1
|
Ye MP, Lu WL, Rao QF, Li MJ, Hong HQ, Yang XY, Liu H, Kong JL, Guan RX, Huang Y, Hu QH, Wu FR. Mitochondrial stress induces hepatic stellate cell activation in response to the ATF4/TRIB3 pathway stimulation. J Gastroenterol 2023; 58:668-681. [PMID: 37150773 DOI: 10.1007/s00535-023-01996-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Accepted: 04/19/2023] [Indexed: 05/09/2023]
Abstract
BACKGROUND The activation of hepatic stellate cells (HSCs) is the key step in the pathogenesis of liver fibrosis, which directly leads to fibrotic pathological changes in the hepatic tissue. Mitochondrial stress exacerbates inflammatory diseases by inducing pathogenic shifts in normal cells. However, the role of mitochondrial stress in HSC activation remains to be elucidated. METHODS: We analyzed the effect of mitochondrial stress on HSC activation. An in vivo hepatic fibrosis model was established by intraperitoneal injection of 40% carbon tetrachloride (CCl4) for 12 weeks. Additionally, using in vitro approach, HSC-T6 cells were treated with 10 ng/mL platelet-derived growth factor-BB (PDGF-BB) for 24 h. RESULTS Transcriptional activator 4 (ATF4) is highly expressed in fibrotic liver tissue samples and activated HSCs. We found that AAV8-shRNA-Atf4 alleviated liver fibrosis in rats. ATF4 promoted the activation of HSCs, which was induced by mitochondrial stress. The mechanisms involved ATF4 binding to a specific region of the tribble homologue 3 (TRIB3) promoter. Further, TRIB3 promoted HSCs activation mediated by mitochondrial stress. CONCLUSIONS ATF4 induces mitochondrial stress by upregulating TRIB3, leading to the activation of HSCs. Therefore, the inhibition of ATF4 during mitochondrial stress may be a promising therapeutic target for liver fibrosis.
Collapse
Affiliation(s)
- Man-Ping Ye
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, 230032, People's Republic of China
- The Key Laboratory of Anti-Inflammatory and Immune Medicines, Ministry of Education, Hefei, 230032, People's Republic of China
- Institute for Liver Diseases of Anhui Medical University, Hefei, 230032, People's Republic of China
| | - Wei-Li Lu
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, 230032, People's Republic of China
- The Key Laboratory of Anti-Inflammatory and Immune Medicines, Ministry of Education, Hefei, 230032, People's Republic of China
- Institute for Liver Diseases of Anhui Medical University, Hefei, 230032, People's Republic of China
| | - Qiu-Fan Rao
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, 230032, People's Republic of China
- The Key Laboratory of Anti-Inflammatory and Immune Medicines, Ministry of Education, Hefei, 230032, People's Republic of China
- Institute for Liver Diseases of Anhui Medical University, Hefei, 230032, People's Republic of China
| | - Meng-Jun Li
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, 230032, People's Republic of China
- The Key Laboratory of Anti-Inflammatory and Immune Medicines, Ministry of Education, Hefei, 230032, People's Republic of China
- Institute for Liver Diseases of Anhui Medical University, Hefei, 230032, People's Republic of China
| | - Hai-Qin Hong
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, 230032, People's Republic of China
- The Key Laboratory of Anti-Inflammatory and Immune Medicines, Ministry of Education, Hefei, 230032, People's Republic of China
- Institute for Liver Diseases of Anhui Medical University, Hefei, 230032, People's Republic of China
| | - Xue-Ying Yang
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, 230032, People's Republic of China
- The Key Laboratory of Anti-Inflammatory and Immune Medicines, Ministry of Education, Hefei, 230032, People's Republic of China
- Institute for Liver Diseases of Anhui Medical University, Hefei, 230032, People's Republic of China
| | - Hui Liu
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, 230032, People's Republic of China
- The Key Laboratory of Anti-Inflammatory and Immune Medicines, Ministry of Education, Hefei, 230032, People's Republic of China
- Institute for Liver Diseases of Anhui Medical University, Hefei, 230032, People's Republic of China
| | - Jin-Ling Kong
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, 230032, People's Republic of China
- The Key Laboratory of Anti-Inflammatory and Immune Medicines, Ministry of Education, Hefei, 230032, People's Republic of China
- Institute for Liver Diseases of Anhui Medical University, Hefei, 230032, People's Republic of China
| | - Ru-Xue Guan
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, 230032, People's Republic of China
- The Key Laboratory of Anti-Inflammatory and Immune Medicines, Ministry of Education, Hefei, 230032, People's Republic of China
- Institute for Liver Diseases of Anhui Medical University, Hefei, 230032, People's Republic of China
| | - Yan Huang
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, 230032, People's Republic of China
- The Key Laboratory of Anti-Inflammatory and Immune Medicines, Ministry of Education, Hefei, 230032, People's Republic of China
- Institute for Liver Diseases of Anhui Medical University, Hefei, 230032, People's Republic of China
| | - Qing-Hua Hu
- State Key Laboratory of Natural Medicines, Key Laboratory of Drug Metabolism and Pharmacokinetics, China Pharmaceutical University, Nanjing, 210009, People's Republic of China.
