1
|
Simińska-Stanny J, Nicolas L, Chafai A, Jafari H, Hajiabbas M, Dodi G, Gardikiotis I, Delporte C, Nie L, Podstawczyk D, Shavandi A. Advanced PEG-tyramine biomaterial ink for precision engineering of perfusable and flexible small-diameter vascular constructs via coaxial printing. Bioact Mater 2024; 36:168-184. [PMID: 38463551 PMCID: PMC10924180 DOI: 10.1016/j.bioactmat.2024.02.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 02/09/2024] [Accepted: 02/16/2024] [Indexed: 03/12/2024] Open
Abstract
Vascularization is crucial for providing nutrients and oxygen to cells while removing waste. Despite advances in 3D-bioprinting, the fabrication of structures with void spaces and channels remains challenging. This study presents a novel approach to create robust yet flexible and permeable small (600-1300 μm) artificial vessels in a single processing step using 3D coaxial extrusion printing of a biomaterial ink, based on tyramine-modified polyethylene glycol (PEG-Tyr). We combined the gelatin biocompatibility/activity, robustness of PEG-Tyr and alginate with the shear-thinning properties of methylcellulose (MC) in a new biomaterial ink for the fabrication of bioinspired vessels. Chemical characterization using NMR and FTIR spectroscopy confirmed the successful modification of PEG with Tyr and rheological characterization indicated that the addition of PEG-Tyr decreased the viscosity of the ink. Enzyme-mediated crosslinking of PEG-Tyr allowed the formation of covalent crosslinks within the hydrogel chains, ensuring its stability. PEG-Tyr units improved the mechanical properties of the material, resulting in stretchable and elastic constructs without compromising cell viability and adhesion. The printed vessel structures displayed uniform wall thickness, shape retention, improved elasticity, permeability, and colonization by endothelial-derived - EA.hy926 cells. The chorioallantoic membrane (CAM) and in vivo assays demonstrated the hydrogel's ability to support neoangiogenesis. The hydrogel material with PEG-Tyr modification holds promise for vascular tissue engineering applications, providing a flexible, biocompatible, and functional platform for the fabrication of vascular structures.
Collapse
Affiliation(s)
- Julia Simińska-Stanny
- Université Libre de Bruxelles (ULB), École polytechnique de Bruxelles, 3BIO-BioMatter, Avenue F.D. Roosevelt, 50 - CP 165/61, 1050, Brussels, Belgium
| | - Lise Nicolas
- Université Libre de Bruxelles (ULB), École polytechnique de Bruxelles, 3BIO-BioMatter, Avenue F.D. Roosevelt, 50 - CP 165/61, 1050, Brussels, Belgium
- European School of Materials Science and Engineering, University of Lorraine, Nancy, France
| | - Adam Chafai
- Université Libre de Bruxelles (ULB), Micro-milli Platform, Avenue F.D. Roosevelt, 50 - CP 165/67, 1050, Brussels, Belgium
| | - Hafez Jafari
- Université Libre de Bruxelles (ULB), École polytechnique de Bruxelles, 3BIO-BioMatter, Avenue F.D. Roosevelt, 50 - CP 165/61, 1050, Brussels, Belgium
| | - Maryam Hajiabbas
- Université Libre de Bruxelles (ULB), École polytechnique de Bruxelles, 3BIO-BioMatter, Avenue F.D. Roosevelt, 50 - CP 165/61, 1050, Brussels, Belgium
- Université Libre de Bruxelles (ULB), Faculté de Médecine, Campus Erasme - CP 611, Laboratory of Pathophysiological and Nutritional Biochemistry, Route de Lennik, 808, 1070, Bruxelles, Belgium
| | - Gianina Dodi
- Faculty of Medical Bioengineering, Grigore T. Popa, University of Medicine and Pharmacy of Iasi, Romania
| | - Ioannis Gardikiotis
- Advanced Research and Development Center for Experimental Medicine, Grigore T. Popa, University of Medicine and Pharmacy of Iasi, Romania
| | - Christine Delporte
- Université Libre de Bruxelles (ULB), Faculté de Médecine, Campus Erasme - CP 611, Laboratory of Pathophysiological and Nutritional Biochemistry, Route de Lennik, 808, 1070, Bruxelles, Belgium
| | - Lei Nie
- Université Libre de Bruxelles (ULB), École polytechnique de Bruxelles, 3BIO-BioMatter, Avenue F.D. Roosevelt, 50 - CP 165/61, 1050, Brussels, Belgium
- College of Life Science, Xinyang Normal University, Xinyang, China
| | - Daria Podstawczyk
- Department of Process Engineering and Technology of Polymer and Carbon Materials, Faculty of Chemistry, Wroclaw University of Science and Technology, Norwida 4/6, 50-373, Wroclaw, Poland
