1
|
Polimeni B, Marasca F, Ranzani V, Bodega B. IRescue: uncertainty-aware quantification of transposable elements expression at single cell level. Nucleic Acids Res 2024; 52:e93. [PMID: 39271103 PMCID: PMC11514465 DOI: 10.1093/nar/gkae793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 08/22/2024] [Accepted: 09/02/2024] [Indexed: 09/15/2024] Open
Abstract
Transposable elements (TEs) are mobile DNA repeats known to shape the evolution of eukaryotic genomes. In complex organisms, they exhibit tissue-specific transcription. However, understanding their role in cellular diversity across most tissues remains a challenge, when employing single-cell RNA sequencing (scRNA-seq), due to their widespread presence and genetic similarity. To address this, we present IRescue (Interspersed Repeats single-cell quantifier), a software capable of estimating the expression of TE subfamilies at the single-cell level. IRescue incorporates a unique UMI deduplication algorithm to rectify sequencing errors and employs an Expectation-Maximization procedure to effectively redistribute the counts of multi-mapping reads. Our study showcases the precision of IRescue through analysis of both simulated and real single cell and nuclei RNA-seq data from human colorectal cancer, brain, skin aging, and PBMCs during SARS-CoV-2 infection and recovery. By linking the expression patterns of TE signatures to specific conditions and biological contexts, we unveil insights into their potential roles in cellular heterogeneity and disease progression.
Collapse
Affiliation(s)
- Benedetto Polimeni
- INGM, Istituto Nazionale di Genetica Molecolare ‘Romeo ed Enrica Invernizzi’, Milan, Italy
- Department of Biosciences, University of Milan, Milan, Italy
| | - Federica Marasca
- INGM, Istituto Nazionale di Genetica Molecolare ‘Romeo ed Enrica Invernizzi’, Milan, Italy
| | - Valeria Ranzani
- INGM, Istituto Nazionale di Genetica Molecolare ‘Romeo ed Enrica Invernizzi’, Milan, Italy
| | - Beatrice Bodega
- INGM, Istituto Nazionale di Genetica Molecolare ‘Romeo ed Enrica Invernizzi’, Milan, Italy
- Department of Biosciences, University of Milan, Milan, Italy
| |
Collapse
|
2
|
Burattin FV, Vadalà R, Panepuccia M, Ranzani V, Crosti M, Colombo FA, Ruberti C, Erba E, Prati D, Nittoli T, Montini G, Ronchi A, Pugni L, Mosca F, Ricciardi S, Abrignani S, Pietrasanta C, Marasca F, Bodega B. LINE1 modulate human T cell function by regulating protein synthesis during the life span. SCIENCE ADVANCES 2024; 10:eado2134. [PMID: 39383231 PMCID: PMC11463280 DOI: 10.1126/sciadv.ado2134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Accepted: 09/04/2024] [Indexed: 10/11/2024]
Abstract
The molecular mechanisms responsible for the heightened reactivity of quiescent T cells in human early life remain largely elusive. Our previous research identified that quiescent adult naïve CD4+ T cells express LINE1 (long interspersed nuclear elements 1) spliced in previously unknown isoforms, and their down-regulation marks the transition to activation. Here, we unveil that neonatal naïve T cell quiescence is characterized by enhanced energy production and protein synthesis. This phenotype is associated with the absence of LINE1 expression attributed to tonic T cell receptor/mTOR complex 1 (mTORC1) signaling and (polypyrimidine tract-binding protein 1 (PTBP1)-mediated LINE1 splicing suppression. The absence of LINE1 expression primes these cells for rapid execution of the activation program by directly regulating protein synthesis. LINE1 expression progressively increases in childhood and adults, peaking in elderly individuals, and, by decreasing protein synthesis, contributes to immune senescence in aging. Our study proposes LINE1 as a critical player of human T cell function across the human life span.
