1
|
Verma N, Chouhan D, Meghana A, Tiwari V. Heat shock proteins in chronic pain: From molecular chaperones to pain modulators. Neuropharmacology 2024; 266:110263. [PMID: 39667433 DOI: 10.1016/j.neuropharm.2024.110263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2024] [Revised: 11/25/2024] [Accepted: 12/08/2024] [Indexed: 12/14/2024]
Abstract
Chronic pain is the most prevalent and complex clinical disorder,affecting approximately 30% of people globally. Various intricate alterations in nociceptive pathways responsible for chronic pain are linked to long-term tissue damage or injury to the peripheral or central nervous systems. These include remolding in the phenotype of cells and fluctuations in the expression of proteins such as ion channels, neurotransmitters, and receptors. Heat shock proteins are important molecular chaperone proteins in cell responses to stress, including inflammation, neurodegeneration, and pain signaling. They play a key role in activating glial and endothelial cells and in the production of inflammatory mediators and excitatory amino acids in both peripheral and central nervous systems. In particular, they contribute to central sensitization and hyperactivation within the dorsal horn of the spinal cord. The expression of some HSPs plays a remarkable role in upregulating pain response by acting as scavengers of ROS, controlling inflammatory cytokines. Different HSPs act by different mechanisms and several important pathways have been implicated in targeting HSPs for the treatment of neuropathic pain including p38-mitogen-activated protein kinases (MAPKs), extracellular signal-regulated kinases (ERKs), brain-derived neurotrophic factors (BDNF). We summarize the role of HSPs in various preclinical and clinical studies and the crosstalk of HSPs with various nociceptors and other pain models. We also highlighted some artificial intelligence tools and machine learning-assisted drug discovery methods for rapid screening of HSPs in various diseases. Focusing on HSPs could lead to the development of new therapeutics that modulate pain responses and enhance our understanding of pain in various pathological conditions and neurological disorders.
Collapse
Affiliation(s)
- Nivedita Verma
- Neuroscience and Pain Research Laboratory, Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi, Uttar Pradesh, India
| | - Deepak Chouhan
- Neuroscience and Pain Research Laboratory, Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi, Uttar Pradesh, India
| | - Allani Meghana
- Neuroscience and Pain Research Laboratory, Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi, Uttar Pradesh, India
| | - Vinod Tiwari
- Neuroscience and Pain Research Laboratory, Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi, Uttar Pradesh, India.
| |
Collapse
|
2
|
Qiao H, Xu Q, Xu Y, Zhao Y, He N, Tang J, Zhao J, Liu Y. Molecular chaperones in stroke-induced immunosuppression. Neural Regen Res 2023; 18:2638-2644. [PMID: 37449602 DOI: 10.4103/1673-5374.373678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/18/2023] Open
Abstract
Stroke-induced immunosuppression is a process that leads to peripheral suppression of the immune system after a stroke and belongs to the central nervous system injury-induced immunosuppressive syndrome. Stroke-induced immunosuppression leads to increased susceptibility to post-stroke infections, such as urinary tract infections and stroke-associated pneumonia, worsening prognosis. Molecular chaperones are a large class of proteins that are able to maintain proteostasis by directing the folding of nascent polypeptide chains, refolding misfolded proteins, and targeting misfolded proteins for degradation. Various molecular chaperones have been shown to play roles in stroke-induced immunosuppression by modulating the activity of other molecular chaperones, cochaperones, and their associated pathways. This review summarizes the role of molecular chaperones in stroke-induced immunosuppression and discusses new approaches to restore host immune defense after stroke.