- School of Pharmacy, China Pharmaceutical University, Nanjing, 211198, People's Republic of China.
| | - Fan-Rong Wu
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, 230032, People's Republic of China.
- The Key Laboratory of Anti-Inflammatory and Immune Medicines, Ministry of Education, Hefei, 230032, People's Republic of China.
- Institute for Liver Diseases of Anhui Medical University, Hefei, 230032, People's Republic of China.
| |
Collapse
|
2
|
Ramadori P, Woitok MM, Estévez-Vázquez O, Benedé-Ubieto R, Leal-Lassalle H, Lamas-Paz A, Guo F, Fabre J, Otto J, Verwaayen A, Reissing J, Bruns T, Erschfeld S, Haas U, Paffen D, Nelson LJ, Vaquero J, Bañares R, Trautwein C, Cubero FJ, Liedtke C, Nevzorova YA. Lack of Cyclin E1 in hepatocytes aggravates ethanol-induced liver injury and hepatic steatosis in experimental murine model of acute and chronic alcohol-associated liver disease. Biochim Biophys Acta Mol Basis Dis 2023; 1869:166646. [PMID: 36736843 DOI: 10.1016/j.bbadis.2023.166646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 01/13/2023] [Accepted: 01/17/2023] [Indexed: 02/04/2023]
Abstract
BACKGROUND Cyclin E1 is the regulatory subunit of cyclin-dependent kinase 2 (Cdk2) and one of the central players in cell cycle progression. We recently showed its crucial role for initiation of liver fibrosis and hepatocarcinogenesis. In the present study, we investigated the role of Cyclin E1 in the development of alcohol-associated liver disease (ALD). METHODS Mice with constitutive (E1-/-), hepatocyte-specific (Cyclin E1Δhepa), or intestinal-epithelial-cell-specific (Cyclin E1ΔIEC) inactivation of Cyclin E1 and corresponding wild type littermate controls (WT) were administered either a Lieber-DeCarli ethanol diet (LDE) for 3 weeks or acute ethanol binges (6 g/kg) through oral gavage. Serum parameters of liver functionality were measured; hepatic tissues were collected for biochemical and histological analyses. RESULTS The administration of acute EtOH binge and chronic LDE diet to E1-/- mice enhanced hepatic steatosis, worsened liver damage and triggered body weight loss. Similarly, in the acute EtOH binge model, Cyclin E1Δhepa mice revealed a significantly worsened liver phenotype. In contrast, inactivation of Cyclin E1 only in intestinal epithelial cell (IECs)did not lead to any significant changes in comparison to WT mice after acute EtOH challenge. Remarkably, both acute and chronic EtOH administration in E1-/- animals resulted in increased levels of ADH and decreased expression of ALDH1/2. The additional application of a pan-Cdk inhibitor (S-CR8) further promoted liver damage in EtOH-treated WT mice. CONCLUSION Our data point to a novel unexpected role of Cyclin E1 in hepatocytes for alcohol metabolism, which seems to be independent of the canonical Cyclin E1/Cdk2 function as a cell cycle regulator.