Collapse
Affiliation(s)
- Filippo V. Burattin
- Istituto Nazionale di Genetica Molecolare “Romeo ed Enrica Invernizzi” (INGM), Milan 20122, Italy
- Department of Biosciences, University of Milan, Milan 20133, Italy
| | - Rebecca Vadalà
- Department of Biosciences, University of Milan, Milan 20133, Italy
| | - Michele Panepuccia
- Istituto Nazionale di Genetica Molecolare “Romeo ed Enrica Invernizzi” (INGM), Milan 20122, Italy
- SEMM, European School of Molecular Medicine, Milan 20139, Italy
| | - Valeria Ranzani
- Istituto Nazionale di Genetica Molecolare “Romeo ed Enrica Invernizzi” (INGM), Milan 20122, Italy
| | - Mariacristina Crosti
- Istituto Nazionale di Genetica Molecolare “Romeo ed Enrica Invernizzi” (INGM), Milan 20122, Italy
| | - Federico A. Colombo
- Istituto Nazionale di Genetica Molecolare “Romeo ed Enrica Invernizzi” (INGM), Milan 20122, Italy
- Department of Biosciences, University of Milan, Milan 20133, Italy
| | - Cristina Ruberti
- Department of Biosciences, University of Milan, Milan 20133, Italy
| | - Elisa Erba
- Department of Transfusion Medicine and Hematology, Fondazione IRCCS Cà Granda Ospedale Maggiore Policlinico, Milan 20122, Italy
| | - Daniele Prati
- Department of Transfusion Medicine and Hematology, Fondazione IRCCS Cà Granda Ospedale Maggiore Policlinico, Milan 20122, Italy
| | - Teresa Nittoli
- Nephrology, Dialysis and Transplant Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan 20122, Italy
| | - Giovanni Montini
- Nephrology, Dialysis and Transplant Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan 20122, Italy
- Department of Clinical Sciences and Community Health, University of Milan, Milan 20122, Italy
| | - Andrea Ronchi
- Neonatal Intensive Care Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan 20122, Italy
| | - Lorenza Pugni
- Neonatal Intensive Care Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan 20122, Italy
| | - Fabio Mosca
- Department of Clinical Sciences and Community Health, University of Milan, Milan 20122, Italy
- Neonatal Intensive Care Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan 20122, Italy
| | - Sara Ricciardi
- Istituto Nazionale di Genetica Molecolare “Romeo ed Enrica Invernizzi” (INGM), Milan 20122, Italy
- Department of Biosciences, University of Milan, Milan 20133, Italy
| | - Sergio Abrignani
- Istituto Nazionale di Genetica Molecolare “Romeo ed Enrica Invernizzi” (INGM), Milan 20122, Italy
- Department of Clinical Sciences and Community Health, University of Milan, Milan 20122, Italy
| | - Carlo Pietrasanta
- Department of Clinical Sciences and Community Health, University of Milan, Milan 20122, Italy
- Neonatal Intensive Care Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan 20122, Italy
| | - Federica Marasca
- Istituto Nazionale di Genetica Molecolare “Romeo ed Enrica Invernizzi” (INGM), Milan 20122, Italy
| | - Beatrice Bodega
- Istituto Nazionale di Genetica Molecolare “Romeo ed Enrica Invernizzi” (INGM), Milan 20122, Italy
- Department of Biosciences, University of Milan, Milan 20133, Italy
| |
Collapse
|
3
|
Coronado-Zamora M, González J. Transposons contribute to the functional diversification of the head, gut, and ovary transcriptomes across Drosophila natural strains. Genome Res 2023; 33:1541-1553. [PMID: 37793782 PMCID: PMC10620055 DOI: 10.1101/gr.277565.122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Accepted: 08/08/2023] [Indexed: 10/06/2023]
Abstract
Transcriptomes are dynamic, with cells, tissues, and body parts expressing particular sets of transcripts. Transposable elements (TEs) are a known source of transcriptome diversity; however, studies often focus on a particular type of chimeric transcript, analyze single body parts or cell types, or are based on incomplete TE annotations from a single reference genome. In this work, we have implemented a method based on de novo transcriptome assembly that minimizes the potential sources of errors while identifying a comprehensive set of gene-TE chimeras. We applied this method to the head, gut, and ovary dissected from five Drosophila melanogaster natural strains, with individual reference genomes available. We found that ∼19% of body part-specific transcripts are gene-TE chimeras. Overall, chimeric transcripts contribute a mean of 43% to the total gene expression, and they provide protein domains for DNA binding, catalytic activity, and DNA polymerase activity. Our comprehensive data set is a rich resource for follow-up analysis. Moreover, because TEs are present in virtually all species sequenced to date, their role in spatially restricted transcript expression is likely not exclusive to the species analyzed in this work.