| | - Amin Shavandi
- Université Libre de Bruxelles (ULB), École polytechnique de Bruxelles, 3BIO-BioMatter, Avenue F.D. Roosevelt, 50 - CP 165/61, 1050, Brussels, Belgium
| |
Collapse
|
2
|
Badekila AK, Pai V, Vijayan V, Kini S. Engineering alginate/carboxymethylcellulose scaffolds to establish liver cancer spheroids: Evaluation of molecular variances between 2D and 3D models. Int J Biol Macromol 2024; 254:128058. [PMID: 37956801 DOI: 10.1016/j.ijbiomac.2023.128058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 09/15/2023] [Accepted: 11/10/2023] [Indexed: 11/15/2023]
Abstract
Natural polymeric hydrogels represent an optimal framework for 3D culture development. This study demonstrates a freeze-thaw-based ionic crosslinking technique for fabricating alginate/carboxymethylcellulose scaffold for culturing human hepatocellular carcinoma, Huh-7 cells to generate 3D spheroids. Consolidating morphological and biomechanical characterization of Alg/CMC scaffolds shows the formation of uniform hydrogels with significant crosslinking (ATR-FTIR), multiscale pores (FE-SEM), swelling/water absorbance, softer texture, viscoelasticity (rheology), spreading nature (contact angle), and degradation rate optimal for 3D culture establishment. The influence of cell seeding density and time with spheroid formation reveals a maximal size of 250-300 μm on day 7. Calcein AM and Propidium iodide staining confirm that a culmination of viable and dead cells generates spheroidal heterogeneity. RT-qPCR in 3D culture against RPL-13 and 2D culture controls indicate an upregulation of E-cadherin, N-cadherin, fibronectin, and integrin α9/β6. Further, western blotting and immunofluorescence confirm the collective display of cellular interactions in 3D spheroids. Thus, the expression profile signifies the role of key genes during the assembly and formation of 3D spheroids in 1%Alg/1%CMC scaffolds with a profound epithelial characteristic. In the future, this study will bring a 3D spheroid model in a platter for elucidating epithelial to mesenchymal transition of cells during in vitro disease modeling.
Collapse
Affiliation(s)
- Anjana Kaveri Badekila
- Nitte (Deemed to be University), Department of Bio & Nano Technology, Nitte University Centre for Science Education and Research, Mangalore 575018, Karnataka, India
| | - Vishruta Pai
- Nitte (Deemed to be University), Department of Bio & Nano Technology, Nitte University Centre for Science Education and Research, Mangalore 575018, Karnataka, India
| | - Vijeesh Vijayan
- Nitte (Deemed to be University), Department of Mechanical Engineering, NMAM Institute of Technology (NMAMIT), Nitte 574110, India
| | - Sudarshan Kini
- Nitte (Deemed to be University), Department of Bio & Nano Technology, Nitte University Centre for Science Education and Research, Mangalore 575018, Karnataka, India.
| |
Collapse
|
3
|
Li K, Ren K, Du S, Gao X, Yu J. Development of Liver Cancer Organoids: Reproducing Tumor Microenvironment and Advancing Research for Liver Cancer Treatment. Technol Cancer Res Treat 2024; 23:15330338241285097. [PMID: 39363866 PMCID: PMC11456184 DOI: 10.1177/15330338241285097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 07/26/2024] [Accepted: 08/30/2024] [Indexed: 10/05/2024] Open
Abstract
Liver cancer a leading cause of cancer-related deaths worldwide, yet understanding of its development mechanism remains limited, and treatment barriers present substantial challenges. Owing to the heterogeneity of tumors, traditional 2D culture models are inadequate for capturing the complexity and diversity of tumor biology and understanding of the disease. Organoids have garnered considerable attention because of their ability to self-renew and develop functional structures in vitro that closely resemble those of human organs. This review explores the history of liver organoids, their cellular origins, techniques of constructing tumor microenvironments that recapitulate liver cancer organoids, and the biological and clinical applications of liver and liver cancer organoids and explores the current challenges related to liver cancer organoid applications and potentially valuable solutions, with the aim of facilitating the construction of in vitro clinical models of liver cancer therapeutic research.
