. One of those genes, vacuole membrane protein-1 (VMP1), an autophagy protein localized in the endoplasmic reticulum (ER) in DAergic neurons, has been shown to cause motor disorder, severe loss of DAergic neurons, and autophagy flux disturbance in the VMP1 knockout mouse model. Objective To evaluate for the first time the alteration on the expression of the VMP1 gene and its clinical correlations in peripheral blood mononuclear cells (PBMCs) of a relatively large sample of PD patients. Methods We assessed the VMP1 mRNA levels in PD patients (n = 229) and healthy controls (HC) (n = 209) using real-time quantitative PCR (RT-qPCR), and the VMP1 protein levels in PD patients (n = 27) and HC (n = 27) using Western blot (WB). Then, we analyzed the VMP1 expression levels and clinical features of PD patients. Results Our findings revealed that VMP1 levels in the PD group were significantly lower than in the HC group (RT-qPCR p < 0.01 and WB p < 0.001). The VMP1 expression was significantly lower as the disease progressed, which could be ameliorated by administering DAergic receptor agonists. Moreover, receiver operating characteristic (ROC) curve analysis showed that VMP1 mRNA and protein level area under the curves (AUCs) were 64.5%, p < 0.01, and 83.4%, p < 0.01, respectively. Conclusion This case-control study demonstrates that peripheral VMP1 level altered in PD patients and may serve as a potential endogenous diagnostic marker of PD.
Collapse
Affiliation(s)
- Murad Al-Nusaif
- Center for Clinical Research on Neurological Diseases, First Affiliated Hospital, Dalian Medical University, Dalian, China
- Liaoning Provincial Key Laboratory for Research on the Pathogenic Mechanisms of Neurological Diseases, First Affiliated Hospital, Dalian Medical University, Dalian, China
| | - Cheng Cheng
- Center for Clinical Research on Neurological Diseases, First Affiliated Hospital, Dalian Medical University, Dalian, China
- Liaoning Provincial Key Laboratory for Research on the Pathogenic Mechanisms of Neurological Diseases, First Affiliated Hospital, Dalian Medical University, Dalian, China
| | - Tianbai Li
- Center for Clinical Research on Neurological Diseases, First Affiliated Hospital, Dalian Medical University, Dalian, China
- Liaoning Provincial Key Laboratory for Research on the Pathogenic Mechanisms of Neurological Diseases, First Affiliated Hospital, Dalian Medical University, Dalian, China
| | - Congcong Jia
- Center for Clinical Research on Neurological Diseases, First Affiliated Hospital, Dalian Medical University, Dalian, China
- Liaoning Provincial Key Laboratory for Research on the Pathogenic Mechanisms of Neurological Diseases, First Affiliated Hospital, Dalian Medical University, Dalian, China
| | - Panpan Wang
- Center for Clinical Research on Neurological Diseases, First Affiliated Hospital, Dalian Medical University, Dalian, China
- Liaoning Provincial Key Laboratory for Research on the Pathogenic Mechanisms of Neurological Diseases, First Affiliated Hospital, Dalian Medical University, Dalian, China
| | - Song Li
- Center for Clinical Research on Neurological Diseases, First Affiliated Hospital, Dalian Medical University, Dalian, China
- Liaoning Provincial Key Laboratory for Research on the Pathogenic Mechanisms of Neurological Diseases, First Affiliated Hospital, Dalian Medical University, Dalian, China
| | - Weidong Le
- Center for Clinical Research on Neurological Diseases, First Affiliated Hospital, Dalian Medical University, Dalian, China
- Liaoning Provincial Key Laboratory for Research on the Pathogenic Mechanisms of Neurological Diseases, First Affiliated Hospital, Dalian Medical University, Dalian, China
- Institute of Neurology, Sichuan Academy of Medical Sciences and Sichuan Provincial People’s Hospital, Chengdu, China
- *Correspondence: Weidong Le,
| |
Collapse
|
26
|
Davis KW, Bilancia CG, Martin M, Vanzo R, Rimmasch M, Hom Y, Uddin M, Serrano MA. NeuroSCORE is a genome-wide omics-based model that identifies candidate disease genes of the central nervous system. Sci Rep 2022; 12:5427. [PMID: 35361823 PMCID: PMC8971396 DOI: 10.1038/s41598-022-08938-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Accepted: 03/08/2022] [Indexed: 02/06/2023] Open
Abstract
To identify candidate disease genes of central nervous system (CNS) phenotypes, we created the Neurogenetic Systematic Correlation of Omics-Related Evidence (NeuroSCORE). We identified five genome-wide metrics highly associated with CNS phenotypes to score 19,601 protein-coding genes. Genes scored one point per metric (range: 0-5), identifying 8298 scored genes (scores ≥ 1) and 1601 "high scoring" genes (scores ≥ 3). Using logistic regression, we determined the odds ratio that genes with a NeuroSCORE from 1 to 5 would be associated with known CNS-related phenotypes compared to genes that scored zero. We tested NeuroSCORE using microarray copy number variants (CNVs) in case-control cohorts and aggregate mouse model data. High scoring genes are associated with CNS phenotypes (OR = 5.5, p < 2E-16), enriched in case CNVs, and mouse ortholog genes that cause behavioral and nervous system abnormalities. We identified 1058 high scoring genes with no disease association in OMIM. Transforming the logistic regression results indicates high scoring genes have an 84-92% chance of being associated with a CNS phenotype. Top scoring genes include GRIA1, MAP4K4, SF1, TNPO2, and ZSWIM8. Finally, we interrogated CNVs in the Clinical Genome Resource, finding the majority of clinically significant CNVs contain high scoring genes. These findings can direct future research and improve molecular diagnostics.
Collapse
Affiliation(s)
- Kyle W Davis
- Bionano Genomics, Lineagen Division, Inc., 9540 Towne Center, Dr. #100, San Diego, CA, 92121, USA
| | - Colleen G Bilancia
- Bionano Genomics, Lineagen Division, Inc., 9540 Towne Center, Dr. #100, San Diego, CA, 92121, USA
| | - Megan Martin
- Bionano Genomics, Lineagen Division, Inc., 9540 Towne Center, Dr. #100, San Diego, CA, 92121, USA
| | - Rena Vanzo
- Bionano Genomics, Lineagen Division, Inc., 9540 Towne Center, Dr. #100, San Diego, CA, 92121, USA
| | - Megan Rimmasch
- Bionano Genomics, Lineagen Division, Inc., 9540 Towne Center, Dr. #100, San Diego, CA, 92121, USA
| | - Yolanda Hom
- Bionano Genomics, Lineagen Division, Inc., 9540 Towne Center, Dr. #100, San Diego, CA, 92121, USA
| | - Mohammed Uddin
- College of Medicine, Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai, UAE
- Cellular Intelligence (Ci) Lab, GenomeArc Inc., Toronto, ON, Canada
| | - Moises A Serrano
- Bionano Genomics, Lineagen Division, Inc., 9540 Towne Center, Dr. #100, San Diego, CA, 92121, USA.
| |
Collapse
|
27
|
Kim Y, Park S, Lee J, Jang J, Jung J, Koh JH, Choi CS, Wolfe RR, Kim IY. Essential Amino Acid-Enriched Diet Alleviates Dexamethasone-Induced Loss of Muscle Mass and Function through Stimulation of Myofibrillar Protein Synthesis and Improves Glucose Metabolism in Mice. Metabolites 2022; 12:metabo12010084. [PMID: 35050206 PMCID: PMC8778336 DOI: 10.3390/metabo12010084] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 01/14/2022] [Accepted: 01/14/2022] [Indexed: 01/18/2023] Open
Abstract
Dexamethasone (DEX) induces dysregulation of protein turnover, leading to muscle atrophy and impairment of glucose metabolism. Positive protein balance, i.e., rate of protein synthesis exceeding rate of protein degradation, can be induced by dietary essential amino acids (EAAs). In this study, we investigated the roles of an EAA-enriched diet in the regulation of muscle proteostasis and its impact on glucose metabolism in the DEX-induced muscle atrophy model. Mice were fed normal chow or EAA-enriched chow and were given daily injections of DEX over 10 days. We determined muscle mass and functions using treadmill running and ladder climbing exercises, protein kinetics using the D2O labeling method, molecular signaling using immunoblot analysis, and glucose metabolism using a U-13C6 glucose tracer during oral glucose tolerance test (OGTT). The EAA-enriched diet increased muscle mass, strength, and myofibrillar protein synthesis rate, concurrent with improved glucose metabolism (i.e., reduced plasma insulin concentrations and increased insulin sensitivity) during the OGTT. The U-13C6 glucose tracing revealed that the EAA-enriched diet increased glucose uptake and subsequent glycolytic flux. In sum, our results demonstrate a vital role for the EAA-enriched diet in alleviating the DEX-induced muscle atrophy through stimulation of myofibrillar proteins synthesis, which was associated with improved glucose metabolism.