Collapse
Affiliation(s)
| | - Josefa González
- Institute of Evolutionary Biology, CSIC, UPF, Barcelona 08003, Spain
| |
Collapse
|
4
|
Enguita FJ, Leitão AL, Mattick JS. RNA Regulatory Networks 2.0. Int J Mol Sci 2023; 24:ijms24109001. [PMID: 37240347 DOI: 10.3390/ijms24109001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Accepted: 05/18/2023] [Indexed: 05/28/2023] Open
Abstract
The central role of RNA molecules in cell biology has been an expanding subject of study since the proposal of the "RNA world" hypothesis 60 years ago [...].
Collapse
Affiliation(s)
- Francisco J Enguita
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Av. Prof. Egas Moniz, 1649-028 Lisboa, Portugal
| | - Ana Lúcia Leitão
- Department of Chemistry, NOVA School of Science and Technology, FCT NOVA, Universidade NOVA de Lisboa, 2829-516 Caparica, Portugal
| | - John S Mattick
- School of Biotechnology and Biomolecular Sciences, UNSW Sydney, Sydney, NSW 2052, Australia
| |
Collapse
|
5
|
Gasparotto E, Burattin FV, Di Gioia V, Panepuccia M, Ranzani V, Marasca F, Bodega B. Transposable Elements Co-Option in Genome Evolution and Gene Regulation. Int J Mol Sci 2023; 24:ijms24032610. [PMID: 36768929 PMCID: PMC9917352 DOI: 10.3390/ijms24032610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 01/26/2023] [Accepted: 01/28/2023] [Indexed: 01/31/2023] Open
Abstract
The genome is no longer deemed as a fixed and inert item but rather as a moldable matter that is continuously evolving and adapting. Within this frame, Transposable Elements (TEs), ubiquitous, mobile, repetitive elements, are considered an alive portion of the genomes to date, whose functions, although long considered "dark", are now coming to light. Here we will review that, besides the detrimental effects that TE mobilization can induce, TEs have shaped genomes in their current form, promoting genome sizing, genomic rearrangements and shuffling of DNA sequences. Although TEs are mostly represented in the genomes by evolutionarily old, short, degenerated, and sedentary fossils, they have been thoroughly co-opted by the hosts as a prolific and original source of regulatory instruments for the control of gene transcription and genome organization in the nuclear space. For these reasons, the deregulation of TE expression and/or activity is implicated in the onset and progression of several diseases. It is likely that we have just revealed the outermost layers of TE functions. Further studies on this portion of the genome are required to unlock novel regulatory functions that could also be exploited for diagnostic and therapeutic approaches.