Collapse
Affiliation(s)
- Haoduo Qiao
- Department of Neurosurgery, Xiangya Hospital, Central South University; Department of Pathophysiology, Xiangya School of Medicine, Central South University; Sepsis Translational Medicine Key Laboratory of Hunan Province; National Medicine Functional Experimental Teaching Center, Changsha, Hunan Province, China
| | - Qing Xu
- Department of Neurosurgery, Xiangya Hospital, Central South University; Department of Pathophysiology, Xiangya School of Medicine, Central South University; Sepsis Translational Medicine Key Laboratory of Hunan Province; National Medicine Functional Experimental Teaching Center, Changsha, Hunan Province, China
| | - Yunfei Xu
- Department of Neurosurgery, Xiangya Hospital, Central South University; Department of Pathophysiology, Xiangya School of Medicine, Central South University; Sepsis Translational Medicine Key Laboratory of Hunan Province; National Medicine Functional Experimental Teaching Center, Changsha, Hunan Province, China
| | - Yao Zhao
- Department of Neurosurgery, Xiangya Hospital, Central South University; Department of Pathophysiology, Xiangya School of Medicine, Central South University; Sepsis Translational Medicine Key Laboratory of Hunan Province; National Medicine Functional Experimental Teaching Center, Changsha, Hunan Province, China
| | - Nina He
- Department of Neurosurgery, Xiangya Hospital, Central South University; Department of Pathophysiology, Xiangya School of Medicine, Central South University; Sepsis Translational Medicine Key Laboratory of Hunan Province; National Medicine Functional Experimental Teaching Center, Changsha, Hunan Province, China
| | - Jie Tang
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, Hunan Province, China
| | - Jie Zhao
- Department of Neurosurgery, Xiangya Hospital, Central South University; Department of Pathophysiology, Xiangya School of Medicine, Central South University; Sepsis Translational Medicine Key Laboratory of Hunan Province; National Medicine Functional Experimental Teaching Center, Changsha, Hunan Province, China
| | - Ying Liu
- Department of Neurosurgery, Xiangya Hospital, Central South University; Department of Pathophysiology, Xiangya School of Medicine, Central South University; Sepsis Translational Medicine Key Laboratory of Hunan Province; National Medicine Functional Experimental Teaching Center, Changsha, Hunan Province, China
| |
Collapse
|
3
|
Zou Y, Shi H, Liu N, Wang H, Song X, Liu B. Mechanistic insights into heat shock protein 27, a potential therapeutic target for cardiovascular diseases. Front Cardiovasc Med 2023; 10:1195464. [PMID: 37252119 PMCID: PMC10219228 DOI: 10.3389/fcvm.2023.1195464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Accepted: 04/25/2023] [Indexed: 05/31/2023] Open
Abstract
Heat shock protein 27 (HSP27) is a small chaperone protein that is overexpressed in a variety of cellular stress states. It is involved in regulating proteostasis and protecting cells from multiple sources of stress injury by stabilizing protein conformation and promoting the refolding of misfolded proteins. Previous studies have confirmed that HSP27 is involved in the development of cardiovascular diseases and plays an important regulatory role in this process. Herein, we comprehensively and systematically summarize the involvement of HSP27 and its phosphorylated form in pathophysiological processes, including oxidative stress, inflammatory responses, and apoptosis, and further explore the potential mechanisms and possible roles of HSP27 in the diagnosis and treatment of cardiovascular diseases. Targeting HSP27 is a promising future strategy for the treatment of cardiovascular diseases.
Collapse
|
4
|
Heat Shock Protein 27 Levels Predict Myocardial Inhomogeneities in Hemodialysis Patients. Mediators Inflamm 2022; 2022:5618867. [PMID: 35633658 PMCID: PMC9135511 DOI: 10.1155/2022/5618867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Accepted: 05/06/2022] [Indexed: 11/25/2022] Open
Abstract
Background Sudden cardiac death (SCD) is the single major cause of death in hemodialysis (HD) patients. QRS-T angle is an established marker of global repolarization heterogeneity associated with electrical instability and SCD. Heat shock protein 27 (HSP27) plays an important, protective role against noxious factors in the cardiovascular (CV) system. This study is aimed at assessing whether low HSP27 is associated with myocardial inhomogeneities in HD patients, as expressed by increases in the spatial QRS-T angle. Methods Clinical data and biochemical, echocardiographic, and electrocardiographic parameters were evaluated in 182 HD patients. Patients were split into normal and abnormal QRS-T angle groups. Results Patients with abnormally high QRS-T angles were older and had higher prevalence of diabetes as well as myocardial infarction, higher left ventricular mass index (LVMI) and C-reactive protein, worse oxidant/antioxidant status, and lower ejection fraction and HSP27. Multiple regression analysis revealed that abnormal QRS-T values were independently, negatively associated with serum HSP27 and positively associated with LVMI. Conclusions Low HSP27 levels are associated with increased heterogeneity of myocardial action potential, as expressed by increased spatial QRS-T angle.