Collapse
Affiliation(s)
- Yeongmin Kim
- Department of Health Sciences and Technology, GAIHST, Gachon University, Incheon 21999, Korea; (Y.K.); (J.L.); (J.J.)
| | - Sanghee Park
- Department of Molecular Medicine, College of Medicine, Gachon University, Incheon 21999, Korea; (S.P.); (J.-H.K.); (C.S.C.)
| | - Jinseok Lee
- Department of Health Sciences and Technology, GAIHST, Gachon University, Incheon 21999, Korea; (Y.K.); (J.L.); (J.J.)
| | - Jiwoong Jang
- Korea Mouse Metabolic Phenotyping Center, Lee Gil Ya Cancer and Diabetes Institute, Gachon University, Incheon 21999, Korea;
- Gil Medical Center, Department of Internal Medicine, Gachon University, Incheon 21565, Korea
| | - Jiyeon Jung
- Department of Health Sciences and Technology, GAIHST, Gachon University, Incheon 21999, Korea; (Y.K.); (J.L.); (J.J.)
| | - Jin-Ho Koh
- Department of Molecular Medicine, College of Medicine, Gachon University, Incheon 21999, Korea; (S.P.); (J.-H.K.); (C.S.C.)
| | - Cheol Soo Choi
- Department of Molecular Medicine, College of Medicine, Gachon University, Incheon 21999, Korea; (S.P.); (J.-H.K.); (C.S.C.)
- Korea Mouse Metabolic Phenotyping Center, Lee Gil Ya Cancer and Diabetes Institute, Gachon University, Incheon 21999, Korea;
- Gil Medical Center, Department of Internal Medicine, Gachon University, Incheon 21565, Korea
| | - Robert R. Wolfe
- The Center for Translational Research in Aging and Longevity, Department of Geriatrics, Donald W. Reynolds Institute on Aging, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA;
| | - Il-Young Kim
- Department of Molecular Medicine, College of Medicine, Gachon University, Incheon 21999, Korea; (S.P.); (J.-H.K.); (C.S.C.)
- Korea Mouse Metabolic Phenotyping Center, Lee Gil Ya Cancer and Diabetes Institute, Gachon University, Incheon 21999, Korea;
- Correspondence: ; Tel.: +82-32-899-6685
| |
Collapse
|
28
|
TDP-43 pathology: from noxious assembly to therapeutic removal. Prog Neurobiol 2022; 211:102229. [DOI: 10.1016/j.pneurobio.2022.102229] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 12/08/2021] [Accepted: 01/26/2022] [Indexed: 02/08/2023]
|
29
|
Qin XY, Shen HH, Zhou WJ, Mei J, Lu H, Tan XF, Zhu R, Zhou WH, Li DJ, Zhang T, Ye JF, Li MQ. Insight of Autophagy in Spontaneous Miscarriage. Int J Biol Sci 2022; 18:1150-1170. [PMID: 35173545 PMCID: PMC8771834 DOI: 10.7150/ijbs.68335] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Accepted: 12/26/2021] [Indexed: 11/05/2022] Open
Abstract
In some cases of spontaneous miscarriage (SM), the exact etiology cannot be determined. Autophagy, which is responsible for cellular survival under stress conditions, has also been implicated in many diseases. Recently, it is also surmised to be correlated with SM. However, the detailed mechanism remains elusive. In fact, there are several essential steps during pregnancy establishment and maintenance: trophoblasts invasion, placentation, decidualization, enrichment and infiltration of decidua immune cells (e.g., natural killer, macrophage and T cells). Accordingly, upstream molecules and downstream effects of autophagy are discussed in these processes, respectively. Of note, autophagy regulates the crosstalk between these cells at the maternal-fetal interface as well. Aberrant autophagy is found in villi, decidual stromal cells, peripheral blood mononuclear cells in SM patients, although the findings are inconsistent among different studies. Furthermore, potential treatments targeting autophagy are included, during which rapamycin and vitamin D are hot-spots in recent literatures. To conclude, a moderately activated autophagy is deeply involved in pregnancy, suggesting that autophagy should be a regulator and promising target for treating SM.
Collapse
Affiliation(s)
- Xue-Yun Qin
- Laboratory for Reproductive Immunology, Hospital of Obstetrics and Gynecology, Shanghai Medical School, Fudan University, Shanghai 200080, People's Republic of China
- NHC Key Lab of Reproduction Regulation, Shanghai Institute for Biomedical and Pharmaceutical Technologies, Fudan University, Shanghai 201203, People's Republic of China
| | - Hui-Hui Shen
- Laboratory for Reproductive Immunology, Hospital of Obstetrics and Gynecology, Shanghai Medical School, Fudan University, Shanghai 200080, People's Republic of China
| | - Wen-Jie Zhou
- Center of Reproductive Medicine of Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, People's Republic of China
| | - Jie Mei
- Reproductive Medicine Centre, Department of Obstetrics and Gynecology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medicine School, Nanjing, 210000, People's Republic of China
| | - Han Lu
- Departments of Assisted Reproduction, Xin Hua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200092, People's Republic of China
| | - Xiao-Fang Tan
- Reproductive Medicine Centre, Affiliated Maternity and Child Health Care Hospital of Nantong University, Nantong, 226006, People's Republic of China
| | - Rui Zhu
- Center for Human Reproduction and Genetics, Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou 215002, People's Republic of China
| | - Wen-Hui Zhou
- Medicine Centre for Human Reproduction, Beijing Chaoyang Hospital, Capital Medical University, Beijing, 100020, People's Republic of China
| | - Da-Jin Li
- Laboratory for Reproductive Immunology, Hospital of Obstetrics and Gynecology, Shanghai Medical School, Fudan University, Shanghai 200080, People's Republic of China
| | - Tao Zhang
- Assisted Reproductive Technology Unit, Department of Obstetrics and Gynecology, Faculty of Medicine, Chinese University of Hong Kong, Hong Kong, People's Republic of China
| | - Jiang-Feng Ye
- Division of Obstetrics and Gynecology, KK Women's and Children's Hospital, 229899, Singapore
| | - Ming-Qing Li
- Laboratory for Reproductive Immunology, Hospital of Obstetrics and Gynecology, Shanghai Medical School, Fudan University, Shanghai 200080, People's Republic of China
- NHC Key Lab of Reproduction Regulation, Shanghai Institute for Biomedical and Pharmaceutical Technologies, Fudan University, Shanghai 201203, People's Republic of China
- Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Shanghai, 200080, People's Republic of China
| |
Collapse
|
30
|
Li N, Zhan X. Integrated genomic analysis of proteasome alterations across 11,057 patients with 33 cancer types: clinically relevant outcomes in framework of 3P medicine. EPMA J 2021; 12:605-627. [PMID: 34956426 DOI: 10.1007/s13167-021-00256-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2021] [Accepted: 09/16/2021] [Indexed: 12/30/2022]
Abstract
Relevance Proteasome, a cylindrical complex containing 19S regulatory particle lid, 19S regulatory particle base, and 20S core particle, acted as a major mechanism to regulate the levels of intracellular proteins and degrade misfolded proteins, which involved in many cellular processes, and played important roles in cancer biological processes. Elucidation of proteasome alterations across multiple cancer types will directly contribute to cancer medical services in the context of predictive, preventive, and personalized medicine (PPPM / 3P medicine). Purpose This study aimed to investigate proteasome gene alterations across 33 cancer types for discovery of effective biomarkers and therapeutic targets in the framework of PPPM practice in cancers. Methods Proteasome gene data, including gene expression RNAseq, somatic mutation, tumor mutation burden (TMB), copy number variant (CNV), microsatellite instability (MSI) score, clinical characteristics, immune phenotype, 22 immune cells, cancer stemness index, drug sensitivity, and related pathways, were systematically analyzed with publically available database and bioinformatics across 11,057 patients with 33 cancer types. Results Differentially expressed proteasome genes were extensively found between tumor and control tissues. PSMB4 occurred the top mutation event among proteasome genes, and those proteasome genes were significantly associated with TMB and MSI score. Most of proteasome genes were positively related to CNV among single deletion, control copy number, and single gain. Kaplan-Meier curves and COX regression survival analysis showed proteasome genes were significantly associated with patient survival rate across 33 cancer types. Furthermore, the expressions of proteasome genes were significantly different among different clinical stages and immune subtypes. The expressions of proteasome genes were correlated with immune-related scores (ImmuneScore, StromalScore, and ESTIMATEScore), 22 immune cells, and cancer stemness. The sensitivities of multiple drugs were closely related to proteasome gene expressions. The identified proteasome and proteasome-interacted proteins were significantly enriched in various cancer-related pathways. Conclusions This study provided the first landscape of proteasome alterations across 11,057 patients with 33 cancer types and revealed that proteasome played a significant and wide functional role in cancer biological processes. These findings are the precious scientific data to reveal the common and specific alterations of proteasome genes among 33 cancer types, which benefits the research and practice of PPPM in cancers. Supplementary Information The online version contains supplementary material available at 10.1007/s13167-021-00256-z.
