1
|
Schmieg H, Ferling H, Bucher KA, Jacob S, Regnery J, Schrader H, Schwaiger J, Friesen A. Brodifacoum causes coagulopathy, hemorrhages, and mortality in rainbow trout (Oncorhynchus mykiss) at environmentally relevant hepatic residue concentrations. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2025; 289:117629. [PMID: 39808875 DOI: 10.1016/j.ecoenv.2024.117629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 12/20/2024] [Accepted: 12/25/2024] [Indexed: 01/16/2025]
Abstract
Widely used second-generation anticoagulant rodenticides like brodifacoum are classified as persistent, bioaccumulative, and toxic. Widespread exposure of terrestrial and avian non-target species is well-known and recently hepatic anticoagulant rodenticide residues have been detected in wild fish. However, no sufficient data exist to interpret the effects of these findings on fish health. In order to assess the potential impact of rodenticide residues on fish, we exposed rainbow trout (Oncorhynchus mykiss) to brodifacoum-spiked feed. In a first experiment, individually kept trout (body weight ca. 200 g) were exposed to a single dose of brodifacoum and observed for 15 days. In a second experiment, fish (body weight ca. 330 g) were kept in groups and fed every 7 or 8 days with brodifacoum-spiked feed for up to 60 days. Sampling of trout every 15 days over the 60 days period allowed monitoring of brodifacoum concentrations in serum, liver, and muscle tissue, as well as occurring effects over the course of the experiment. In both experiments, brodifacoum doses of ≥ 75 µg/kg body weight caused prolonged or non-measurable blood coagulation times. Disturbed hemostasis led to hemorrhages and anemia with significantly decreased albumin levels. In the 60 days-experiment, brodifacoum doses ≥ 100 µg/kg body weight caused additionally discoloration, apathy, and anorexia, resulting in reduced weight gain, and ultimately mortality. The delay until the onset of overt symptoms (14-17 days) highlights the importance of test duration while investigating effects of anticoagulant rodenticides in fish. The lowest hepatic brodifacoum concentration associated with effects in trout was on average 122.6 ng/g liver wet weight, which is in the range of previously reported brodifacoum residues in wild fish. These findings illustrate the risks associated with the use of anticoagulant rodenticides for freshwater fish and reinforce the need to stipulate all available and appropriate risk mitigation measures to prevent emissions at source.
Collapse
Affiliation(s)
- Hannah Schmieg
- Unit 73 Aquatic Toxicology, Operational Management Wielenbach, Bavarian Environment Agency, Demollstr. 31, Wielenbach 82407, Germany
| | - Hermann Ferling
- Unit 73 Aquatic Toxicology, Operational Management Wielenbach, Bavarian Environment Agency, Demollstr. 31, Wielenbach 82407, Germany
| | - Karina Annika Bucher
- Unit 73 Aquatic Toxicology, Operational Management Wielenbach, Bavarian Environment Agency, Demollstr. 31, Wielenbach 82407, Germany
| | - Stefanie Jacob
- Section IV 1.2 Biocides, German Environment Agency, Dessau-Roßlau 06813, Germany
| | - Julia Regnery
- Department of Biochemistry, Ecotoxicology, Federal Institute of Hydrology, Am Mainzer Tor 1, Koblenz 56068, Germany
| | - Hannah Schrader
- Unit 73 Aquatic Toxicology, Operational Management Wielenbach, Bavarian Environment Agency, Demollstr. 31, Wielenbach 82407, Germany.