Collapse
Affiliation(s)
- Kangkang Li
- Department of Hepato-Biliary-Pancreatic Surgery, Fuyang Hospital Affiliataed Bengbu Medical College, Fuyang, Anhui province, China, 236000
| | - Kuiwu Ren
- Department of Hepato-Biliary-Pancreatic Surgery, Fuyang Hospital Affiliataed Bengbu Medical College, Fuyang, Anhui province, China, 236000
| | - Sen Du
- Department of Hepato-Biliary-Pancreatic Surgery, Fuyang Hospital Affiliataed Bengbu Medical College, Fuyang, Anhui province, China, 236000
| | - Xiang Gao
- Department of Hepato-Biliary-Pancreatic Surgery, Fuyang People's Hospital of Anhui Medical University, Fuyang, Anhui province, China, 236000
| | - Jiangtao Yu
- Department of Hepato-Biliary-Pancreatic Surgery, Fuyang Hospital Affiliataed Bengbu Medical College, Fuyang, Anhui province, China, 236000
- Department of Hepato-Biliary-Pancreatic Surgery, Fuyang People's Hospital of Anhui Medical University, Fuyang, Anhui province, China, 236000
| |
Collapse
|
4
|
Badekila AK, Pai V, Vijayan V, Kini S. Engineering alginate/carboxymethylcellulose scaffolds to establish liver cancer spheroids: Evaluation of molecular variances between 2D and 3D models. Int J Biol Macromol 2023:128058. [DOI: https:/doi.org/10.1016/j.ijbiomac.2023.128058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2023]
|
5
|
Dellaquila A, Dujardin C, Le Bao C, Chaumeton C, Carré A, Le Guilcher C, Lam F, Simon-Yarza T. Fibroblasts mediate endothelium response to angiogenic cues in a newly developed 3D stroma engineered model. BIOMATERIALS ADVANCES 2023; 154:213636. [PMID: 37778292 DOI: 10.1016/j.bioadv.2023.213636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 08/30/2023] [Accepted: 09/20/2023] [Indexed: 10/03/2023]
Abstract
Three-dimensional stroma engineered models would enable fundamental and applicative studies of human tissues interaction and remodeling in both physiological and pathological conditions. In this work, we propose a 3D vascularized stroma model to be used as in vitro platform for drug testing. A pullulan/dextran-based porous scaffold containing pre-patterned microchannels of 100 μm diameter is used for co-culturing of fibroblasts within the matrix pores and endothelial cells to form the lumen. Optical clearing of the constructs by hyperhydration allows for in-depth imaging of the model up to 1 mm by lightsheet and confocal microscopy. Our 3D vascularized stroma model allows for higher viability, metabolism and cytokines expression compared to a monocultured vascular model. Stroma-endothelium cross-talk is then investigated by exposing the system to pro and anti-angiogenic molecules. The results highlight the protective role played by fibroblasts on the vasculature, as demonstrated by decreased cytotoxicity, restoration of nitric oxide levels upon challenge, and sustained expression of endothelial markers CD31, vWF and VEGF. Our tissue model provides a 3D engineered platform for in vitro studies of stroma remodeling in angiogenesis-driven events, known to be a leading mechanism in diseased conditions, such as metastatic cancers, retinopathies and ischemia, and to investigate related potential therapies.
Collapse
Affiliation(s)
- Alessandra Dellaquila
- Université Paris Cité, Université Sorbonne Paris Nord, Laboratory for Vascular Translational Science, INSERM U1148, X. Bichat Hospital, Paris 75018, France.
| | - Chloé Dujardin
- Université Paris Cité, Université Sorbonne Paris Nord, Laboratory for Vascular Translational Science, INSERM U1148, X. Bichat Hospital, Paris 75018, France
| | - Chau Le Bao
- Université Paris Cité, Université Sorbonne Paris Nord, Laboratory for Vascular Translational Science, INSERM U1148, X. Bichat Hospital, Paris 75018, France
| | - Chloé Chaumeton
- Sorbonne Université, Institute of Biology Paris-Seine, Paris 75005, France
| | - Albane Carré
- Université Paris Cité, Université Sorbonne Paris Nord, Laboratory for Vascular Translational Science, INSERM U1148, X. Bichat Hospital, Paris 75018, France
| | - Camille Le Guilcher
- Université Paris Cité, Université Sorbonne Paris Nord, Laboratory for Vascular Translational Science, INSERM U1148, X. Bichat Hospital, Paris 75018, France
| | - France Lam
- Sorbonne Université, Institute of Biology Paris-Seine, Paris 75005, France
| | - Teresa Simon-Yarza
- Université Paris Cité, Université Sorbonne Paris Nord, Laboratory for Vascular Translational Science, INSERM U1148, X. Bichat Hospital, Paris 75018, France.