Collapse
Affiliation(s)
- Na Li
- Shandong Key Laboratory of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University, 440 Jiyan Road, Jinan, Shandong 250117 People's Republic of China.,Medical Science and Technology Innovation Center, Shandong First Medical University, 6699 Qingdao Road, Jinan, Shandong 250117 People's Republic of China
| | - Xianquan Zhan
- Shandong Key Laboratory of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University, 440 Jiyan Road, Jinan, Shandong 250117 People's Republic of China.,Medical Science and Technology Innovation Center, Shandong First Medical University, 6699 Qingdao Road, Jinan, Shandong 250117 People's Republic of China.,Gastroenterology Research Institute and Clinical Center, Shandong First Medical University, 38 Wuying Shan Road, Jinan, Shandong 250031 People's Republic of China
| |
Collapse
|
31
|
Parkin beyond Parkinson’s Disease—A Functional Meaning of Parkin Downregulation in TDP-43 Proteinopathies. Cells 2021; 10:cells10123389. [PMID: 34943897 PMCID: PMC8699658 DOI: 10.3390/cells10123389] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 11/27/2021] [Accepted: 11/29/2021] [Indexed: 12/15/2022] Open
Abstract
Parkin and PINK1 are key regulators of mitophagy, an autophagic pathway for selective elimination of dysfunctional mitochondria. To this date, parkin depletion has been associated with recessive early onset Parkinson’s disease (PD) caused by loss-of-function mutations in the PARK2 gene, while, in sporadic PD, the activity and abundance of this protein can be compromised by stress-related modifications. Intriguingly, research in recent years has shown that parkin depletion is not limited to PD but is also observed in other neurodegenerative diseases—especially those characterized by TDP-43 proteinopathies, such as amyotrophic lateral sclerosis (ALS) and frontotemporal lobar degeneration (FTLD). Here, we discuss the evidence of parkin downregulation in these disease phenotypes, its emerging connections with TDP-43, and its possible functional implications.
Collapse
|
32
|
Blaudin de Thé FX, Lassus B, Schaler AW, Fowler SL, Goulbourne CN, Jeggo R, Mannoury la Cour C, Millan MJ, Duff KE. P62 accumulates through neuroanatomical circuits in response to tauopathy propagation. Acta Neuropathol Commun 2021; 9:177. [PMID: 34727983 PMCID: PMC8561893 DOI: 10.1186/s40478-021-01280-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Accepted: 10/17/2021] [Indexed: 12/26/2022] Open
Abstract
In Alzheimer's disease and related tauopathies, trans-synaptic transfer and accumulation of pathological tau from donor to recipient neurons is thought to contribute to disease progression, but the underlying mechanisms are poorly understood. Using complementary in vivo and in vitro models, we examined the relationship between these two processes and neuronal clearance. Accumulation of p62 (a marker of defective protein clearance) correlated with pathological tau accumulation in two mouse models of tauopathy spread; Entorhinal Cortex-tau (EC-Tau) mice where tau pathology progresses in time from EC to other brain regions, and PS19 mice injected with tau seeds. In both models and in several brain regions, p62 colocalized with human tau in a pathological conformation (MC1 antibody). In EC-Tau mice, p62 accumulated before overt tau pathology had developed and was associated with the presence of aggregation-competent tau seeds identified using a FRET-based assay. Furthermore, p62 accumulated in the cytoplasm of neurons in the dentate gyrus of EC-Tau mice prior to the appearance of MC1 positive tauopathy. However, MC1 positive tau was shown to be present at the synapse and to colocalize with p62 as shown by immuno electron microscopy. In vitro, p62 colocalized with tau inclusions in two primary cortical neuron models of tau pathology. In a three-chamber microfluidic device containing neurons overexpressing fluorescent tau, seeding of tau in the donor chamber led to tau pathology spread and p62 accumulation in both the donor and the recipient chamber. Overall, these data are in accordance with the hypothesis that the accumulation and trans-synaptic spread of pathological tau disrupts clearance mechanisms, preceding the appearance of obvious tau aggregation. A vicious cycle of tau accumulation and clearance deficit would be expected to feed-forward and exacerbate disease progression across neuronal circuits in human tauopathies.
Collapse
Affiliation(s)
- François-Xavier Blaudin de Thé
- Taub Institute for Research On Alzheimer’s Disease and the Aging Brain, 630 W 168th St, NY 10032 New York, USA
- Neuroscience and Immunoinflammation Therapeutic Area, Institut de Recherche Servier, 125 Chemin de Ronde, 78290 Croissy-sur-Seine, France
| | - Benjamin Lassus
- Taub Institute for Research On Alzheimer’s Disease and the Aging Brain, 630 W 168th St, NY 10032 New York, USA
- HiFiBiO Therapeutics Pépinière Paris Santé Cochin, 29 Rue du Faubourg Saint-Jacques, 75014 Paris, France
| | - Ari W. Schaler
- Taub Institute for Research On Alzheimer’s Disease and the Aging Brain, 630 W 168th St, NY 10032 New York, USA
- UCLA – Physiology Department, 10833 Le Conte Ave, CHS76200, CA 90095 Los Angeles, USA
| | - Stephanie L. Fowler
- Taub Institute for Research On Alzheimer’s Disease and the Aging Brain, 630 W 168th St, NY 10032 New York, USA
- UK Dementia Research Institute at UCL, University College London, 90 Gower St, W1T 7NF London, UK
| | - Chris N. Goulbourne
- Nathan Kline Institute: Center for Dementia Research, 140 Old Orangeburg Road, NY 10962 Orangeburg, USA
| | - Ross Jeggo
- Neuroscience and Immunoinflammation Therapeutic Area, Institut de Recherche Servier, 125 Chemin de Ronde, 78290 Croissy-sur-Seine, France
| | - Clotilde Mannoury la Cour
- Neuroscience and Immunoinflammation Therapeutic Area, Institut de Recherche Servier, 125 Chemin de Ronde, 78290 Croissy-sur-Seine, France
| | - Mark J. Millan
- Neuroscience and Immunoinflammation Therapeutic Area, Institut de Recherche Servier, 125 Chemin de Ronde, 78290 Croissy-sur-Seine, France
- Present Address: Institute of Neuroscience and Psychology, College of Medicine, Vet and Life Science, Glasgow University, Glasgow, G12 8QQ United Kingdom
| | - Karen E. Duff
- Taub Institute for Research On Alzheimer’s Disease and the Aging Brain, 630 W 168th St, NY 10032 New York, USA
- UK Dementia Research Institute at UCL, University College London, 90 Gower St, W1T 7NF London, UK
| |
Collapse
|
33
|
BCL6 maintains survival and self-renewal of primary human acute myeloid leukemia cells. Blood 2021; 137:812-825. [PMID: 32911532 DOI: 10.1182/blood.2019001745] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Accepted: 08/25/2020] [Indexed: 12/28/2022] Open
Abstract
B-cell lymphoma 6 (BCL6) is a transcription repressor and proto-oncogene that plays a crucial role in the innate and adaptive immune system and lymphoid neoplasms. However, its role in myeloid malignancies remains unclear. Here, we explored the role of BCL6 in acute myeloid leukemia (AML). BCL6 was expressed at variable and often high levels in AML cell lines and primary AML samples. AMLs with higher levels of BCL6 were generally sensitive to treatment with BCL6 inhibitors, with the exception of those with monocytic differentiation. Gene expression profiling of AML cells treated with a BCL6 inhibitor revealed induction of BCL6-repressed target genes and transcriptional programs linked to DNA damage checkpoints and downregulation of stem cell genes. Ex vivo treatment of primary AML cells with BCL6 inhibitors induced apoptosis and decreased colony-forming capacity, which correlated with the levels of BCL6 expression. Importantly, inhibition or knockdown of BCL6 in primary AML cells resulted in a significant reduction of leukemia-initiating capacity in mice, suggesting ablation of leukemia repopulating cell functionality. In contrast, BCL6 knockout or inhibition did not suppress the function of normal hematopoietic stem cells. Treatment with cytarabine further induced BCL6 expression, and the levels of BCL6 induction were correlated with resistance to cytarabine. Treatment of AML patient-derived xenografts with BCL6 inhibitor plus cytarabine suggested enhanced antileukemia activity with this combination. Hence, pharmacologic inhibition of BCL6 might provide a novel therapeutic strategy for ablation of leukemia-repopulating cells and increased responsiveness to chemotherapy.