Collapse
Affiliation(s)
- Pierluigi Ramadori
- Division of Chronic Inflammation and Cancer, German Cancer Research Center Heidelberg (DKFZ), Heidelberg, Germany
| | | | - Olga Estévez-Vázquez
- Department of Immunology, Ophthalmology and ENT, Complutense University School of Medicine, Madrid, Spain
| | - Raquel Benedé-Ubieto
- Department of Immunology, Ophthalmology and ENT, Complutense University School of Medicine, Madrid, Spain; Department of Genetics, Physiology and Microbiology, Faculty of Biology, Complutense University, Madrid, Spain
| | - Hector Leal-Lassalle
- Department of Immunology, Ophthalmology and ENT, Complutense University School of Medicine, Madrid, Spain
| | - Arantza Lamas-Paz
- Department of Immunology, Ophthalmology and ENT, Complutense University School of Medicine, Madrid, Spain; 12 de Octubre Health Research Institute (imas12), Madrid, Spain
| | - Feifei Guo
- Department of Immunology, Ophthalmology and ENT, Complutense University School of Medicine, Madrid, Spain; Department of Obstetrics and Gynaecology, the Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, China
| | - Jeanne Fabre
- Polytech Angers, Département Génie Biologique et Santé, Angers, France
| | - Julia Otto
- Department of Internal Medicine III, University Hospital RWTH, Aachen, Germany
| | - Anna Verwaayen
- Department of Internal Medicine III, University Hospital RWTH, Aachen, Germany
| | - Johanna Reissing
- Department of Internal Medicine III, University Hospital RWTH, Aachen, Germany
| | - Tony Bruns
- Department of Internal Medicine III, University Hospital RWTH, Aachen, Germany
| | - Stephanie Erschfeld
- Department of Internal Medicine III, University Hospital RWTH, Aachen, Germany
| | - Ute Haas
- Department of Internal Medicine III, University Hospital RWTH, Aachen, Germany
| | - Daniela Paffen
- Department of Internal Medicine III, University Hospital RWTH, Aachen, Germany
| | - Leonard J Nelson
- Institute for Bioengineering (IBioE), School of Engineering, The University of Edinburgh, Faraday Building, Edinburgh EH9 3 JL, UK
| | - Javier Vaquero
- Department of Immunology, Ophthalmology and ENT, Complutense University School of Medicine, Madrid, Spain; Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), Madrid, Spain,; Servicio de Aparato Digestivo, Hospital General Universitario Gregorio Marañón, Madrid, Spain,; Instituto de Investigación Sanitaria Gregorio Marañón (IiSGM), Madrid, Spain
| | - Rafael Bañares
- Department of Immunology, Ophthalmology and ENT, Complutense University School of Medicine, Madrid, Spain; Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), Madrid, Spain,; Servicio de Aparato Digestivo, Hospital General Universitario Gregorio Marañón, Madrid, Spain,; Instituto de Investigación Sanitaria Gregorio Marañón (IiSGM), Madrid, Spain
| | - Christian Trautwein
- Department of Internal Medicine III, University Hospital RWTH, Aachen, Germany
| | - Francisco Javier Cubero
- Department of Immunology, Ophthalmology and ENT, Complutense University School of Medicine, Madrid, Spain; Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), Madrid, Spain,; Instituto de Investigación Sanitaria Gregorio Marañón (IiSGM), Madrid, Spain
| | - Christian Liedtke
- Department of Internal Medicine III, University Hospital RWTH, Aachen, Germany
| | - Yulia A Nevzorova
- Department of Internal Medicine III, University Hospital RWTH, Aachen, Germany; Department of Immunology, Ophthalmology and ENT, Complutense University School of Medicine, Madrid, Spain; Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), Madrid, Spain,; Instituto de Investigación Sanitaria Gregorio Marañón (IiSGM), Madrid, Spain.