Collapse
|
5
|
Jaroszyński A, Zaborowski T, Głuszek S, Zapolski T, Sadowski M, Załuska W, Cedro A, Małecka-Massalska T, Dąbrowski W. Heat Shock Protein 27 Is an Emerging Predictor of Contrast-Induced Acute Kidney Injury on Patients Subjected to Percutaneous Coronary Interventions. Cells 2021; 10:684. [PMID: 33808831 PMCID: PMC8003735 DOI: 10.3390/cells10030684] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 03/16/2021] [Accepted: 03/17/2021] [Indexed: 02/03/2023] Open
Abstract
Contrast-induced acute kidney injury (CI-AKI) is a serious complication associated with considerable morbidity and mortality. Heat-shock protein 27 (HSP27) plays a role in the defense of the kidney tissue against various forms of cellular stress, including hypoxia and oxydative stress, both features associated with CI-AKI. The aim of our study was to evaluate a potential predictive value of HSP27 for CI-AKI in patients subjected to percutaneous coronary interventions (PCI). Included were 343 selected patients subjected to PCI. Exclusion criteria were conditions that potentially might influence HSP27 levels. HSP27 serum levels were evaluated prior to PCI, together with serum creatinine, the concentration of which was also evaluated twice at 48 and 72 h post PCI. CI-AKI was diagnosed in 9.3% of patients. Patients in whom CI-AKI was diagnosed were older (p < 0.001), were more often females (p = 0.021), had higher prevalence of diabetes (p = 0.011), hypotension during PCI (p < 0.001), albuminuria (p = 0.004) as well as multivessel disease (p = 0.002), received higher contrast volume (p = 0.006), more often received contrast volume (CV) above the maximum allowed contrast dose (MACD) (p < 0.001), and had lower HSP27 level (p < 0.001). On multivariate analysis, CV > MACD (OR 1.23, p = 0.001), number of diseased vessels (OR 1.27, p = 0.006), and HSP27 (OR 0.81, p = 0.001) remained independent predictors of CI-AKI. Low concentration of HSP27 is an emerging, strong and independent predictor of CI-AKI in patients subjected to PCI.
Collapse
Affiliation(s)
- Andrzej Jaroszyński
- Collegium Medicum, Jan Kochanowski University in Kielce, 25-317 Kielce, Poland; (S.G.); (M.S.)
- Department of Nephrology, Wojewódzki Szpital Zespolony in Kielce, 25-736 Kielce, Poland
| | - Tomasz Zaborowski
- Department of Family Medicine, Medical University of Lublin, 20-954 Lublin, Poland;
| | - Stanisław Głuszek
- Collegium Medicum, Jan Kochanowski University in Kielce, 25-317 Kielce, Poland; (S.G.); (M.S.)
| | - Tomasz Zapolski
- Department of Cardiology, Medical University of Lublin, 20-954 Lublin, Poland;
| | - Marcin Sadowski
- Collegium Medicum, Jan Kochanowski University in Kielce, 25-317 Kielce, Poland; (S.G.); (M.S.)