Collapse
|
34
|
Limanaqi F, Busceti CL, Celli R, Biagioni F, Fornai F. Autophagy as a gateway for the effects of methamphetamine: From neurotransmitter release and synaptic plasticity to psychiatric and neurodegenerative disorders. Prog Neurobiol 2021; 204:102112. [PMID: 34171442 DOI: 10.1016/j.pneurobio.2021.102112] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 02/27/2021] [Accepted: 06/18/2021] [Indexed: 02/07/2023]
Abstract
As a major eukaryotic cell clearing machinery, autophagy grants cell proteostasis, which is key for neurotransmitter release, synaptic plasticity, and neuronal survival. In line with this, besides neuropathological events, autophagy dysfunctions are bound to synaptic alterations that occur in mental disorders, and early on, in neurodegenerative diseases. This is also the case of methamphetamine (METH) abuse, which leads to psychiatric disturbances and neurotoxicity. While consistently altering the autophagy machinery, METH produces behavioral and neurotoxic effects through molecular and biochemical events that can be recapitulated by autophagy blockade. These consist of altered physiological dopamine (DA) release, abnormal stimulation of DA and glutamate receptors, as well as oxidative, excitotoxic, and neuroinflammatory events. Recent molecular insights suggest that METH early impairs the autophagy machinery, though its functional significance remains to be investigated. Here we discuss evidence suggesting that alterations of DA transmission and autophagy are intermingled within a chain of events underlying behavioral alterations and neurodegenerative phenomena produced by METH. Understanding how METH alters the autophagy machinery is expected to provide novel insights into the neurobiology of METH addiction sharing some features with psychiatric disorders and parkinsonism.
Collapse
Affiliation(s)
- Fiona Limanaqi
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Via Roma, 55, 56126, Pisa, PI, Italy
| | | | - Roberta Celli
- IRCCS Neuromed, Via Atinense 18, 86077 Pozzilli, IS, Italy
| | | | - Francesco Fornai
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Via Roma, 55, 56126, Pisa, PI, Italy; IRCCS Neuromed, Via Atinense 18, 86077 Pozzilli, IS, Italy.
| |
Collapse
|
35
|
Lei L, Wu Z, Winklhofer KF. Protein quality control by the proteasome and autophagy: A regulatory role of ubiquitin and liquid-liquid phase separation. Matrix Biol 2021; 100-101:9-22. [DOI: 10.1016/j.matbio.2020.11.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Revised: 11/20/2020] [Accepted: 11/23/2020] [Indexed: 12/14/2022]
|
36
|
Limanaqi F, Biagioni F, Salvetti A, Puglisi-Allegra S, Lenzi P, Fornai F. Morphology, clearing efficacy, and mTOR dependency of the organelle autophagoproteasome. Eur J Histochem 2021; 65. [PMID: 34060734 PMCID: PMC8200839 DOI: 10.4081/ejh.2021.3220] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Accepted: 05/01/2021] [Indexed: 01/18/2023] Open
Abstract
The interplay between autophagy (ATG) and ubiquitin proteasome (UP) cell-clearing systems was recently evidenced at biochemical and morphological levels, where subunits belonging to both pathways co-localize within a novel organelle named autophagoproteasome (APP). We previously documented that APP occurs at baseline conditions, while it is hindered by neurotoxicant administration. This is bound to the activity of the mechanistic target of rapamycin (mTOR), since APP is stimulated by mTOR inhibition, which in turn, is correlated with cell protection. In this brief report, we provide novel morphological and biochemical evidence on APP, suggesting the presence of active UP subunits within ATG vacuoles. Although a stream of interpretation considers such a merging as a catabolic pathway to clear inactive UP subunits, our data further indicate that UP-ATG merging may rather provide an empowered catalytic organelle.
Collapse
Affiliation(s)
- Fiona Limanaqi
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa.
| | | | | | | | - Paola Lenzi
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa.
| | - Francesco Fornai
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa; IRCCS Neuromed, Pozzilli (IS).
| |
Collapse
|
37
|
The proteasome and its role in the nervous system. Cell Chem Biol 2021; 28:903-917. [PMID: 33905676 DOI: 10.1016/j.chembiol.2021.04.003] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 03/04/2021] [Accepted: 04/05/2021] [Indexed: 12/14/2022]
Abstract
Proteasomes are multisubunit complexes that catalyze the majority of protein degradation in mammalian cells to maintain protein homeostasis and influence the regulation of most cellular processes. The proteasome, a multicatalytic protease complex, is a ring-like structure with a narrow pore that exhibits regulated gating, enabling the selective degradation of target proteins into peptide fragments. This process of removing proteins is essential for eliminating proteins that are no longer wanted, such as unfolded or aggregated proteins. This is important for preserving cellular function relevant to brain health and disease. Recently, in the nervous system, specialized proteasomes have been shown to generate peptides with important cellular functions. These discoveries challenge the prevailing notion that proteasomes primarily operate to eliminate proteins and identify signaling-competent proteasomes. This review focuses on the structure, function, and regulation of proteasomes and sheds light on emerging areas of investigation regarding the role of proteasomes in the nervous system.
Collapse
|
38
|
Bedada FB, Ntekim OE, Nwulia EO, Fungwe TV, Nadarajah SR, Obisesan TO. Exercise Training-Increased FBXO32 and FOXO1 in a Gender-Dependent Manner in Mild Cognitively Impaired African Americans: GEMS-1 Study. Front Aging Neurosci 2021; 13:641758. [PMID: 33935685 PMCID: PMC8079639 DOI: 10.3389/fnagi.2021.641758] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Accepted: 03/18/2021] [Indexed: 01/29/2023] Open
Abstract
The ubiquitin proteasome system (UPS) and FOXOs transcription factors play a pivotal role in cellular clearance and minimizing the accumulation of Aβ in neurodegeneration (ND). In African Americans (AAs) with mild cognitive impairment (MCI), the role of components of UPS and FOXOs; and whether they are amenable to exercise effects is unknown. We hypothesized that exercise can enhance cellular clearance systems during aging and ND by increasing expressions of FBXO32 and FOXO1. To test this hypothesis, we used TaqMan gene expression analysis in peripheral blood (PB) to investigate the component of UPS and FOXOs; and provide mechanistic insight at baseline, during exercise, and in both genders. At baseline, levels of FBXO32 were higher in women than in men. In our attempt to discern gender-specific exercise-related changes, we observed that levels of FBXO32 increased in men but not in women. Similarly, levels of FOXO1 increased in men only. These data suggest that a graded dose of FBXO32 and FOXO1 may be beneficial when PB cells carrying FBXO32 and FOXO1 summon into the brain in response to Alzheimer's disease (AD) perturbation (docking station PB cells). Our observation is consistent with emerging studies that exercise allows the trafficking of blood factors. Given the significance of FBXO32 and FOXO1 to ND and associated muscle integrity, our findings may explain, at least in part, the benefits of exercise on memory, associated gait, and balance perturbation acknowledged to herald the emergence of MCI.