| |
Collapse
|
3
|
He XL, Hu YH, Chen JM, Zhang DQ, Yang HL, Zhang LZ, Mu YP, Zhang H, Chen GF, Liu W, Liu P. SNS-032 attenuates liver fibrosis by anti-active hepatic stellate cells via inhibition of cyclin dependent kinase 9. Front Pharmacol 2022; 13:1016552. [PMID: 36313366 PMCID: PMC9597511 DOI: 10.3389/fphar.2022.1016552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Accepted: 09/29/2022] [Indexed: 11/13/2022] Open
Abstract
Liver fibrosis is a common pathological process of all chronic liver diseases. Hepatic stellate cells (HSCs) play a central role in the development of liver fibrosis. Cyclin-dependent kinase 9 (CDK9) is a cell cycle kinase that regulates mRNA transcription and elongation. A CDK9 inhibitor SNS-032 has been reported to have good effects in anti-tumor. However, the role of SNS-032 in the development of liver fibrosis is unclear. In this study, SNS-032 was found to alleviate hepatic fibrosis by inhibiting the activation and inducing the apoptosis of active HSCs in carbon tetrachloride-induced model mice. In vitro, SNS-032 inhibited the activation and proliferation of active HSCs and induced the apoptosis of active HSCs by downregulating the expression of CDK9 and its downstream signal transductors, such phosphorylated RNA polymerase II and Bcl-2. CDK9 short hairpin RNA was transfected into active HSCs to further elucidate the mechanism of the above effects. Similar results were observed in active HSCs after CDK9 knockdown. In active HSCs with CDK9 knockdown, the expression levels of CDK9, phosphorylated RNA polymerase II, XIAP, Bcl-2, Mcl-1, and ɑ-SMA significantly decreased, whereas those of cleaved-PARP1 and Bax decreased prominently. These results indicated that SNS-032 is a potential drug and CDK9 might be a new prospective target for the treatment of liver fibrosis.
Collapse
Affiliation(s)
- Xiao-Li He
- Key Laboratory of Liver and Kidney Diseases (Ministry of Education), Institute of Liver Diseases, Shanghai Key Laboratory of Traditional Chinese Clinical Medicine, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Department of Endocrinology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yong-Hong Hu
- Key Laboratory of Liver and Kidney Diseases (Ministry of Education), Institute of Liver Diseases, Shanghai Key Laboratory of Traditional Chinese Clinical Medicine, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Jia-Mei Chen
- Key Laboratory of Liver and Kidney Diseases (Ministry of Education), Institute of Liver Diseases, Shanghai Key Laboratory of Traditional Chinese Clinical Medicine, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Ding-Qi Zhang
- Key Laboratory of Liver and Kidney Diseases (Ministry of Education), Institute of Liver Diseases, Shanghai Key Laboratory of Traditional Chinese Clinical Medicine, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Hai-Lin Yang
- Key Laboratory of Liver and Kidney Diseases (Ministry of Education), Institute of Liver Diseases, Shanghai Key Laboratory of Traditional Chinese Clinical Medicine, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Lin-Zhang Zhang
- Key Laboratory of Liver and Kidney Diseases (Ministry of Education), Institute of Liver Diseases, Shanghai Key Laboratory of Traditional Chinese Clinical Medicine, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Shanghai Frontiers Science Center of TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yong-Ping Mu
- Key Laboratory of Liver and Kidney Diseases (Ministry of Education), Institute of Liver Diseases, Shanghai Key Laboratory of Traditional Chinese Clinical Medicine, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Hua Zhang
- Key Laboratory of Liver and Kidney Diseases (Ministry of Education), Institute of Liver Diseases, Shanghai Key Laboratory of Traditional Chinese Clinical Medicine, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Gao-Feng Chen
- Key Laboratory of Liver and Kidney Diseases (Ministry of Education), Institute of Liver Diseases, Shanghai Key Laboratory of Traditional Chinese Clinical Medicine, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Wei Liu
- Key Laboratory of Liver and Kidney Diseases (Ministry of Education), Institute of Liver Diseases, Shanghai Key Laboratory of Traditional Chinese Clinical Medicine, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Ping Liu
- Key Laboratory of Liver and Kidney Diseases (Ministry of Education), Institute of Liver Diseases, Shanghai Key Laboratory of Traditional Chinese Clinical Medicine, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Shanghai Frontiers Science Center of TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
4
|
Luan SH, Yang YQ, Ye MP, Liu H, Rao QF, Kong JL, Wu FR. ASIC1a promotes hepatic stellate cell activation through the exosomal miR-301a-3p/BTG1 pathway. Int J Biol Macromol 2022; 211:128-139. [PMID: 35561854 DOI: 10.1016/j.ijbiomac.2022.05.041] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Revised: 05/04/2022] [Accepted: 05/05/2022] [Indexed: 12/11/2022]
Abstract
Activation of hepatic stellate cells (HSCs) is a key cause of liver fibrosis. However, the mechanisms leading to the activation of HSCs are not fully understood. In the pathological process, acid-sensing ion channel 1a (ASIC1a) is widely involved in the development of inflammatory diseases, suggesting that ASIC1a may play an important role in liver fibrosis. We found that in an acidic environment, ASIC1a leads to HSC-T6 cell activation. Meanwhile, exosomes produced by activated HSC-T6 cells (HSC-EXOs) can be reabsorbed by quiescent HSC-T6 cells to promote their activation. Exosomes mainly carry miRNAs involved in intercellular information exchange. We performed exosome miRNA whole transcriptome sequencing. The results indicated that the acidic environment could alter the miRNA expression profile in the exosomes of HSC-T6 cells. Further studies revealed that ASIC1a promotes the activation of HSCs by regulating miR-301a-3p targeting B-cell translocation gene 1 (BTG1). In conclusion, our study found that ASIC1a may affect HSC activation through the exosomal miR-301a-3p/BTG1 axis, and inhibiting ASIC1a may be a promising treatment strategy for liver fibrosis.