| |
Collapse
|
6
|
Ahmed Omar N, Roque J, Galvez P, Siadous R, Chassande O, Catros S, Amédée J, Roques S, Durand M, Bergeaut C, Bidault L, Aprile P, Letourneur D, Fricain JC, Fenelon M. Development of Novel Polysaccharide Membranes for Guided Bone Regeneration: In Vitro and In Vivo Evaluations. Bioengineering (Basel) 2023; 10:1257. [PMID: 38002381 PMCID: PMC10669683 DOI: 10.3390/bioengineering10111257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 10/16/2023] [Accepted: 10/20/2023] [Indexed: 11/26/2023] Open
Abstract
INTRODUCTION Guided bone regeneration (GBR) procedures require selecting suitable membranes for oral surgery. Pullulan and/or dextran-based polysaccharide materials have shown encouraging results in bone regeneration as bone substitutes but have not been used to produce barrier membranes. The present study aimed to develop and characterize pullulan/dextran-derived membranes for GBR. MATERIALS AND METHODS Two pullulan/dextran-based membranes, containing or not hydroxyapatite (HA) particles, were developed. In vitro, cytotoxicity evaluation was performed using human bone marrow mesenchymal stem cells (hBMSCs). Biocompatibility was assessed on rats in a subcutaneous model for up to 16 weeks. In vivo, rat femoral defects were created on 36 rats to compare the two pullulan/dextran-based membranes with a commercial collagen membrane (Bio-Gide®). Bone repair was assessed radiologically and histologically. RESULTS Both polysaccharide membranes demonstrated cytocompatibility and biocompatibility. Micro-computed tomography (micro-CT) analyses at two weeks revealed that the HA-containing membrane promoted a significant increase in bone formation compared to Bio-Gide®. At one month, similar effects were observed among the three membranes in terms of bone regeneration. CONCLUSION The developed pullulan/dextran-based membranes evidenced biocompatibility without interfering with bone regeneration and maturation. The HA-containing membrane, which facilitated early bone regeneration and offered adequate mechanical support, showed promising potential for GBR procedures.
Collapse
Affiliation(s)
- Naïma Ahmed Omar
- Laboratory for Tissue Bioengineering, University of Bordeaux, INSERM 1026, F-33076 Bordeaux, France; (N.A.O.); (O.C.); (M.F.)
| | - Jéssica Roque
- Laboratory for Tissue Bioengineering, University of Bordeaux, INSERM 1026, F-33076 Bordeaux, France; (N.A.O.); (O.C.); (M.F.)
| | - Paul Galvez
- Laboratory for Tissue Bioengineering, University of Bordeaux, INSERM 1026, F-33076 Bordeaux, France; (N.A.O.); (O.C.); (M.F.)
| | - Robin Siadous
- Laboratory for Tissue Bioengineering, University of Bordeaux, INSERM 1026, F-33076 Bordeaux, France; (N.A.O.); (O.C.); (M.F.)
| | - Olivier Chassande
- Laboratory for Tissue Bioengineering, University of Bordeaux, INSERM 1026, F-33076 Bordeaux, France; (N.A.O.); (O.C.); (M.F.)
| | - Sylvain Catros
- Laboratory for Tissue Bioengineering, University of Bordeaux, INSERM 1026, F-33076 Bordeaux, France; (N.A.O.); (O.C.); (M.F.)