Collapse
Affiliation(s)
- Fikru B. Bedada
- Department of Clinical Laboratory Sciences, College of Nursing and Allied Health Sciences, Howard University, Washington, DC, United States
| | - Oyonumo E. Ntekim
- Department of Nutritional Sciences, College of Nursing and Allied Health Sciences, Howard University, Washington, DC, United States
| | - Evaristus O. Nwulia
- Department of Psychiatry, Howard University Hospital, Washington, DC, United States
| | - Thomas V. Fungwe
- Department of Nutritional Sciences, College of Nursing and Allied Health Sciences, Howard University, Washington, DC, United States
| | - Sheeba Raaj Nadarajah
- Department of Nursing, College of Nursing and Allied Health Sciences, Howard University, Washington, DC, United States
| | - Thomas O. Obisesan
- Division of Geriatrics, Department of Medicine, Howard University Hospital, Washington, DC, United States
| |
Collapse
|
39
|
Semchyshyn H. Is carbonyl/AGE/RAGE stress a hallmark of the brain aging? Pflugers Arch 2021; 473:723-734. [PMID: 33742308 DOI: 10.1007/s00424-021-02529-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 01/21/2021] [Accepted: 01/28/2021] [Indexed: 12/13/2022]
Abstract
Recent studies have linked carbonyl stress to many physiological processes. Increase in the levels of carbonyl compounds, derived from both endogenous and exogenous sources, is believed to accompany normal age-related decline as well as different pathologies. Reactive carbonyl species (RCS) are capable of damaging biomolecules via their involvement in a net of nonspecific reactions. In the advanced stages of RCS metabolism, variety of poorly degraded adducts and crosslinks, collectively named advanced glycoxidation end products (AGEs), arises. They are accumulated in an age-dependent manner in different tissues and organs and can contribute to inflammatory processes. In particular, detrimental effects of the end products are realized via activation of the specific receptor for AGEs (RAGE) and RAGE-dependent inflammatory signaling cascade. Although it is unclear, whether carbonyl stress is causal for age-associated impairments or it results from age- and disease-related cell damages, increased levels of RCS and AGEs are tightly related to inflammaging, and therefore, attenuation of the RAGE signaling is suggested as an effective approach for the treatment of inflammation and age-related disorders. The question raised in this review is whether specific metabolism in the aging brain related to carbonyl/RCS/AGE/RAGE stress.
Collapse
Affiliation(s)
- Halyna Semchyshyn
- Department of Biochemistry and Biotechnology, Vasyl Stefanyk Precarpathian National University, 57 Shevchenko Str, Ivano-Frankivsk, 76018, Ukraine.
| |
Collapse
|
40
|
García-Viñuales S, Sciacca MFM, Lanza V, Santoro AM, Grasso G, Tundo GR, Sbardella D, Coletta M, Grasso G, La Rosa C, Milardi D. The interplay between lipid and Aβ amyloid homeostasis in Alzheimer's Disease: risk factors and therapeutic opportunities. Chem Phys Lipids 2021; 236:105072. [PMID: 33675779 DOI: 10.1016/j.chemphyslip.2021.105072] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 02/15/2021] [Accepted: 03/01/2021] [Indexed: 12/19/2022]
Abstract
Alzheimer's Diseases (AD) is characterized by the accumulation of amyloid deposits of Aβ peptide in the brain. Besides genetic background, the presence of other diseases and an unhealthy lifestyle are known risk factors for AD development. Albeit accumulating clinical evidence suggests that an impaired lipid metabolism is related to Aβ deposition, mechanistic insights on the link between amyloid fibril formation/clearance and aberrant lipid interactions are still unavailable. Recently, many studies have described the key role played by membrane bound Aβ assemblies in neurotoxicity. Moreover, it has been suggested that a derangement of the ubiquitin proteasome pathway and autophagy is significantly correlated with toxic Aβ aggregation and dysregulation of lipid levels. Thus, studies focusing on the role played by lipids in Aβ aggregation and proteostasis could represent a promising area of investigation for the design of valuable treatments. In this review we examine current knowledge concerning the effects of lipids in Aβ aggregation and degradation processes, focusing on the therapeutic opportunities that a comprehensive understanding of all biophysical, biochemical, and biological processes involved may disclose.
Collapse
Affiliation(s)
| | - Michele F M Sciacca
- Consiglio Nazionale delle Ricerche, Istituto di Cristallografia, Catania, Italy
| | - Valeria Lanza
- Consiglio Nazionale delle Ricerche, Istituto di Cristallografia, Catania, Italy
| | - Anna Maria Santoro
- Consiglio Nazionale delle Ricerche, Istituto di Cristallografia, Catania, Italy
| | - Giulia Grasso
- Consiglio Nazionale delle Ricerche, Istituto di Cristallografia, Catania, Italy
| | - Grazia R Tundo
- Department of Clinical Sciences and Translational Medicine, University of Rome Tor Vergata, Rome, Italy
| | | | - Massimiliano Coletta
- Department of Clinical Sciences and Translational Medicine, University of Rome Tor Vergata, Rome, Italy
| | - Giuseppe Grasso
- Department of Chemistry, University of Catania, Catania, Italy
| | - Carmelo La Rosa
- Department of Chemistry, University of Catania, Catania, Italy
| | - Danilo Milardi
- Consiglio Nazionale delle Ricerche, Istituto di Cristallografia, Catania, Italy.
| |
Collapse
|
41
|
Zhao J, Li Y, Li Y, Xu S, Tao T, Hua Y, Zhang J, Fan Y. Activation of α7-nAChRs Promotes the Clearance of α-Synuclein and Protects Against Apoptotic Cell Death Induced by Exogenous α-Synuclein Fibrils. Front Cell Dev Biol 2021; 9:637319. [PMID: 33718373 PMCID: PMC7947362 DOI: 10.3389/fcell.2021.637319] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Accepted: 02/03/2021] [Indexed: 12/22/2022] Open
Abstract
Misfolding and abnormal aggregation of α-synuclein (αSyn) have been shown to increase the risk of developing Parkinson's disease (PD). Finding some way to reduce the aggregation of αSyn is particularly important for the treatment of PD. The main route in prion-like αSyn spreading is the cholinergic innervated vagus nervous system and central cholinergic neurons. Since the degenerative changes and death of cholinergic neurons also run through the pathological process of PD, we hypothesize an involvement of the cholinergic system in αSyn aggregation. The α7 nicotinic acetylcholine receptors (α7-nAChRs) are one of the most abundant nAChRs in the mammalian brain. Using nicotine and a selective α7-nAChRs agonist PNU-282987, we found a protective effect of α7-nAChRs on the cell damage induced by αSyn-PFF (preformed fibrils) through inhibiting apoptotic cell death. We further discovered an additive effect of α7-nAChRs on the clearance of αSyn in normal and αSyn stably transduced SH-SY5Y cells. Moreover, using α7-nAChRs knockout mice, we noticed that α7-nAChRs deficiency increased the deposition of αSyn and aggravated the loss of dopaminergic neurons in a chronic MPTP mouse model of PD. Our findings for the first time indicated that α7-nAChRs activation exhibited a neuroprotective effect on αSyn pathology and aggregation by promoting the clearance of αSyn.