Collapse
Affiliation(s)
- Shao-Hua Luan
- Institute for Liver Diseases of Anhui Medical University, Hefei, China; The Key Laboratory of Anti-inflammatory and Immune Medicines, Ministry of Education, Hefei, China; Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, China
| | | | - Man-Ping Ye
- Institute for Liver Diseases of Anhui Medical University, Hefei, China; The Key Laboratory of Anti-inflammatory and Immune Medicines, Ministry of Education, Hefei, China; Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, China
| | - Hui Liu
- Institute for Liver Diseases of Anhui Medical University, Hefei, China; The Key Laboratory of Anti-inflammatory and Immune Medicines, Ministry of Education, Hefei, China; Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, China
| | - Qiu-Fan Rao
- Institute for Liver Diseases of Anhui Medical University, Hefei, China; The Key Laboratory of Anti-inflammatory and Immune Medicines, Ministry of Education, Hefei, China; Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, China
| | - Jin-Ling Kong
- Institute for Liver Diseases of Anhui Medical University, Hefei, China; The Key Laboratory of Anti-inflammatory and Immune Medicines, Ministry of Education, Hefei, China; Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, China
| | - Fan-Rong Wu
- Institute for Liver Diseases of Anhui Medical University, Hefei, China; The Key Laboratory of Anti-inflammatory and Immune Medicines, Ministry of Education, Hefei, China; Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, China.
| |
Collapse
|
5
|
Liedtke C, Nevzorova YA, Luedde T, Zimmermann H, Kroy D, Strnad P, Berres ML, Bernhagen J, Tacke F, Nattermann J, Spengler U, Sauerbruch T, Wree A, Abdullah Z, Tolba RH, Trebicka J, Lammers T, Trautwein C, Weiskirchen R. Liver Fibrosis-From Mechanisms of Injury to Modulation of Disease. Front Med (Lausanne) 2022; 8:814496. [PMID: 35087852 PMCID: PMC8787129 DOI: 10.3389/fmed.2021.814496] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2021] [Accepted: 12/15/2021] [Indexed: 12/12/2022] Open
Abstract
The Transregional Collaborative Research Center "Organ Fibrosis: From Mechanisms of Injury to Modulation of Disease" (referred to as SFB/TRR57) was funded for 13 years (2009-2021) by the German Research Council (DFG). This consortium was hosted by the Medical Schools of the RWTH Aachen University and Bonn University in Germany. The SFB/TRR57 implemented combined basic and clinical research to achieve detailed knowledge in three selected key questions: (i) What are the relevant mechanisms and signal pathways required for initiating organ fibrosis? (ii) Which immunological mechanisms and molecules contribute to organ fibrosis? and (iii) How can organ fibrosis be modulated, e.g., by interventional strategies including imaging and pharmacological approaches? In this review we will summarize the liver-related key findings of this consortium gained within the last 12 years on these three aspects of liver fibrogenesis. We will highlight the role of cell death and cell cycle pathways as well as nutritional and iron-related mechanisms for liver fibrosis initiation. Moreover, we will define and characterize the major immune cell compartments relevant for liver fibrogenesis, and finally point to potential signaling pathways and pharmacological targets that turned out to be suitable to develop novel approaches for improved therapy and diagnosis of liver fibrosis. In summary, this review will provide a comprehensive overview about the knowledge on liver fibrogenesis and its potential therapy gained by the SFB/TRR57 consortium within the last decade. The kidney-related research results obtained by the same consortium are highlighted in an article published back-to-back in Frontiers in Medicine.
