1
|
Xiang Y, Xu Z, Qian R, Wu D, Lin L, Shen J, Zhu P, Chen F, Liu C. Scutellarin Protects against Myocardial Ischemia-reperfusion Injury by Enhancing Aerobic Glycolysis through miR-34c-5p/ALDOA Axis. Int J Appl Basic Med Res 2024; 14:85-93. [PMID: 38912363 PMCID: PMC11189264 DOI: 10.4103/ijabmr.ijabmr_415_23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 01/10/2024] [Accepted: 02/22/2024] [Indexed: 06/25/2024] Open
Abstract
Background Aerobic glycolysis has recently demonstrated promising potential in mitigating the effects of ischemia-reperfusion (IR) injury. Scutellarin (Scu) possesses various cardioprotective properties that warrant investigation. To mimic IR injury in vitro, this study employed hypoxia/reoxygenation (H/R) injury. Methods and Results First, we conducted an assessment of the protective properties of Scu against HR in H9c2 cells, encompassing inflammation damage, apoptosis injury, and oxidative stress. Then, we verified the effects of Scu on the Warburg effect in H9c2 cells during HR injury. The findings indicated that Scu augmented aerobic glycolysis by upregulating p-PKM2/PKM2 levels. Following, we built a panel of six long noncoding RNAs and seventeen microRNAs that were reported to mediate the Warburg effect. Based on the results, miR-34c-5p was selected for further experiments. Then, we observed Scu could mitigate the HR-induced elevation of miR-34c-5p. Upregulation of miR-34c-5p could weaken the beneficial impacts of Scu in cellular viability, inflammatory damage, oxidative stress, and the facilitation of the Warburg effect. Subsequently, our investigation revealed a decrease in both ALDOA mRNA and protein levels following HR injury, which could be restored by Scu administration. Downregulation of ALDOA or Mimic of miR-34c-5p could reduce these effects induced by Scu. Conclusions Scu provides cardioprotective effects against IR injury by upregulating the Warburg effect via miR-34c-5p/ALDOA.
Collapse
Affiliation(s)
- Yijia Xiang
- Department of Cardiology, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui Central Hospital, Lishui, China
| | - Zhongjiao Xu
- Department of Cardiology, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui Central Hospital, Lishui, China
| | - Renyi Qian
- Department of Cardiology, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui Central Hospital, Lishui, China
| | - Daying Wu
- Department of Cardiology, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui Central Hospital, Lishui, China
| | - Li Lin
- Department of Cardiology, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui Central Hospital, Lishui, China
| | - Jiayi Shen
- Department of Cardiology, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui Central Hospital, Lishui, China
| | - Pengchong Zhu
- Department of Cardiology, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui Central Hospital, Lishui, China
| | - Fenghui Chen
- Department of Cardiology, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui Central Hospital, Lishui, China
| | - Chong Liu
- Department of Cardiology, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui Central Hospital, Lishui, China
| |
Collapse
|
2
|
Chang M, Wang H, Lei Y, Yang H, Xu J, Tang S. Proteomic study of left ventricle and cortex in rats after myocardial infarction. Sci Rep 2024; 14:6866. [PMID: 38514755 PMCID: PMC10958002 DOI: 10.1038/s41598-024-56816-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Accepted: 03/11/2024] [Indexed: 03/23/2024] Open
Abstract
Myocardial infarction (MI) induces neuroinflammation indirectly, chronic neuroinflammation may cause neurodegenerative diseases. Changes in the proteomics of heart and brain tissue after MI may shed new light on the mechanisms involved in neuroinflammation. This study explored brain and heart protein changes after MI with a data-independent acquisition (DIA) mode proteomics approach. Permanent ligation of the left anterior descending coronary artery (LAD) was performed in the heart of rats, and the immunofluorescence of microglia in the brain cortex was performed at 1d, 3d, 5d, and 7d after MI to detect the neuroinflammation. Then proteomics was accomplished to obtain the vital proteins in the heart and brain post-MI. The results show that the number of microglia was significantly increased in the Model-1d group, the Model-3d group, the Model-5d group, and the Model-7d group compared to the Sham group. Various proteins were obtained through DIA proteomics. Linking to key targets of brain disease, 14 proteins were obtained in the brain cortex. Among them, elongation of very long chain fatty acids protein 5 (ELOVL5) and ATP-binding cassette subfamily G member 4 (ABCG4) were verified through western blotting (WB). The results of WB were consistent with the proteomics results. Therefore, these proteins may be related to the pathogenesis of neuroinflammation after MI.