Collapse
Affiliation(s)
- Jifeng Zhao
- Department of Pharmacology, Neuroprotective Drug Discovery Center of Nanjing Medical University, Nanjing Medical University, Nanjing, China
| | - Yun Li
- Department of Pharmacology, Neuroprotective Drug Discovery Center of Nanjing Medical University, Nanjing Medical University, Nanjing, China
| | - Yan Li
- Department of Pharmacology, Neuroprotective Drug Discovery Center of Nanjing Medical University, Nanjing Medical University, Nanjing, China
| | - Shi Xu
- Department of Pharmacology, Neuroprotective Drug Discovery Center of Nanjing Medical University, Nanjing Medical University, Nanjing, China
| | - Tingting Tao
- Department of Pharmacology, Neuroprotective Drug Discovery Center of Nanjing Medical University, Nanjing Medical University, Nanjing, China
| | - Ye Hua
- Department of Neurology, Affiliated Wuxi Clinical College of Nantong University, Wuxi, China
| | - Ji Zhang
- Division of Clinical Pharmacy, Department of Pharmacy, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Yi Fan
- Department of Pharmacology, Neuroprotective Drug Discovery Center of Nanjing Medical University, Nanjing Medical University, Nanjing, China
| |
Collapse
|
42
|
Kim S, Kwon M, Hwang Y, Yoon J, Park S, Kang HC. Stress-induced NEDDylation promotes cytosolic protein aggregation through HDAC6 in a p62-dependent manner. iScience 2021; 24:102146. [PMID: 33665565 PMCID: PMC7903351 DOI: 10.1016/j.isci.2021.102146] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 01/07/2021] [Accepted: 02/01/2021] [Indexed: 02/08/2023] Open
Abstract
Stress-coupled NEDDylation potentially regulates the aggregation of nuclear proteins, which could protect the nuclear ubiquitin-proteasome system from proteotoxic stress. However, it remains unclear how NEDDylation controls protein-aggregation responses to diverse stress conditions. Here, we identified HDAC6 as a direct NEDD8-binding partner that regulates the formation of aggresome-like bodies (ALBs) containing NEDDylated cytosolic protein aggregates during ubiquitin stress. HDAC6 colocalizes with stress-induced ALBs, and HDAC6 inhibition suppresses ALBs formation, but not stress-induced NEDDylation, suggesting that HDAC6 carries NEDDylated-proteins to generate ALBs. Then, we monitored the ALBs-associated proteostasis network and found that p62 directly controls ALBs formation as an acceptor of NEDDylated cytosolic aggregates. Interestingly, we also observed that ALBs are highly condensed in chloroquine-treated cells with impaired autophagic flux, indicating that ALBs rely on autophagy. Collectively, our data suggest that NEDD8, HDAC6, and p62 are involved in the management of proteotoxic stress by forming cytosolic ALBs coupled to the aggresome-autophagy flux. NEDD8 directly binds to HDAC6 and regulates the formation of aggresome-like body (ALB) HDAC6 carries NEDDylated cytosolic protein aggregates into ALBs under ubiquitin stress p62 directly controls ALBs formation as an acceptor of NEDDylated cytosolic aggregates The NEDD8-HDAC6-p62 axis controls proteostasis by forming ALB-coupled autophagy
Collapse
Affiliation(s)
- Soyeon Kim
- Department of Physiology, Ajou University School of Medicine, World cup-ro, Yeongtong-gu, Suwon, Gyeonggi 16499, Republic of Korea.,Department of Biomedical Sciences, Graduate School of Ajou University, World cup-ro, Yeongtong-gu, Suwon, Gyeonggi 16499, Republic of Korea
| | - Mira Kwon
- Department of Physiology, Ajou University School of Medicine, World cup-ro, Yeongtong-gu, Suwon, Gyeonggi 16499, Republic of Korea.,Department of Biomedical Sciences, Graduate School of Ajou University, World cup-ro, Yeongtong-gu, Suwon, Gyeonggi 16499, Republic of Korea
| | - Yiseul Hwang
- Department of Physiology, Ajou University School of Medicine, World cup-ro, Yeongtong-gu, Suwon, Gyeonggi 16499, Republic of Korea.,Department of Biomedical Sciences, Graduate School of Ajou University, World cup-ro, Yeongtong-gu, Suwon, Gyeonggi 16499, Republic of Korea
| | - Junghyun Yoon
- Department of Physiology, Ajou University School of Medicine, World cup-ro, Yeongtong-gu, Suwon, Gyeonggi 16499, Republic of Korea.,Department of Biomedical Sciences, Graduate School of Ajou University, World cup-ro, Yeongtong-gu, Suwon, Gyeonggi 16499, Republic of Korea
| | - Sangwook Park
- Department of Physiology, Ajou University School of Medicine, World cup-ro, Yeongtong-gu, Suwon, Gyeonggi 16499, Republic of Korea.,Department of Biomedical Sciences, Graduate School of Ajou University, World cup-ro, Yeongtong-gu, Suwon, Gyeonggi 16499, Republic of Korea
| | - Ho Chul Kang
- Department of Physiology, Ajou University School of Medicine, World cup-ro, Yeongtong-gu, Suwon, Gyeonggi 16499, Republic of Korea.,Department of Biomedical Sciences, Graduate School of Ajou University, World cup-ro, Yeongtong-gu, Suwon, Gyeonggi 16499, Republic of Korea
| |
Collapse
|
43
|
Arenas A, Kuang L, Zhang J, Kingren MS, Zhu H. FUS regulates autophagy by mediating the transcription of genes critical to the autophagosome formation. J Neurochem 2021; 157:752-763. [PMID: 33354770 DOI: 10.1111/jnc.15281] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 11/27/2020] [Accepted: 12/02/2020] [Indexed: 12/17/2022]
Abstract
Fused in sarcoma (FUS) is a ubiquitously expressed RNA/DNA-binding protein that plays different roles in the cell. FUS pathology has been reported in neurodegenerative diseases amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD). Mutations in FUS have also been linked to a subset of familial ALS. FUS is mainly localized in the nucleus although it shuttles between the nucleus and the cytoplasm. ALS-linked mutations cause the accumulation of the FUS protein in cytoplasm where it forms stress granule-like inclusions. The protein- and RNA-containing inclusions are reported to be positive of autophagosome markers and degraded by the autophagy pathway. However, the role of FUS in the autophagy pathway remains to be better understood. Using immunoblot and confocal imaging techniques in this study, we found that FUS knockout (KO) cells showed a decreased basal autophagy level. Rapamycin and bafilomycin A1 treatment showed that FUS KO cells were not able to initiate autophagy as efficiently as wild-type cells, suggesting that the autophagosome formation is affected in the absence of FUS. Moreover, using immunoblot and quantitative PCR techniques, we found that the mRNA and protein levels of the genes critical in the initial steps of the autophagy pathway (FIP200, ATG16L1 and ATG12) were significantly lower in FUS KO cells. Re-expressing FUS in the KO cells restored the expression of FIP200 and ATG16L1. Our findings demonstrate a novel role of FUS in the autophagy pathway, that is, regulating the transcription of genes involved in early stages of autophagy such as the initiation and elongation of autophagosomes.