Collapse
Affiliation(s)
- Christian Liedtke
- Department of Internal Medicine III, University Hospital RWTH Aachen, Aachen, Germany
| | - Yulia A. Nevzorova
- Department of Internal Medicine III, University Hospital RWTH Aachen, Aachen, Germany
- Department of Immunology, Ophthalmology and Otolaryngology, School of Medicine, Complutense University Madrid, Madrid, Spain
| | - Tom Luedde
- Medical Faculty, Department of Gastroenterology, Hepatology and Infectious Diseases, University Hospital Duesseldorf, Heinrich Heine University, Duesseldorf, Germany
| | - Henning Zimmermann
- Department of Internal Medicine III, University Hospital RWTH Aachen, Aachen, Germany
| | - Daniela Kroy
- Department of Internal Medicine III, University Hospital RWTH Aachen, Aachen, Germany
| | - Pavel Strnad
- Department of Internal Medicine III, University Hospital RWTH Aachen, Aachen, Germany
| | - Marie-Luise Berres
- Department of Internal Medicine III, University Hospital RWTH Aachen, Aachen, Germany
| | - Jürgen Bernhagen
- Chair of Vascular Biology, Institute for Stroke and Dementia Research (ISD), Klinikum der Universität München (KUM), Ludwig-Maximilians-University (LMU), Munich, Germany
| | - Frank Tacke
- Department of Hepatology and Gastroenterology, Charité Universitätsmedizin Berlin, Campus Virchow-Klinikum and Campus Charité Mitte, Berlin, Germany
| | - Jacob Nattermann
- Department of Internal Medicine I, University Hospital Bonn, Bonn, Germany
| | - Ulrich Spengler
- Department of Internal Medicine I, University Hospital Bonn, Bonn, Germany
| | - Tilman Sauerbruch
- Department of Internal Medicine I, University Hospital Bonn, Bonn, Germany
| | - Alexander Wree
- Department of Hepatology and Gastroenterology, Charité Universitätsmedizin Berlin, Campus Virchow-Klinikum and Campus Charité Mitte, Berlin, Germany
| | - Zeinab Abdullah
- Institute for Molecular Medicine and Experimental Immunology, University Hospital of Bonn, Bonn, Germany
| | - René H. Tolba
- Institute for Laboratory Animal Science and Experimental Surgery, RWTH Aachen University Hospital, Aachen, Germany
| | - Jonel Trebicka
- Department of Internal Medicine I, University Hospital Frankfurt, Frankfurt, Germany
| | - Twan Lammers
- Institute for Experimental Molecular Imaging, RWTH Aachen University Hospital, Aachen, Germany
| | - Christian Trautwein
- Department of Internal Medicine III, University Hospital RWTH Aachen, Aachen, Germany
| | - Ralf Weiskirchen
- Institute of Molecular Pathobiochemistry, Experimental Gene Therapy and Clinical Chemistry (IFMPEGKC), University Hospital RWTH Aachen, Aachen, Germany
| |
Collapse
|
6
|
Synthesis of Novel 2-Thiouracil-5-Sulfonamide Derivatives as Potent Inducers of Cell Cycle Arrest and CDK2A Inhibition Supported by Molecular Docking. Int J Mol Sci 2021; 22:ijms222111957. [PMID: 34769385 PMCID: PMC8584424 DOI: 10.3390/ijms222111957] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2021] [Revised: 10/19/2021] [Accepted: 10/29/2021] [Indexed: 01/16/2023] Open
Abstract
In an effort to discover potent anticancer agents, 2-thiouracil-5-sulfonamides derivatives were designed and synthesized. The cytotoxic activity of all synthesized compounds was investigated against four human cancer cell lines viz A-2780 (ovarian), HT-29 (colon), MCF-7 (breast), and HepG2 (liver). Compounds 6b,d-g, and 7b showed promising anticancer activity and significant inhibition of CDK2A. Moreover, they were all safe when tested on WI38 normal cells with high selectivity index for cancer cells. Flow cytometric analysis for the most active compound 6e displayed induction of cell growth arrest at G1/S phase (A-2780 cells), S phase (HT-29 and MCF-7 cells), and G2/M phase (HepG2 cells) and stimulated the apoptotic death of all cancer cells. Moreover, 6e was able to cause cycle arrest indirectly through enhanced expression of cell cycle inhibitors p21 and p27. Finally, molecular docking of compound 6e endorsed its proper binding to CDK2A, which clarifies its potent anticancer activity.