- Department of Oral Surgery, University Hospital of Bordeaux, F-33076 Bordeaux, France
| | - Joëlle Amédée
- Laboratory for Tissue Bioengineering, University of Bordeaux, INSERM 1026, F-33076 Bordeaux, France; (N.A.O.); (O.C.); (M.F.)
| | - Samantha Roques
- Centre d’Investigation Clinique de Bordeaux (CIC 1401), University Hospital of Bordeaux, INSERM, F-33000 Bordeaux, France (M.D.)
| | - Marlène Durand
- Centre d’Investigation Clinique de Bordeaux (CIC 1401), University Hospital of Bordeaux, INSERM, F-33000 Bordeaux, France (M.D.)
| | - Céline Bergeaut
- Siltiss, SA, Zac de la Nau, 19240 Saint-Viance, France; (C.B.); (L.B.)
| | - Laurent Bidault
- Siltiss, SA, Zac de la Nau, 19240 Saint-Viance, France; (C.B.); (L.B.)
| | - Paola Aprile
- Laboratory for Vascular Translational Science (LVTS), X Bichat Hospital, University Paris Cité & University Sorbonne Paris Nord, INSERM 1148, F-75018 Paris, France
| | - Didier Letourneur
- Siltiss, SA, Zac de la Nau, 19240 Saint-Viance, France; (C.B.); (L.B.)
- Laboratory for Vascular Translational Science (LVTS), X Bichat Hospital, University Paris Cité & University Sorbonne Paris Nord, INSERM 1148, F-75018 Paris, France
| | - Jean-Christophe Fricain
- Laboratory for Tissue Bioengineering, University of Bordeaux, INSERM 1026, F-33076 Bordeaux, France; (N.A.O.); (O.C.); (M.F.)
- Department of Oral Surgery, University Hospital of Bordeaux, F-33076 Bordeaux, France
- Centre d’Investigation Clinique de Bordeaux (CIC 1401), University Hospital of Bordeaux, INSERM, F-33000 Bordeaux, France (M.D.)
| | - Mathilde Fenelon
- Laboratory for Tissue Bioengineering, University of Bordeaux, INSERM 1026, F-33076 Bordeaux, France; (N.A.O.); (O.C.); (M.F.)
- Department of Oral Surgery, University Hospital of Bordeaux, F-33076 Bordeaux, France
| |
Collapse
|
7
|
Pepe A, Laezza A, Ostuni A, Scelsi A, Laurita A, Bochicchio B. Bioconjugation of Carbohydrates to Gelatin Sponges Promoting 3D Cell Cultures. Biomimetics (Basel) 2023; 8:biomimetics8020193. [PMID: 37218779 DOI: 10.3390/biomimetics8020193] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 04/28/2023] [Accepted: 05/02/2023] [Indexed: 05/24/2023] Open
Abstract
Gelatin sponges are widely employed as hemostatic agents, and are gaining increasing interest as 3D scaffolds for tissue engineering. To broaden their possible application in the field of tissue engineering, a straightforward synthetic protocol able to anchor the disaccharides, maltose and lactose, for specific cell interactions was developed. A high conjugation yield was confirmed by 1H-NMR and FT-IR spectroscopy, and the morphology of the resulting decorated sponges was characterized by SEM. After the crosslinking reaction, the sponges preserve their porous structure as ascertained by SEM. Finally, HepG2 cells cultured on the decorated gelatin sponges show high viability and significant differences in the cellular morphology as a function of the conjugated disaccharide. More spherical morphologies are observed when cultured on maltose-conjugated gelatin sponges, while a more flattened aspect is discerned when cultured onto lactose-conjugated gelatin sponges. Considering the increasing interest in small-sized carbohydrates as signaling cues on biomaterial surfaces, systematic studies on how small carbohydrates might influence cell adhesion and differentiation processes could take advantage of the described protocol.