Collapse
Affiliation(s)
- Alexandra Arenas
- Department of Toxicology and Cancer Biology, University of Kentucky, Lexington, KY, USA
| | - Lisha Kuang
- Department of Molecular and Cellular Biochemistry, University of Kentucky, Lexington, KY, USA.,Lexington VA Medical Center, Research and Development, Lexington, KY, USA
| | - Jiayu Zhang
- Department of Molecular and Cellular Biochemistry, University of Kentucky, Lexington, KY, USA
| | - Meagan S Kingren
- Department of Molecular and Cellular Biochemistry, University of Kentucky, Lexington, KY, USA
| | - Haining Zhu
- Department of Toxicology and Cancer Biology, University of Kentucky, Lexington, KY, USA.,Department of Molecular and Cellular Biochemistry, University of Kentucky, Lexington, KY, USA.,Lexington VA Medical Center, Research and Development, Lexington, KY, USA
| |
Collapse
|
44
|
Çetin G, Klafack S, Studencka-Turski M, Krüger E, Ebstein F. The Ubiquitin-Proteasome System in Immune Cells. Biomolecules 2021; 11:biom11010060. [PMID: 33466553 PMCID: PMC7824874 DOI: 10.3390/biom11010060] [Citation(s) in RCA: 80] [Impact Index Per Article: 26.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 12/16/2020] [Accepted: 12/22/2020] [Indexed: 12/11/2022] Open
Abstract
The ubiquitin–proteasome system (UPS) is the major intracellular and non-lysosomal protein degradation system. Thanks to its unique capacity of eliminating old, damaged, misfolded, and/or regulatory proteins in a highly specific manner, the UPS is virtually involved in almost all aspects of eukaryotic life. The critical importance of the UPS is particularly visible in immune cells which undergo a rapid and profound functional remodelling upon pathogen recognition. Innate and/or adaptive immune activation is indeed characterized by a number of substantial changes impacting various cellular processes including protein homeostasis, signal transduction, cell proliferation, and antigen processing which are all tightly regulated by the UPS. In this review, we summarize and discuss recent progress in our understanding of the molecular mechanisms by which the UPS contributes to the generation of an adequate immune response. In this regard, we also discuss the consequences of UPS dysfunction and its role in the pathogenesis of recently described immune disorders including cancer and auto-inflammatory diseases.
Collapse
|
45
|
Calderón-Garcidueñas L, González-Maciel A, Reynoso-Robles R, Hammond J, Kulesza R, Lachmann I, Torres-Jardón R, Mukherjee PS, Maher BA. Quadruple abnormal protein aggregates in brainstem pathology and exogenous metal-rich magnetic nanoparticles (and engineered Ti-rich nanorods). The substantia nigrae is a very early target in young urbanites and the gastrointestinal tract a key brainstem portal. ENVIRONMENTAL RESEARCH 2020; 191:110139. [PMID: 32888951 DOI: 10.1016/j.envres.2020.110139] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 08/21/2020] [Accepted: 08/22/2020] [Indexed: 06/11/2023]
Abstract
Fine particulate air pollution (PM2.5) exposures are linked with Alzheimer's and Parkinson's diseases (AD,PD). AD and PD neuropathological hallmarks are documented in children and young adults exposed lifelong to Metropolitan Mexico City air pollution; together with high frontal metal concentrations (especially iron)-rich nanoparticles (NP), matching air pollution combustion- and friction-derived particles. Here, we identify aberrant hyperphosphorylated tau, ɑ synuclein and TDP-43 in the brainstem of 186 Mexico City 27.29 ± 11.8y old residents. Critically, substantia nigrae (SN) pathology seen in mitochondria, endoplasmic reticulum and neuromelanin (NM) is co-associated with the abundant presence of exogenous, Fe-, Al- and Ti-rich NPs.The SN exhibits early and progressive neurovascular unit damage and mitochondria and NM are associated with metal-rich NPs including exogenous engineered Ti-rich nanorods, also identified in neuroenteric neurons. Such reactive, cytotoxic and magnetic NPs may act as catalysts for reactive oxygen species formation, altered cell signaling, and protein misfolding, aggregation and fibril formation. Hence, pervasive, airborne and environmental, metal-rich and magnetic nanoparticles may be a common denominator for quadruple misfolded protein neurodegenerative pathologies affecting urbanites from earliest childhood. The substantia nigrae is a very early target and the gastrointestinal tract (and the neuroenteric system) key brainstem portals. The ultimate neural damage and neuropathology (Alzheimer's, Parkinson's and TDP-43 pathology included) could depend on NP characteristics and the differential access and targets achieved via their portals of entry. Thus where you live, what air pollutants you are exposed to, what you are inhaling and swallowing from the air you breathe,what you eat, how you travel, and your occupational longlife history are key. Control of NP sources becomes critical.
Collapse
Affiliation(s)
| | | | | | - Jessica Hammond
- Centre for Environmental Magnetism and Paleomagnetism, Lancaster Environment Centre, University of Lancaster, Lancaster, LA1 4YQ, UK
| | - Randy Kulesza
- Auditory Research Center, Lake Erie College of Osteopathic Medicine, Erie, PA, USA
| | | | - Ricardo Torres-Jardón
- Centro de Ciencias de la Atmósfera, Universidad Nacional Autónoma de México, UNAM, Mexico City, 04510, Mexico
| | | | - Barbara A Maher
- Centre for Environmental Magnetism and Paleomagnetism, Lancaster Environment Centre, University of Lancaster, Lancaster, LA1 4YQ, UK
| |
Collapse
|
46
|
Le Guerroué F, Youle RJ. Ubiquitin signaling in neurodegenerative diseases: an autophagy and proteasome perspective. Cell Death Differ 2020; 28:439-454. [PMID: 33208890 DOI: 10.1038/s41418-020-00667-x] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2020] [Revised: 10/28/2020] [Accepted: 10/30/2020] [Indexed: 12/13/2022] Open
Abstract
Ubiquitin signaling is a sequence of events driving the fate of a protein based on the type of ubiquitin modifications attached. In the case of neurodegenerative diseases, ubiquitin signaling is mainly associated with degradation signals to process aberrant proteins, which form aggregates often fatal for the brain cells. This signaling is often perturbed by the aggregates themselves and leads to the accumulation of toxic aggregates and inclusion bodies that are deleterious due to a toxic gain of function. Decrease in quality control pathways is often seen with age and is a critical onset for the development of neurodegeneration. Many aggregates are now thought to propagate in a prion-like manner, where mutated proteins acting like seeds are transitioning from cell to cell, converting normal proteins to toxic aggregates. Modulation of ubiquitin signaling, by stimulating ubiquitin ligase activation, is a potential therapeutic strategy to treat patients with neurodegeneration diseases.
Collapse
Affiliation(s)
- François Le Guerroué
- Surgical Neurology Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Richard J Youle
- Surgical Neurology Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, 20892, USA.
| |
Collapse
|
47
|
Limanaqi F, Busceti CL, Biagioni F, Lazzeri G, Forte M, Schiavon S, Sciarretta S, Frati G, Fornai F. Cell Clearing Systems as Targets of Polyphenols in Viral Infections: Potential Implications for COVID-19 Pathogenesis. Antioxidants (Basel) 2020; 9:E1105. [PMID: 33182802 PMCID: PMC7697279 DOI: 10.3390/antiox9111105] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2020] [Revised: 10/29/2020] [Accepted: 11/08/2020] [Indexed: 02/06/2023] Open
Abstract
The novel coronavirus named severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has generated the ongoing coronavirus disease-2019 (COVID-19) pandemic, still with an uncertain outcome. Besides pneumonia and acute lung injury (ALI) or acute respiratory distress syndrome (ARDS), other features became evident in the context of COVID-19. These includes endothelial and coagulation dysfunction with disseminated intravascular coagulation (DIC), and multiple organ dysfunction syndrome (MODS), along with the occurrence of neurological alterations. The multi-system nature of such viral infection is a witness to the exploitation and impairment of ubiquitous subcellular and metabolic pathways for the sake of its life-cycle, ranging from host cell invasion, replication, transmission, up to a cytopathic effect and overt systemic inflammation. In this frame, alterations in cell-clearing systems of the host are emerging as a hallmark in the pathogenesis of various respiratory viruses, including SARS-CoV-2. Indeed, exploitation of the autophagy and proteasome pathways might contribute not only to the replication of the virus at the site of infection but also to the spreading of either mature virions or inflammatory mediators at both cellular and multisystem levels. In this frame, besides a pharmacological therapy, many researchers are wondering if some non-pharmacological substances might counteract or positively modulate the course of the infection. The pharmacological properties of natural compounds have gained increasing attention in the field of alternative and adjunct therapeutic approaches to several diseases. In particular, several naturally-occurring herbal compounds (mostly polyphenols) are reported to produce widespread antiviral, anti-inflammatory, and anti-oxidant effects while acting as autophagy and (immuno)-proteasome modulators. This article attempts to bridge the perturbation of autophagy and proteasome pathways with the potentially beneficial effects of specific phytochemicals and flavonoids in viral infections, with a focus on the multisystem SARS-CoV-2 infection.