Collapse
Affiliation(s)
- Erica Gasparotto
- Fondazione INGM, Istituto Nazionale di Genetica Molecolare “Enrica e Romeo Invernizzi”, 20122 Milan, Italy
- SEMM, European School of Molecular Medicine, 20139 Milan, Italy
| | - Filippo Vittorio Burattin
- Fondazione INGM, Istituto Nazionale di Genetica Molecolare “Enrica e Romeo Invernizzi”, 20122 Milan, Italy
- Department of Biosciences, University of Milan, 20133 Milan, Italy
| | - Valeria Di Gioia
- Fondazione INGM, Istituto Nazionale di Genetica Molecolare “Enrica e Romeo Invernizzi”, 20122 Milan, Italy
- SEMM, European School of Molecular Medicine, 20139 Milan, Italy
| | - Michele Panepuccia
- Fondazione INGM, Istituto Nazionale di Genetica Molecolare “Enrica e Romeo Invernizzi”, 20122 Milan, Italy
| | - Valeria Ranzani
- Fondazione INGM, Istituto Nazionale di Genetica Molecolare “Enrica e Romeo Invernizzi”, 20122 Milan, Italy
| | - Federica Marasca
- Fondazione INGM, Istituto Nazionale di Genetica Molecolare “Enrica e Romeo Invernizzi”, 20122 Milan, Italy
- Department of Clinical Sciences and Community Health, University of Milan, 20122 Milan, Italy
| | - Beatrice Bodega
- Fondazione INGM, Istituto Nazionale di Genetica Molecolare “Enrica e Romeo Invernizzi”, 20122 Milan, Italy
- Department of Biosciences, University of Milan, 20133 Milan, Italy
- Correspondence:
| |
Collapse
|
6
|
Pinto A, Cunha C, Chaves R, Butchbach MER, Adega F. Comprehensive In Silico Analysis of Retrotransposon Insertions within the Survival Motor Neuron Genes Involved in Spinal Muscular Atrophy. BIOLOGY 2022; 11:824. [PMID: 35741345 PMCID: PMC9219815 DOI: 10.3390/biology11060824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Revised: 05/19/2022] [Accepted: 05/25/2022] [Indexed: 11/16/2022]
Abstract
Transposable elements (TEs) are interspersed repetitive and mobile DNA sequences within the genome. Better tools for evaluating TE-derived sequences have provided insights into the contribution of TEs to human development and disease. Spinal muscular atrophy (SMA) is an autosomal recessive motor neuron disease that is caused by deletions or mutations in the Survival Motor Neuron 1 (SMN1) gene but retention of its nearly perfect orthologue SMN2. Both genes are highly enriched in TEs. To establish a link between TEs and SMA, we conducted a comprehensive, in silico analysis of TE insertions within the SMN1/2 loci of SMA, carrier and healthy genomes. We found an Alu insertion in the promoter region and one L1 element in the 3'UTR that may play an important role in alternative promoter as well as in alternative transcriptional termination. Additionally, several intronic Alu repeats may influence alternative splicing via RNA circularization and causes the presence of new alternative exons. These Alu repeats present throughout the genes are also prone to recombination events that could lead to SMN1 exons deletions and, ultimately, SMA. TE characterization of the SMA genomic region could provide for a better understanding of the implications of TEs on human disease and genomic evolution.
Collapse
Affiliation(s)
- Albano Pinto
- Laboratory of Cytogenomics and Animal Genomics (CAG), Department of Genetics and Biotechnology (DGB), University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal; (A.P.); (C.C.); (R.C.)
- BioISI-Biosystems & Integrative Sciences Institute, Faculty of Sciences, University of Lisboa, 1749-016 Lisbon, Portugal
| | - Catarina Cunha
- Laboratory of Cytogenomics and Animal Genomics (CAG), Department of Genetics and Biotechnology (DGB), University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal; (A.P.); (C.C.); (R.C.)
- BioISI-Biosystems & Integrative Sciences Institute, Faculty of Sciences, University of Lisboa, 1749-016 Lisbon, Portugal
| | - Raquel Chaves
- Laboratory of Cytogenomics and Animal Genomics (CAG), Department of Genetics and Biotechnology (DGB), University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal; (A.P.); (C.C.); (R.C.)
- BioISI-Biosystems & Integrative Sciences Institute, Faculty of Sciences, University of Lisboa, 1749-016 Lisbon, Portugal
| | - Matthew E. R. Butchbach
- Division of Neurology, Nemours Children’s Hospital Delaware, Wilmington, DE 19803, USA;
- Department of Biological Sciences, University of Delaware, Newark, DE 19716, USA
- Department of Pediatrics, Sidney Kimmel College of Medicine, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Filomena Adega
- Laboratory of Cytogenomics and Animal Genomics (CAG), Department of Genetics and Biotechnology (DGB), University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal; (A.P.); (C.C.); (R.C.)