| | - Julia Schwaiger
- Unit 73 Aquatic Toxicology, Operational Management Wielenbach, Bavarian Environment Agency, Demollstr. 31, Wielenbach 82407, Germany
| | - Anton Friesen
- Section IV 1.2 Biocides, German Environment Agency, Dessau-Roßlau 06813, Germany
| |
Collapse
|
2
|
Sivagurunathan U, Izquierdo M, Tseng Y, Prabhu PAJ, Zamorano MJ, Robaina L, Domínguez D. Effects of the Interaction between Dietary Vitamin D 3 and Vitamin K 3 on Growth, Skeletal Anomalies, and Expression of Bone and Calcium Metabolism-Related Genes in Juvenile Gilthead Seabream ( Sparus aurata). Animals (Basel) 2024; 14:2808. [PMID: 39409757 PMCID: PMC11475414 DOI: 10.3390/ani14192808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 09/25/2024] [Accepted: 09/26/2024] [Indexed: 10/20/2024] Open
Abstract
The interaction between vitamin D and vitamin K is crucial for regulating bone metabolism and maintaining calcium homeostasis across diverse animal species due to their complementary roles in calcium metabolism and bone health. However, research on this interaction of vitamin D and K in fish, particularly Mediterranean species like gilthead seabream, is limited or not studied. This study aimed to understand the effects of different dietary combinations of vitamin D3 and K3 on juvenile gilthead seabream. Accordingly, seabream juveniles were fed with varying combinations of vitamin D3/vitamin K3 (mg/kg diet) for 3 months: (0.07/0.01), (0.20/0.58), (0.19/1.65), (0.51/0.74), (0.56/1.00). At the end of the trial, survival, growth, body morphology, serum calcitriol, and vertebral mineral composition remained unaffected by varying vitamin levels, while gene expression patterns related to bone formation, resorption, and calcium regulation in various tissues were significantly influenced by both vitamins and their interaction. Gilthead seabream juveniles fed the 0.07/0.01 mg/kg diet upregulated calcium-regulating genes in the gills, indicating an effort to enhance calcium absorption to compensate for dietary deficiencies. Conversely, an increase in vitamin D3 and K3 up to 0.19 and 1.65 mg/kg, respectively, upregulated bone formation, bone remodeling, and calcium homeostasis-related gene expression in vertebra and other tissues. On the contrary, a dietary increase in these vitamins up to 0.56 mg/kg vitamin D3 and 1.00 mg/kg vitamin K3 downregulated calcium metabolism-related genes in tissues, suggesting an adverse interaction resulting from elevated levels of these vitamins in the diet. Hence, sustaining an equilibrium in the dietary intake of vitamin D3 and vitamin K3, in an appropriately combined form, may potentially induce interactions between the vitamins, contributing to favorable effects on bone development and calcium regulation in gilthead seabream juveniles.
Collapse
Affiliation(s)
- Ulaganathan Sivagurunathan
- Grupo de Investigación en Acuicultura (GIA), Instituto Universitario en Acuicultura Sostenible y Ecosistemas Marinos (IU-ECOAQUA), University of Las Palmas de Gran Canaria, Carretera de Taliarte, s/n, 35200 Telde, Spain; (M.I.); (Y.T.); (M.J.Z.); (L.R.); (D.D.)
| | - Marisol Izquierdo
- Grupo de Investigación en Acuicultura (GIA), Instituto Universitario en Acuicultura Sostenible y Ecosistemas Marinos (IU-ECOAQUA), University of Las Palmas de Gran Canaria, Carretera de Taliarte, s/n, 35200 Telde, Spain; (M.I.); (Y.T.); (M.J.Z.); (L.R.); (D.D.)
| | - Yiyen Tseng
- Grupo de Investigación en Acuicultura (GIA), Instituto Universitario en Acuicultura Sostenible y Ecosistemas Marinos (IU-ECOAQUA), University of Las Palmas de Gran Canaria, Carretera de Taliarte, s/n, 35200 Telde, Spain; (M.I.); (Y.T.); (M.J.Z.); (L.R.); (D.D.)
| | - Philip Antony Jesu Prabhu
- Institute of Marine Research (IMR), Fish Nutrition Program, 5005 Bergen, Norway;
- Nutrition and Feed Technology Group, Nofima, 5141 Bergen, Norway
| | - María Jesús Zamorano
- Grupo de Investigación en Acuicultura (GIA), Instituto Universitario en Acuicultura Sostenible y Ecosistemas Marinos (IU-ECOAQUA), University of Las Palmas de Gran Canaria, Carretera de Taliarte, s/n, 35200 Telde, Spain; (M.I.); (Y.T.); (M.J.Z.); (L.R.); (D.D.)
| | - Lidia Robaina
- Grupo de Investigación en Acuicultura (GIA), Instituto Universitario en Acuicultura Sostenible y Ecosistemas Marinos (IU-ECOAQUA), University of Las Palmas de Gran Canaria, Carretera de Taliarte, s/n, 35200 Telde, Spain; (M.I.); (Y.T.); (M.J.Z.); (L.R.); (D.D.)
| | - David Domínguez
- Grupo de Investigación en Acuicultura (GIA), Instituto Universitario en Acuicultura Sostenible y Ecosistemas Marinos (IU-ECOAQUA), University of Las Palmas de Gran Canaria, Carretera de Taliarte, s/n, 35200 Telde, Spain; (M.I.); (Y.T.); (M.J.Z.); (L.R.); (D.D.)