Collapse
Affiliation(s)
- Fiona Limanaqi
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Via Roma 55, 56126 Pisa, Italy; (F.L.); (G.L.)
| | - Carla Letizia Busceti
- I.R.C.C.S. Neuromed Pozzilli, Via Atinense, 18, 86077 Pozzilli, Italy (F.B.); (M.F.); (S.S.); (G.F.)
| | - Francesca Biagioni
- I.R.C.C.S. Neuromed Pozzilli, Via Atinense, 18, 86077 Pozzilli, Italy (F.B.); (M.F.); (S.S.); (G.F.)
| | - Gloria Lazzeri
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Via Roma 55, 56126 Pisa, Italy; (F.L.); (G.L.)
| | - Maurizio Forte
- I.R.C.C.S. Neuromed Pozzilli, Via Atinense, 18, 86077 Pozzilli, Italy (F.B.); (M.F.); (S.S.); (G.F.)
| | - Sonia Schiavon
- Department of Medico-Surgical Sciences and Biotechnologies, Sapienza University of Rome, Corso della Repubblica 79, 40100 Latina, Italy;
| | - Sebastiano Sciarretta
- I.R.C.C.S. Neuromed Pozzilli, Via Atinense, 18, 86077 Pozzilli, Italy (F.B.); (M.F.); (S.S.); (G.F.)
- Department of Medico-Surgical Sciences and Biotechnologies, Sapienza University of Rome, Corso della Repubblica 79, 40100 Latina, Italy;
| | - Giacomo Frati
- I.R.C.C.S. Neuromed Pozzilli, Via Atinense, 18, 86077 Pozzilli, Italy (F.B.); (M.F.); (S.S.); (G.F.)
- Department of Medico-Surgical Sciences and Biotechnologies, Sapienza University of Rome, Corso della Repubblica 79, 40100 Latina, Italy;
| | - Francesco Fornai
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Via Roma 55, 56126 Pisa, Italy; (F.L.); (G.L.)
- I.R.C.C.S. Neuromed Pozzilli, Via Atinense, 18, 86077 Pozzilli, Italy (F.B.); (M.F.); (S.S.); (G.F.)
| |
Collapse
|
48
|
Limanaqi F, Biagioni F, Mastroiacovo F, Polzella M, Lazzeri G, Fornai F. Merging the Multi-Target Effects of Phytochemicals in Neurodegeneration: From Oxidative Stress to Protein Aggregation and Inflammation. Antioxidants (Basel) 2020; 9:antiox9101022. [PMID: 33092300 PMCID: PMC7589770 DOI: 10.3390/antiox9101022] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 10/14/2020] [Accepted: 10/16/2020] [Indexed: 02/08/2023] Open
Abstract
Wide experimental evidence has been provided in the last decade concerning the neuroprotective effects of phytochemicals in a variety of neurodegenerative disorders. Generally, the neuroprotective effects of bioactive compounds belonging to different phytochemical classes are attributed to antioxidant, anti-aggregation, and anti-inflammatory activity along with the restoration of mitochondrial homeostasis and targeting alterations of cell-clearing systems. Far from being independent, these multi-target effects represent interconnected events that are commonly implicated in the pathogenesis of most neurodegenerative diseases, independently of etiology, nosography, and the specific misfolded proteins being involved. Nonetheless, the increasing amount of data applying to a variety of neurodegenerative disorders joined with the multiple effects exerted by the wide variety of plant-derived neuroprotective agents may rather confound the reader. The present review is an attempt to provide a general guideline about the most relevant mechanisms through which naturally occurring agents may counteract neurodegeneration. With such an aim, we focus on some popular phytochemical classes and bioactive compounds as representative examples to design a sort of main highway aimed at deciphering the most relevant protective mechanisms which make phytochemicals potentially useful in counteracting neurodegeneration. In this frame, we emphasize the potential role of the cell-clearing machinery as a kernel in the antioxidant, anti-aggregation, anti-inflammatory, and mitochondrial protecting effects of phytochemicals.
Collapse
Affiliation(s)
- Fiona Limanaqi
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Via Roma 55, 56126 Pisa, Italy;
| | - Francesca Biagioni
- Istituto di Ricovero e Cura a Carattere Scientifico Neuromed, Via Atinense 18, 86077 Pozzilli, Italy; (F.B.); (F.M.)
| | - Federica Mastroiacovo
- Istituto di Ricovero e Cura a Carattere Scientifico Neuromed, Via Atinense 18, 86077 Pozzilli, Italy; (F.B.); (F.M.)
| | - Maico Polzella
- Aliveda Laboratories, Viale Karol Wojtyla 19, 56042 Crespina Lorenzana, Italy;
| | - Gloria Lazzeri
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Via Roma 55, 56126 Pisa, Italy;
- Correspondence: (G.L.); (F.F.)
| | - Francesco Fornai
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Via Roma 55, 56126 Pisa, Italy;
- Istituto di Ricovero e Cura a Carattere Scientifico Neuromed, Via Atinense 18, 86077 Pozzilli, Italy; (F.B.); (F.M.)
- Correspondence: (G.L.); (F.F.)
| |
Collapse
|
49
|
From Seeds to Fibrils and Back: Fragmentation as an Overlooked Step in the Propagation of Prions and Prion-Like Proteins. Biomolecules 2020; 10:biom10091305. [PMID: 32927676 PMCID: PMC7563560 DOI: 10.3390/biom10091305] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 09/03/2020] [Accepted: 09/08/2020] [Indexed: 12/13/2022] Open
Abstract
Many devastating neurodegenerative diseases are driven by the misfolding of normal proteins into a pathogenic abnormal conformation. Examples of such protein misfolding diseases include Alzheimer’s disease, Parkinson’s disease, Huntington’s disease, amyotrophic lateral sclerosis, and prion diseases. The misfolded proteins involved in these diseases form self-templating oligomeric assemblies that recruit further correctly folded protein and induce their conversion. Over time, this leads to the formation of high molecular and mostly fibrillar aggregates that are increasingly inefficient at converting normal protein. Evidence from a multitude of in vitro models suggests that fibrils are fragmented to form new seeds, which can convert further normal protein and also spread to neighboring cells as observed in vivo. While fragmentation and seed generation were suggested as crucial steps in aggregate formation decades ago, the biological pathways involved remain largely unknown. Here, we show that mechanisms of aggregate clearance—namely the mammalian Hsp70–Hsp40–Hsp110 tri-chaperone system, macro-autophagy, and the proteasome system—may not only be protective, but also play a role in fragmentation. We further review the challenges that exist in determining the precise contribution of these mechanisms to protein misfolding diseases and suggest future directions to resolve these issues.
Collapse
|
50
|
Releasing the Lockdown: An Emerging Role for the Ubiquitin-Proteasome System in the Breakdown of Transient Protein Inclusions. Biomolecules 2020; 10:biom10081168. [PMID: 32784966 PMCID: PMC7463783 DOI: 10.3390/biom10081168] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2020] [Revised: 08/06/2020] [Accepted: 08/08/2020] [Indexed: 12/20/2022] Open
Abstract
Intracellular protein inclusions are diverse cellular entities with distinct biological properties. They vary in their protein content, sequestration sites, physiological function, conditions for their generation, and turnover rates. Major distinctions have been recognized between stationary amyloids and dynamic, misfolded protein deposits. The former being a dead end for irreversibly misfolded proteins, hence, cleared predominantly by autophagy, while the latter consists of a protein-quality control mechanism, important for cell endurance, where proteins are sequestered during proteotoxic stress and resolved upon its relief. Accordingly, the disaggregation of transient inclusions is a regulated process consisting of protein solubilization, followed by a triage step to either refolding or to ubiquitin-mediated degradation. Recent studies have demonstrated an indispensable role in disaggregation for components of the chaperone and the ubiquitin-proteasome systems. These include heat-shock chaperones of the 40/70/100 kDa families, the proteasome, proteasome substrate shuttling factors, and deubiquitylating enzymes. Thus, a functional link has been established between the chaperone machinery that extracts proteins from transient deposits and 26S proteasome-dependent disaggregation, indicative of a coordinated process. In this review, we discuss data emanating from these important studies and subsequently consolidate the information in the form of a working model for the disaggregation mechanism.
Collapse
|