Collapse
Affiliation(s)
- Antonietta Pepe
- Laboratory of Protein-Inspired Biomaterials, Department of Science, University of Basilicata, Via Ateneo Lucano, 10, 85100 Potenza, Italy
| | - Antonio Laezza
- Laboratory of Protein-Inspired Biomaterials, Department of Science, University of Basilicata, Via Ateneo Lucano, 10, 85100 Potenza, Italy
| | - Angela Ostuni
- Cellular Biochemistry Laboratory, Department of Science, University of Basilicata, Via Ateneo Lucano, 10, 85100 Potenza, Italy
| | - Alessandra Scelsi
- Laboratory of Protein-Inspired Biomaterials, Department of Science, University of Basilicata, Via Ateneo Lucano, 10, 85100 Potenza, Italy
| | - Alessandro Laurita
- Microscopy Area, Department of Science, University of Basilicata, Via Ateneo Lucano, 10, 85100 Potenza, Italy
| | - Brigida Bochicchio
- Laboratory of Protein-Inspired Biomaterials, Department of Science, University of Basilicata, Via Ateneo Lucano, 10, 85100 Potenza, Italy
| |
Collapse
|
8
|
Le Guilcher C, Merlen G, Dellaquila A, Labour MN, Aid R, Tordjmann T, Letourneur D, Simon-Yarza T. Engineered human liver based on pullulan-dextran hydrogel promotes mice survival after liver failure. Mater Today Bio 2023; 19:100554. [PMID: 36756209 PMCID: PMC9900439 DOI: 10.1016/j.mtbio.2023.100554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 01/15/2023] [Accepted: 01/17/2023] [Indexed: 01/20/2023] Open
Abstract
Liver tissue engineering approaches aim to support drug testing, assistance devices, or transplantation. However, their suitability for clinical application remains unsatisfactory. Herein, we demonstrate the beneficial and biocompatible use of porous pullulan-dextran hydrogel for the self-assembly of hepatocytes and biliary-like cells into functional 3D microtissues. Using HepaRG cells, we obtained 21 days maintenance of engineered liver polarity, functional detoxification and excretion systems, as well as glycogen storage in hydrogel. Implantation on two liver lobes in mice of hydrogels containing 3800 HepaRG 3D structures of 100 μm in diameter, indicated successful engraftment and no signs of liver toxicity after one month. Finally, after acetaminophen-induced liver failure, when mice were transplanted with engineered livers on left lobe and peritoneal cavity, the survival rate at 7 days significantly increased by 31.8% compared with mice without cell therapy. These findings support the clinical potential of pullulan-dextran hydrogel for liver failure management.
Collapse
Affiliation(s)
- Camille Le Guilcher
- Université Paris Cité and Université Sorbonne Paris Nord, INSERM, LVTS, U1148, F-75018 Paris, France,Corresponding author.
| | - Grégory Merlen
- Université Paris-Saclay, INSERM U1193, F- 94800 Villejuif, France
| | - Alessandra Dellaquila
- Université Paris Cité and Université Sorbonne Paris Nord, INSERM, LVTS, U1148, F-75018 Paris, France
| | - Marie-Noëlle Labour
- Université Paris Cité and Université Sorbonne Paris Nord, INSERM, LVTS, U1148, F-75018 Paris, France,ICGM, Université de Montpellier, CNRS, ENSCM, F- 34293 Montpellier, France,École Pratique des Hautes Études, Université Paris Sciences et Lettres, F-75014 Paris, France
| | - Rachida Aid
- Université Paris Cité and Université Sorbonne Paris Nord, INSERM, LVTS, U1148, F-75018 Paris, France
| | | | - Didier Letourneur
- Université Paris Cité and Université Sorbonne Paris Nord, INSERM, LVTS, U1148, F-75018 Paris, France,Corresponding author.
| | - Teresa Simon-Yarza
- Université Paris Cité and Université Sorbonne Paris Nord, INSERM, LVTS, U1148, F-75018 Paris, France,Corresponding author.
| |
Collapse
|
9
|
Le Bao C, Waller H, Dellaquila A, Peters D, Lakey J, Chaubet F, Simon-Yarza T. Spatial-Controlled Coating of Pro-Angiogenic Proteins on 3D Porous Hydrogels Guides Endothelial Cell Behavior. Int J Mol Sci 2022; 23:14604. [PMID: 36498931 PMCID: PMC9737628 DOI: 10.3390/ijms232314604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 11/17/2022] [Accepted: 11/21/2022] [Indexed: 11/24/2022] Open
Abstract
In tissue engineering, the composition and the structural arrangement of molecular components within the extracellular matrix (ECM) determine the physical and biochemical features of a scaffold, which consequently modulate cell behavior and function. The microenvironment of the ECM plays a fundamental role in regulating angiogenesis. Numerous strategies in tissue engineering have attempted to control the spatial cues mimicking in vivo angiogenesis by using simplified systems. The aim of this study was to develop 3D porous crosslinked hydrogels with different spatial presentation of pro-angiogenic molecules to guide endothelial cell (EC) behavior. Hydrogels with pores and preformed microchannels were made with pharmaceutical-grade pullulan and dextran and functionalized with novel pro-angiogenic protein polymers (Caf1-YIGSR and Caf1-VEGF). Hydrogel functionalization was achieved by electrostatic interactions via incorporation of diethylaminoethyl (DEAE)-dextran. Spatial-controlled coating of hydrogels was realized through a combination of freeze-drying and physical absorption with Caf1 molecules. Cells in functionalized scaffolds survived, adhered, and proliferated over seven days. When incorporated alone, Caf1-YIGSR mainly induced cell adhesion and proliferation, whereas Caf1-VEGF promoted cell migration and sprouting. Most importantly, directed cell migration required the presence of both proteins in the microchannel and in the pores, highlighting the need for an adhesive substrate provided by Caf1-YIGSR for Caf1-VEGF to be effective. This study demonstrates the ability to guide EC behavior through spatial control of pro-angiogenic cues for the study of pro-angiogenic signals in 3D and to develop pro-angiogenic implantable materials.