Collapse
Affiliation(s)
- Mengli Chang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Huanhuan Wang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Yuxin Lei
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Hongjun Yang
- Experimental Research Center, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Jing Xu
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Shihuan Tang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China.
| |
Collapse
|
3
|
Tao H, Dong L, Shan X, Li L, Chen H. MicroRNA-32-3p facilitates cerebral ischemia/reperfusion injury through inhibiting Cab39/AMPK. Int Immunopharmacol 2023; 121:110504. [PMID: 37379707 DOI: 10.1016/j.intimp.2023.110504] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 05/27/2023] [Accepted: 06/05/2023] [Indexed: 06/30/2023]
Abstract
Oxidative stress is a key pathogenic factor of cerebral ischemia/reperfusion (I/R) injury. MicroRNA-32-3p (miR-32-3p) plays critical roles in regulating ischemic diseases; however, its role in oxidative stress and cerebral I/R injury remains elusive. Primary cortical neurons and rats were treated with the agomir, antagomir and matched controls of miR-32-3p, and then received oxygen glucose deprivation/reperfusion (OGD/R) or I/R stimulation. To investigate the involvement of AMP-activated protein kinase (AMPK) and calcium-binding protein 39 (Cab39), a pharmacological inhibitor and small interfering RNA were used in vivo and in vitro. Herein, we found that miR-32-3p was upregulated in OGD/R-treated neurons and I/R-injured brains, and that inhibiting miR-32-3p by the miR-32-3p antagomir dramatically alleviated oxidative stress and neural death in OGD/R-stimulated primary cortical neurons. Conversely, overexpressing miR-32-3p by the miR-32-3p agomir further aggravated OGD/R-induced neural death and oxidative damage in primary cortical neurons. Meanwhile, we observed that the miR-32-3p antagomir prevented, while the miR-32-3p agomir facilitated neural death, oxidative damage and cerebral I/R injury in vivo. Mechanistically, miR-32-3p bound to the 3'-untranslated regions of Cab39, inhibited its protein level and subsequently inactivated AMPK. Conversely, treatment with the miR-32-3p antagomir upregulated Cab39 and activated AMPK, thereby attenuating oxidative damage and cerebral I/R injury. Moreover, inhibiting AMPK or Cab39 dramatically blocked the miR-32-3p antagomir-mediated beneficial effects against cerebral I/R injury in vivo and in vitro. miR-32-3p plays critical roles in neural death and oxidative damage upon I/R stimulation, and it is a novel target to treat cerebral I/R injury.
Collapse
Affiliation(s)
- Hongmiao Tao
- Medical College, Jinhua Polytechnic, Jinhua 321017, Zhejiang, China.
| | - Lihua Dong
- Medical College, Jinhua Polytechnic, Jinhua 321017, Zhejiang, China
| | - Xiaoyun Shan
- Department of Clinical Laboratory, Jinhua Municipal Central Hospital, Jinhua 321000, Zhejiang, China
| | - Lin Li
- College of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, Zhejiang, China
| | - Haohao Chen
- Medical College, Jinhua Polytechnic, Jinhua 321017, Zhejiang, China
| |
Collapse
|
4
|
Mun SA, Park J, Kang JY, Park T, Jin M, Yang J, Eom SH. Structural and biochemical insights into Zn 2+-bound EF-hand proteins, EFhd1 and EFhd2. IUCRJ 2023; 10:233-245. [PMID: 36862489 PMCID: PMC9980392 DOI: 10.1107/s2052252523001501] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Accepted: 02/20/2023] [Indexed: 06/18/2023]
Abstract
EF-hand proteins, which contain a Ca2+-binding EF-hand motif, are involved in regulating diverse cellular functions. Ca2+ binding induces conformational changes that modulate the activities of EF-hand proteins. Moreover, these proteins occasionally modify their activities by coordinating metals other than Ca2+, including Mg2+, Pb2+ and Zn2+, within their EF-hands. EFhd1 and EFhd2 are homologous EF-hand proteins with similar structures. Although separately localized within cells, both are actin-binding proteins that modulate F-actin rearrangement through Ca2+-independent actin-binding and Ca2+-dependent actin-bundling activity. Although Ca2+ is known to affect the activities of EFhd1 and EFhd2, it is not known whether their actin-related activities are affected by other metals. Here, the crystal structures of the EFhd1 and EFhd2 core domains coordinating Zn2+ ions within their EF-hands are reported. The presence of Zn2+ within EFhd1 and EFhd2 was confirmed by analyzing anomalous signals and the difference between anomalous signals using data collected at the peak positions as well as low-energy remote positions at the Zn K-edge. EFhd1 and EFhd2 were also found to exhibit Zn2+-independent actin-binding and Zn2+-dependent actin-bundling activity. This suggests the actin-related activities of EFhd1 and EFhd2 could be regulated by Zn2+ as well as Ca2+.