- Institute of Marine Research (IMR), Fish Nutrition Program, 5005 Bergen, Norway;
| |
Collapse
|
3
|
Bouza C, Losada AP, Fernández C, Álvarez-Dios JA, de Azevedo AM, Barreiro A, Costas D, Quiroga MI, Martínez P, Vázquez S. A comprehensive coding and microRNA transcriptome of vertebral bone in postlarvae and juveniles of Senegalese sole (Solea senegalensis). Genomics 2024; 116:110802. [PMID: 38290593 DOI: 10.1016/j.ygeno.2024.110802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 01/22/2024] [Accepted: 01/26/2024] [Indexed: 02/01/2024]
Abstract
Understanding vertebral bone development is essential to prevent skeletal malformations in farmed fish related to genetic and environmental factors. This is an important issue in Solea senegalensis, with special impact of spinal anomalies in postlarval and juvenile stages. Vertebral bone transcriptomics in farmed fish mainly comes from coding genes, and barely on miRNA expression. Here, we used RNA-seq of spinal samples to obtain the first comprehensive coding and miRNA transcriptomic repertoire for postlarval and juvenile vertebral bone, covering different vertebral phenotypes and egg-incubation temperatures related to skeleton health in S. senegalensis. Coding genes, miRNA and pathways regulating bone development and growth were identified. Differential transcriptomic profiles and suggestive mRNA-miRNA interactions were found between postlarvae and juveniles. Bone-related genes and functions were associated with the extracellular matrix, development and regulatory processes, calcium binding, retinol and lipid metabolism or response to stimulus, including those revealed by the miRNA targets related to signaling, cellular and metabolic processes, growth, cell proliferation and biological adhesion. Pathway enrichment associated with fish skeleton were identified when comparing postlarvae and juveniles: growth and bone development functions in postlarvae, while actin cytoskeleton, focal adhesion and proteasome related to bone remodeling in juveniles. The transcriptome data disclosed candidate coding and miRNA gene markers related to bone cell processes, references for functional studies of the anosteocytic bone of S. senegalensis. This study establishes a broad transcriptomic foundation to study healthy and anomalous spines under early thermal conditions across life-stages in S. senegalensis, and for comparative analysis of skeleton homeostasis and pathology in fish and vertebrates.
Collapse
Affiliation(s)
- Carmen Bouza
- Department of Zoology, Genetics and Physical Anthropology, Faculty of Veterinary, Campus Terra, Universidade de Santiago de Compostela, 27002 Lugo, Spain.
| | - Ana P Losada
- Department of Anatomy, Animal Production and Veterinary Clinical Sciences, Faculty of Veterinary, Campus Terra, Universidade de Santiago de Compostela, 27002 Lugo, Spain
| | - Carlos Fernández
- Department of Zoology, Genetics and Physical Anthropology, Faculty of Veterinary, Campus Terra, Universidade de Santiago de Compostela, 27002 Lugo, Spain
| | - José A Álvarez-Dios
- Department of Applied Mathematics, Faculty of Mathematics, Universidade de Santiago de Compostela, 15705 Santiago de Compostela, Spain
| | - Ana Manuela de Azevedo
- Department of Anatomy, Animal Production and Veterinary Clinical Sciences, Faculty of Veterinary, Campus Terra, Universidade de Santiago de Compostela, 27002 Lugo, Spain
| | - Andrés Barreiro
- Department of Anatomy, Animal Production and Veterinary Clinical Sciences, Faculty of Veterinary, Campus Terra, Universidade de Santiago de Compostela, 27002 Lugo, Spain
| | - Damián Costas
- Centro de Investigación Mariña, Universidade de Vigo, ECIMAT, Vigo 36331, Spain
| | - María Isabel Quiroga
- Department of Anatomy, Animal Production and Veterinary Clinical Sciences, Faculty of Veterinary, Campus Terra, Universidade de Santiago de Compostela, 27002 Lugo, Spain
| | - Paulino Martínez
- Department of Zoology, Genetics and Physical Anthropology, Faculty of Veterinary, Campus Terra, Universidade de Santiago de Compostela, 27002 Lugo, Spain
| | - Sonia Vázquez
- Department of Anatomy, Animal Production and Veterinary Clinical Sciences, Faculty of Veterinary, Campus Terra, Universidade de Santiago de Compostela, 27002 Lugo, Spain
| |
Collapse
|
4
|
Acosta M, Quiroz E, Tovar-Ramírez D, Roberto VP, Dias J, Gavaia PJ, Fernández I. Fish Microbiome Modulation and Convenient Storage of Aquafeeds When Supplemented with Vitamin K1. Animals (Basel) 2022; 12:ani12233248. [PMID: 36496769 PMCID: PMC9735498 DOI: 10.3390/ani12233248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 11/13/2022] [Accepted: 11/15/2022] [Indexed: 11/25/2022] Open
Abstract
Vitamin K (VK) is a fat-soluble vitamin necessary for fish metabolism and health. VK stability as dietary component during aquafeed storage and its potential effect on intestinal microbiome in fish have not yet been completely elucidated. The convenient storage conditions of aquafeeds when supplemented with phylloquinone (VK1), as well as its potential effects on the gut microbiota of Senegalese sole (Solea senegalensis) juveniles, have been explored. Experimental feeds were formulated to contain 0, 250 and 1250 mg kg-1 of VK1 and were stored at different temperatures (4, -20 or -80 °C). VK stability was superior at -20 °C for short-term (7 days) storage, while storing at -80 °C was best suited for long-term storage (up to 3 months). A comparison of bacterial communities from Senegalese sole fed diets containing 0 or 1250 mg kg-1 of VK1 showed that VK1 supplementation decreased the abundance of the Vibrio, Pseudoalteromonas, and Rhodobacterace families. All these microorganisms were previously associated with poor health status in aquatic organisms. These results contribute not only to a greater understanding of the physiological effects of vitamin K, particularly through fish intestinal microbiome, but also establish practical guidelines in the industry for proper aquafeed storage when supplemented with VK1.