Collapse
Affiliation(s)
- Chau Le Bao
- Laboratory for Vascular Translational Science (LVTS) INSERM U1148, Université Paris Cité, Université Sorbonne Paris Nord, CEDEX 18, 75877 Paris, France
| | - Helen Waller
- Biosciences Institute, Newcastle University Biosciences Institute, Newcastle upon Tyne NE1 7RU, UK
| | - Alessandra Dellaquila
- Laboratory for Vascular Translational Science (LVTS) INSERM U1148, Université Paris Cité, Université Sorbonne Paris Nord, CEDEX 18, 75877 Paris, France
| | - Daniel Peters
- Biosciences Institute, Newcastle University Biosciences Institute, Newcastle upon Tyne NE1 7RU, UK
| | - Jeremy Lakey
- Biosciences Institute, Newcastle University Biosciences Institute, Newcastle upon Tyne NE1 7RU, UK
| | - Frédéric Chaubet
- Laboratory for Vascular Translational Science (LVTS) INSERM U1148, Université Paris Cité, Université Sorbonne Paris Nord, CEDEX 18, 75877 Paris, France
| | - Teresa Simon-Yarza
- Laboratory for Vascular Translational Science (LVTS) INSERM U1148, Université Paris Cité, Université Sorbonne Paris Nord, CEDEX 18, 75877 Paris, France
| |
Collapse
|
10
|
Cryostructuring of Polymeric Systems: 63. † Synthesis of Two Chemically Tanned Gelatin-Based Cryostructurates and Evaluation of Their Potential as Scaffolds for Culturing of Mammalian Cells. Gels 2022; 8:gels8110695. [DOI: 10.3390/gels8110695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 10/22/2022] [Accepted: 10/25/2022] [Indexed: 11/17/2022] Open
Abstract
Various gelatin-containing gel materials are used as scaffolds for animal and human cell culturing within the fields of cell technologies and tissue engineering. Cryostructuring is a promising technique for the preparation of efficient macroporous scaffolds in biomedical applications. In the current study, two new gelatin-based cryostructurates were synthesized, their physicochemical properties and microstructure were evaluated, and their ability to serve as biocompatible scaffolds for mammalian cells culturing was tested. The preparation procedure included the dissolution of Type A gelatin in water, the addition of urea to inhibit self-gelation, the freezing of such a solution, ice sublimation in vacuo, and urea extraction with ethanol from the freeze-dried matter followed by its cross-linking in an ethanol medium with either carbodiimide or glyoxal. It was shown that in the former case, a denser cross-linked polymer phase was formed, while in the latter case, the macropores in the resultant biopolymer material were wider. The subsequent biotesting of these scaffolds demonstrated their biocompatibility for human mesenchymal stromal cells and HepG2 cells during subcutaneous implantation in rats. Albumin secretion and urea synthesis by HepG2 cells confirmed the possibility of using gelatin cryostructurates for liver tissue engineering.