- BioISI-Biosystems & Integrative Sciences Institute, Faculty of Sciences, University of Lisboa, 1749-016 Lisbon, Portugal
| |
Collapse
|
7
|
Transposable Elements and Human Diseases: Mechanisms and Implication in the Response to Environmental Pollutants. Int J Mol Sci 2022; 23:ijms23052551. [PMID: 35269693 PMCID: PMC8910135 DOI: 10.3390/ijms23052551] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 02/21/2022] [Accepted: 02/22/2022] [Indexed: 02/06/2023] Open
Abstract
Transposable elements (TEs) are recognized as major players in genome plasticity and evolution. The high abundance of TEs in the human genome, especially the Alu and Long Interspersed Nuclear Element-1 (LINE-1) repeats, makes them responsible for the molecular origin of several diseases. This involves several molecular mechanisms that are presented in this review: insertional mutation, DNA recombination and chromosomal rearrangements, modification of gene expression, as well as alteration of epigenetic regulations. This literature review also presents some of the more recent and/or more classical examples of human diseases in which TEs are involved. Whether through insertion of LINE-1 or Alu elements that cause chromosomal rearrangements, or through epigenetic modifications, TEs are widely implicated in the origin of human cancers. Many other human diseases can have a molecular origin in TE-mediated chromosomal recombination or alteration of gene structure and/or expression. These diseases are very diverse and include hemoglobinopathies, metabolic and neurological diseases, and common diseases. Moreover, TEs can also have an impact on aging. Finally, the exposure of individuals to stresses and environmental contaminants seems to have a non-negligible impact on the epigenetic derepression and mobility of TEs, which can lead to the development of diseases. Thus, improving our knowledge of TEs may lead to new potential diagnostic markers of diseases.
Collapse
|
8
|
Marasca F, Sinha S, Vadalà R, Polimeni B, Ranzani V, Paraboschi EM, Burattin FV, Ghilotti M, Crosti M, Negri ML, Campagnoli S, Notarbartolo S, Sartore-Bianchi A, Siena S, Prati D, Montini G, Viale G, Torre O, Harari S, Grifantini R, Soldà G, Biffo S, Abrignani S, Bodega B. LINE1 are spliced in non-canonical transcript variants to regulate T cell quiescence and exhaustion. Nat Genet 2022; 54:180-193. [PMID: 35039641 DOI: 10.1038/s41588-021-00989-7] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Accepted: 11/18/2021] [Indexed: 12/12/2022]
Abstract
How gene expression is controlled to preserve human T cell quiescence is poorly understood. Here we show that non-canonical splicing variants containing long interspersed nuclear element 1 (LINE1) enforce naive CD4+ T cell quiescence. LINE1-containing transcripts are derived from CD4+ T cell-specific genes upregulated during T cell activation. In naive CD4+ T cells, LINE1-containing transcripts are regulated by the transcription factor IRF4 and kept at chromatin by nucleolin; these transcripts act in cis, hampering levels of histone 3 (H3) lysine 36 trimethyl (H3K36me3) and stalling gene expression. T cell activation induces LINE1-containing transcript downregulation by the splicing suppressor PTBP1 and promotes expression of the corresponding protein-coding genes by the elongating factor GTF2F1 through mTORC1. Dysfunctional T cells, exhausted in vitro or tumor-infiltrating lymphocytes (TILs), accumulate LINE1-containing transcripts at chromatin. Remarkably, depletion of LINE1-containing transcripts restores TIL effector function. Our study identifies a role for LINE1 elements in maintaining T cell quiescence and suggests that an abundance of LINE1-containing transcripts is critical for T cell effector function and exhaustion.