Collapse
|
7
|
El-Hameed RHA, El-Shanbaky HM, Mohamed MS. Utility of Certain 2-Furanone Derivatives for Synthesis of Different Heterocyclic Compounds and Testing their Anti-cancer Activity. Med Chem 2021; 18:323-336. [PMID: 34097592 DOI: 10.2174/1573406417666210604103135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 03/13/2021] [Accepted: 04/05/2021] [Indexed: 11/22/2022]
Abstract
BACKGROUND 2-Furanones attracted great attention due to their biological activities. They also have the ability to convert to several biologically active heterocyclic and non-heterocyclic compounds, especially as anti-cancer agents. OBJECTIVES This research aims to assist in the development process of novel cytotoxic agents through synthesizing certain 2-furanone derivatives, using them as starting materials for the preparation of novel heterocyclic and non-heterocyclic compounds, and then testing the synthesized derivatives for their anti-cancer activities. METHODS All the newly synthesized compounds were fully characterized by elemental analysis, IR, Mass, and 1H-NMR spectroscopy. 18 synthesized compounds were selected by National Cancer Institute (NCI) for testing against 60 cell lines, and the active compound was tested as MAPK14 and VEGFR2-inhibitor using Staurosporine as standard. RESULTS Compound 3a showed higher activity against several cell lines, including leukemia (SR), Non-Small Cell Lung Cancer (NCI-H460), colon cancer (HCT-116), ovarian cancer (OVCAR-4), renal cancer (786-0, ACHN and UO-31), and finally breast cancer (T-47D). It also had better inhibition activity against MAPK14 than the used reference. CONCLUSION Compound 3a has promising anti-cancer activities compared to the used standards and may need further modifications and investigations.
Collapse
Affiliation(s)
- Rania Helmy Abd El-Hameed
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Helwan University, Ain-Helwan, Helwan, Cairo, Egypt
| | - Hend Medhat El-Shanbaky
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Helwan University, Ain-Helwan, Helwan, Cairo, Egypt
| | - Mosaad Sayed Mohamed
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Helwan University, Ain-Helwan, Helwan, Cairo, Egypt
| |
Collapse
|
8
|
El-Hameed RHA, Fatahala SS, Sayed AI. Synthesis of Some Novel Benzimidazole Derivatives as Anticancer Agent, and Evaluation for CDK2 Inhibition Activity. Med Chem 2021; 18:238-248. [PMID: 33663368 DOI: 10.2174/1573406417666210304100830] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2020] [Revised: 11/30/2020] [Accepted: 11/30/2020] [Indexed: 11/22/2022]
Abstract
BACKGROUND Thiobezimidazoles reveal various pharmacological activities due to similarities with many natural and synthetic molecules, they can easily interact with biomolecules of living systems. OBJECTIVE A series of substituted 2-thiobezimidazoles has been synthesized .Twelve final compounds were screened for in vitro anti-cancer activities against sixty different cell-lines. METHODS The spectral data of the synthesized compounds were characterized. Docking study for active anticancer compounds and CDK2/CyclinA2 Kinase assay against standard reference; Imatinib were performed. RESULTS Two compounds (3c&3l) from the examined series revealed effective antitumor activity in vitro against two-cancer cell lines (Colon Cancer (HCT-116) and Renal Cancer (TK-10). The docking study of synthesized molecules discovered a requisite binding pose in CDK-ATP binding pocket. 3c &3l were promoted in the CDK2/CyclinA2 Kinase assay against standard reference Imatinib. CONCLUSION Against all tested compounds ; two compounds 3c &3l were found active against two types of cell-lines.
Collapse
Affiliation(s)
- Rania Helmy Abd El-Hameed
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Helwan University, Ain-Helwan, Helwan, Cairo. Egypt
| | - Samar Said Fatahala
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Helwan University, Ain-Helwan, Helwan, Cairo. Egypt
| | - Amira Ibrahim Sayed
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Helwan University, Ain-Helwan, Helwan, Cairo. Egypt
| |
Collapse
|