Collapse
Affiliation(s)
- Sang A Mun
- School of Life Sciences, Gwangju Institute of Science and Technology, Gwangju, Republic of Korea
- Steitz Center for Structural Biology, Gwangju Institute of Science and Technology, Gwangju, Republic of Korea
| | - Jongseo Park
- School of Life Sciences, Gwangju Institute of Science and Technology, Gwangju, Republic of Korea
- Steitz Center for Structural Biology, Gwangju Institute of Science and Technology, Gwangju, Republic of Korea
| | - Jung Youn Kang
- School of Life Sciences, Gwangju Institute of Science and Technology, Gwangju, Republic of Korea
- Steitz Center for Structural Biology, Gwangju Institute of Science and Technology, Gwangju, Republic of Korea
| | - Taein Park
- Steitz Center for Structural Biology, Gwangju Institute of Science and Technology, Gwangju, Republic of Korea
- Department of Chemistry, Gwangju Institute of Science and Technology, Gwangju, Republic of Korea
| | - Minwoo Jin
- School of Life Sciences, Gwangju Institute of Science and Technology, Gwangju, Republic of Korea
- Steitz Center for Structural Biology, Gwangju Institute of Science and Technology, Gwangju, Republic of Korea
| | - Jihyeong Yang
- School of Life Sciences, Gwangju Institute of Science and Technology, Gwangju, Republic of Korea
- Steitz Center for Structural Biology, Gwangju Institute of Science and Technology, Gwangju, Republic of Korea
| | - Soo Hyun Eom
- School of Life Sciences, Gwangju Institute of Science and Technology, Gwangju, Republic of Korea
- Steitz Center for Structural Biology, Gwangju Institute of Science and Technology, Gwangju, Republic of Korea
- Department of Chemistry, Gwangju Institute of Science and Technology, Gwangju, Republic of Korea
| |
Collapse
|
5
|
Thylur Puttalingaiah R. Role of Swiprosin-1/EFHD2 as a biomarker in the development of chronic diseases. Life Sci 2022; 297:120462. [PMID: 35276221 DOI: 10.1016/j.lfs.2022.120462] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Revised: 03/01/2022] [Accepted: 03/02/2022] [Indexed: 10/18/2022]
Abstract
Swiprosin-1 or EFHD2, is a Ca2+ binding actin protein and its expression has been shown to be distinct in various cell types. The expression of swiprosin-1 is upregulated during the activation of immune cells, epithelial and endothelial cells. The expression of swiprosin-1 is regulated by diverse signaling pathways that are contingent upon the specific type of cells. The aim of this review is to summarize and provide an overview of the role of swiprosin-1 in pathophysiological conditions of cancers, cardiovascular diseases, diabetic nephropathy, neuropsychiatric diseases, and in the process of inflammation, immune response, and inflammatory diseases. Novel approaches for the targeting of swiprosin-1 as a biomarker in the early detection and prevention of various development of chronic diseases are also explored.
Collapse
Affiliation(s)
- Ramesh Thylur Puttalingaiah
- Stanley S. Scott Cancer Center, Louisiana State University Health Sciences Center, 1700 Tulane Avenue, Room 945-B1, New Orleans, LA 70112, USA..
| |
Collapse
|