Collapse
Affiliation(s)
- Federica Marasca
- INGM, Istituto Nazionale di Genetica Molecolare 'Romeo ed Enrica Invernizzi', Milan, Italy
- Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy
| | - Shruti Sinha
- INGM, Istituto Nazionale di Genetica Molecolare 'Romeo ed Enrica Invernizzi', Milan, Italy
| | - Rebecca Vadalà
- INGM, Istituto Nazionale di Genetica Molecolare 'Romeo ed Enrica Invernizzi', Milan, Italy
- Ph.D. Program in Translational and Molecular Medicine, DIMET, University of Milan-Bicocca, Monza, Italy
| | - Benedetto Polimeni
- INGM, Istituto Nazionale di Genetica Molecolare 'Romeo ed Enrica Invernizzi', Milan, Italy
- Ph.D. Program in Translational and Molecular Medicine, DIMET, University of Milan-Bicocca, Monza, Italy
| | - Valeria Ranzani
- INGM, Istituto Nazionale di Genetica Molecolare 'Romeo ed Enrica Invernizzi', Milan, Italy
| | - Elvezia Maria Paraboschi
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, Milan, Italy
- Humanitas Clinical and Research Center, IRCCS, Rozzano, Milan, Italy
| | | | - Marco Ghilotti
- INGM, Istituto Nazionale di Genetica Molecolare 'Romeo ed Enrica Invernizzi', Milan, Italy
| | - Mariacristina Crosti
- INGM, Istituto Nazionale di Genetica Molecolare 'Romeo ed Enrica Invernizzi', Milan, Italy
| | - Maria Luce Negri
- INGM, Istituto Nazionale di Genetica Molecolare 'Romeo ed Enrica Invernizzi', Milan, Italy
| | | | - Samuele Notarbartolo
- INGM, Istituto Nazionale di Genetica Molecolare 'Romeo ed Enrica Invernizzi', Milan, Italy
| | - Andrea Sartore-Bianchi
- Niguarda Cancer Center, Grande Ospedale Metropolitano Niguarda, Milan, Italy
- Department of Oncology and Hematology-Oncology, University of Milan, Milan, Italy
| | - Salvatore Siena
- Niguarda Cancer Center, Grande Ospedale Metropolitano Niguarda, Milan, Italy
- Department of Oncology and Hematology-Oncology, University of Milan, Milan, Italy
| | - Daniele Prati
- Department of Transfusion Medicine and Hematology, Fondazione IRCCS Cà Granda, Ospedale Maggiore Policlinico, Milan, Italy
| | - Giovanni Montini
- Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy
- Pediatric Nephrology and Dialysis Unit, Fondazione IRCCS Cà Granda, Ospedale Maggiore Policlinico, Milan, Italy
| | - Giuseppe Viale
- University of Milan, European Institute of Oncology IRCCS, Milan, Italy
| | - Olga Torre
- Department of Medical Sciences, San Giuseppe Hospital MultiMedica IRCCS, Milan, Italy
| | - Sergio Harari
- Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy
- Department of Medical Sciences, San Giuseppe Hospital MultiMedica IRCCS, Milan, Italy
| | - Renata Grifantini
- INGM, Istituto Nazionale di Genetica Molecolare 'Romeo ed Enrica Invernizzi', Milan, Italy
- CheckmAb Srl, Milan, Italy
| | - Giulia Soldà
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, Milan, Italy
- Humanitas Clinical and Research Center, IRCCS, Rozzano, Milan, Italy
| | - Stefano Biffo
- INGM, Istituto Nazionale di Genetica Molecolare 'Romeo ed Enrica Invernizzi', Milan, Italy
- Department of Biosciences, University of Milan, Milan, Italy
| | - Sergio Abrignani
- INGM, Istituto Nazionale di Genetica Molecolare 'Romeo ed Enrica Invernizzi', Milan, Italy.
- Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy.
| | - Beatrice Bodega
- INGM, Istituto Nazionale di Genetica Molecolare 'Romeo ed Enrica Invernizzi', Milan, Italy.
- Department of Biosciences, University of Milan, Milan, Italy.
| |
Collapse
|