Collapse
Affiliation(s)
- Marcos Acosta
- Centro de Investigaciones Biológicas del Noroeste, Av. Instituto Politécnico Nacional 195, Col. Playa Palo de Santa Rita Sur, La Paz 23096, BCS, Mexico
| | - Eduardo Quiroz
- CONACYT-CIBNOR, Av. Instituto Politécnico Nacional 195, Col. Playa Palo de Santa Rita Sur, Baja California Sur, La Paz 23096, BCS, Mexico
| | - Dariel Tovar-Ramírez
- Centro de Investigaciones Biológicas del Noroeste, Av. Instituto Politécnico Nacional 195, Col. Playa Palo de Santa Rita Sur, La Paz 23096, BCS, Mexico
| | - Vânia Palma Roberto
- ABC Collaborative Laboratory, Association for Integrated Aging and Rejuvenation Solutions (ABC CoLAB), 8100-735 Loulé, Portugal
- Algarve Biomedical Center Research Institute (ABC-RI), Campus Gambelas, Bld.2, 8005-139 Faro, Portugal
| | - Jorge Dias
- SPAROS Ltd., Área Empresarial de Marim, Lote C, 8700-221 Olhão, Portugal
| | - Paulo J. Gavaia
- Centro de Ciências do Mar (CCMAR), Campus de Gambelas, University of Algarve, 8005-139 Faro, Portugal
- Associação Oceano Verde–GreenCoLab, Campus de Gambelas, University of Algarve, 8005-139 Faro, Portugal
| | - Ignacio Fernández
- Centro Oceanográfico de Vigo, Instituto Español de Oceanografía (IEO), CSIC, 36390 Vigo, Spain
- Correspondence: or
| |
Collapse
|
5
|
Beato S, Toledo-Solís FJ, Fernández I. Vitamin K in Vertebrates' Reproduction: Further Puzzling Pieces of Evidence from Teleost Fish Species. Biomolecules 2020; 10:E1303. [PMID: 32917043 PMCID: PMC7564532 DOI: 10.3390/biom10091303] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 09/04/2020] [Accepted: 09/04/2020] [Indexed: 12/15/2022] Open
Abstract
Vitamin K (VK) is a fat-soluble vitamin that vertebrates have to acquire from the diet, since they are not able to de novo synthesize it. VK has been historically known to be required for the control of blood coagulation, and more recently, bone development and homeostasis. Our understanding of the VK metabolism and the VK-related molecular pathways has been also increased, and the two main VK-related pathways-the pregnane X receptor (PXR) transactivation and the co-factor role on the γ-glutamyl carboxylation of the VK dependent proteins-have been thoroughly investigated during the last decades. Although several studies evidenced how VK may have a broader VK biological function than previously thought, including the reproduction, little is known about the specific molecular pathways. In vertebrates, sex differentiation and gametogenesis are tightly regulated processes through a highly complex molecular, cellular and tissue crosstalk. Here, VK metabolism and related pathways, as well as how gametogenesis might be impacted by VK nutritional status, will be reviewed. Critical knowledge gaps and future perspectives on how the different VK-related pathways come into play on vertebrate's reproduction will be identified and proposed. The present review will pave the research progress to warrant a successful reproductive status through VK nutritional interventions as well as towards the establishment of reliable biomarkers for determining proper nutritional VK status in vertebrates.
Collapse
Affiliation(s)
- Silvia Beato
- Campus de Vegazana, s/n, Universidad de León (ULE), 24071 León, Spain;
| | - Francisco Javier Toledo-Solís
- Consejo Nacional de Ciencia y Tecnología (CONACYT, México), Av. Insurgentes Sur 1582, Col. Crédito Constructor, Alcaldía Benito Juárez, C.P. 03940 Ciudad de Mexico, Mexico;
- Department of Biology and Geology, University of Almería, 04120 Almería, Spain
| | - Ignacio Fernández
- Center for Aquaculture Research, Agrarian Technological Institute of Castile and Leon, Ctra. Arévalo, s/n, 40196 Zamarramala, Segovia, Spain
| |
Collapse
|