| | - Wojciech Załuska
- Department of Nephrology, Medical University of Lublin, 20-954 Lublin, Poland;
| | - Anna Cedro
- The Institute of Public Health, Jan Kochanowski University in Kielce, 25-317 Kielce, Poland;
| | | | - Wojciech Dąbrowski
- Department of Anesthesiology and Intensive Care, Medical University of Lublin, 20-954 Lublin, Poland;
| |
Collapse
|
6
|
Navarro-Zaragoza J, Cuenca-Bermejo L, Almela P, Laorden ML, Herrero MT. Could Small Heat Shock Protein HSP27 Be a First-Line Target for Preventing Protein Aggregation in Parkinson's Disease? Int J Mol Sci 2021; 22:3038. [PMID: 33809767 PMCID: PMC8002365 DOI: 10.3390/ijms22063038] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 03/09/2021] [Accepted: 03/13/2021] [Indexed: 01/06/2023] Open
Abstract
Small heat shock proteins (HSPs), such as HSP27, are ubiquitously expressed molecular chaperones and are essential for cellular homeostasis. The major functions of HSP27 include chaperoning misfolded or unfolded polypeptides and protecting cells from toxic stress. Dysregulation of stress proteins is associated with many human diseases including neurodegenerative diseases, such as Parkinson's disease (PD). PD is characterized by the presence of aggregates of α-synuclein in the central and peripheral nervous system, which induces the degeneration of dopaminergic neurons in the substantia nigra pars compacta (SNpc) and in the autonomic nervous system. Autonomic dysfunction is an important non-motor phenotype of PD, which includes cardiovascular dysregulation, among others. Nowadays, the therapies for PD focus on dopamine (DA) replacement. However, certain non-motor symptoms with a great impact on quality of life do not respond to dopaminergic drugs; therefore, the development and testing of new treatments for non-motor symptoms of PD remain a priority. Since small HSP27 was shown to prevent α-synuclein aggregation and cytotoxicity, this protein might constitute a suitable target to prevent or delay the motor and non-motor symptoms of PD. In the first part of our review, we focus on the cardiovascular dysregulation observed in PD patients. In the second part, we present data on the possible role of HSP27 in preventing the accumulation of amyloid fibrils and aggregated forms of α-synuclein. We also include our own studies, highlighting the possible protective cardiac effects induced by L-DOPA treatment through the enhancement of HSP27 levels and activity.
Collapse
Affiliation(s)
- Javier Navarro-Zaragoza
- Department of Pharmacology, School of Medicine, University of Murcia, Campus Mare Nostrum, 30100 Murcia, Spain; (J.N.-Z.); (M.-L.L.)
- Institute of Biomedical Research of Murcia (IMIB), Campus de Ciencias de la Salud, 30120 Murcia, Spain
| | - Lorena Cuenca-Bermejo
- Institute of Biomedical Research of Murcia (IMIB), Campus de Ciencias de la Salud, 30120 Murcia, Spain
- Clinical & Experimental Neuroscience (NICE), Institute for Aging Research, School of Medicine, University of Murcia, Campus Mare Nostrum, 30100 Murcia, Spain;
| | - Pilar Almela
- Department of Pharmacology, School of Medicine, University of Murcia, Campus Mare Nostrum, 30100 Murcia, Spain; (J.N.-Z.); (M.-L.L.)
- Institute of Biomedical Research of Murcia (IMIB), Campus de Ciencias de la Salud, 30120 Murcia, Spain
| | - María-Luisa Laorden
- Department of Pharmacology, School of Medicine, University of Murcia, Campus Mare Nostrum, 30100 Murcia, Spain; (J.N.-Z.); (M.-L.L.)
- Institute of Biomedical Research of Murcia (IMIB), Campus de Ciencias de la Salud, 30120 Murcia, Spain
| | - María-Trinidad Herrero
- Institute of Biomedical Research of Murcia (IMIB), Campus de Ciencias de la Salud, 30120 Murcia, Spain
- Clinical & Experimental Neuroscience (NICE), Institute for Aging Research, School of Medicine, University of Murcia, Campus Mare Nostrum, 30100 Murcia, Spain;
| |
Collapse
|