Collapse
|
11
|
Grenier J, Duval H, Lv P, Barou F, Le Guilcher C, Aid R, David B, Letourneur D. Interplay between crosslinking and ice nucleation controls the porous structure of freeze-dried hydrogel scaffolds. BIOMATERIALS ADVANCES 2022; 139:212973. [PMID: 35891598 DOI: 10.1016/j.bioadv.2022.212973] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 05/04/2022] [Accepted: 06/02/2022] [Indexed: 06/15/2023]
Abstract
Freeze-drying is a process of choice to texture hydrogel scaffolds with pores formed by an ice-templating mechanism. Using state-of-the-art microscopies (cryo-EBSD, μCT, CLSM), this work evidences and quantifies the effect of crosslinking and ice nucleation temperature on the porous structure of thin hydrogel scaffolds freeze-dried at a low cooling rate. We focused on a polysaccharide-based hydrogel and developed specific protocols to monitor or trigger ice nucleation for this study. At a fixed number of intermolecular crosslinks per primary molecule (p = 5), the mean pore size in the dry state decreases linearly from 240 to 170 μm, when ice nucleation temperature decreases from -6 °C to -18 °C. When ice nucleation temperature is fixed at -10 °C, the mean pore size decreases from 250 to 150 μm, as the crosslinking degree increases from p = 3 to p = 7. Scaffold infiltration ability was quantified with synthetic microspheres. The seeding efficiency was assessed with MC3T3-E1 individual cells and HepaRG™ spheroids. These data collapse into a single master curve that exhibits a sharp transition from 100 % to 0 %-efficiency as the entity diameter approaches the mean pore size in the dry state. Altogether, we can thus precisely tune the porosity of these 3D materials of interest for 3D cell culture and cGMP production for tissue engineering.
Collapse
Affiliation(s)
- Jérôme Grenier
- Université Paris-Saclay, CentraleSupélec, Laboratoire de Génie des Procédés et Matériaux, 91190 Gif-sur-Yvette, France; Université Paris-Saclay, CentraleSupélec, CNRS, Laboratoire de Mécanique de Paris-Saclay, 91190 Gif-sur-Yvette, France; Université Paris Cité, Université Sorbonne Paris Nord, INSERM 1148, LVTS, Hôpital Bichat, F-75018 Paris, France
| | - Hervé Duval
- Université Paris-Saclay, CentraleSupélec, Laboratoire de Génie des Procédés et Matériaux, 91190 Gif-sur-Yvette, France.
| | - Pin Lv
- LGPM, CentraleSupélec, SFR Condorcet FR CNRS 3417, Université Paris-Saclay, Centre Européen de Biotechnologie et de Bioéconomie (CEBB), F-51110 Pomacle, France
| | - Fabrice Barou
- Géosciences Montpellier, UMR 5243, Université Montpellier, CNRS, Montpellier Cedex 05, 34095, France
| | - Camille Le Guilcher
- Université Paris Cité, Université Sorbonne Paris Nord, INSERM 1148, LVTS, Hôpital Bichat, F-75018 Paris, France
| | - Rachida Aid
- Université Paris Cité, Université Sorbonne Paris Nord, INSERM 1148, LVTS, Hôpital Bichat, F-75018 Paris, France
| | - Bertrand David
- Université Paris-Saclay, CentraleSupélec, CNRS, Laboratoire de Mécanique de Paris-Saclay, 91190 Gif-sur-Yvette, France
| | - Didier Letourneur
- Université Paris Cité, Université Sorbonne Paris Nord, INSERM 1148, LVTS, Hôpital Bichat, F-75018 Paris, France
| |
Collapse
|
12
|
Gerschenfeld G, Aid R, Simon-Yarza T, Lanouar S, Charnay P, Letourneur D, Topilko P. Tuning Physicochemical Properties of a Macroporous Polysaccharide-Based Scaffold for 3D Neuronal Culture. Int J Mol Sci 2021; 22:12726. [PMID: 34884531 PMCID: PMC8657966 DOI: 10.3390/ijms222312726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 11/15/2021] [Accepted: 11/23/2021] [Indexed: 11/18/2022] Open
Abstract
Central nervous system (CNS) lesions are a leading cause of death and disability worldwide. Three-dimensional neural cultures in biomaterials offer more physiologically relevant models for disease studies, toxicity screenings or in vivo transplantations. Herein, we describe the development and use of pullulan/dextran polysaccharide-based scaffolds for 3D neuronal culture. We first assessed scaffolding properties upon variation of the concentration (1%, 1.5%, 3% w/w) of the cross-linking agent, sodium trimetaphosphate (STMP). The lower STMP concentration (1%) allowed us to generate scaffolds with higher porosity (59.9 ± 4.6%), faster degradation rate (5.11 ± 0.14 mg/min) and lower elastic modulus (384 ± 26 Pa) compared with 3% STMP scaffolds (47 ± 2.1%, 1.39 ± 0.03 mg/min, 916 ± 44 Pa, respectively). Using primary cultures of embryonic neurons from PGKCre, Rosa26tdTomato embryos, we observed that in 3D culture, embryonic neurons remained in aggregates within the scaffolds and did not attach, spread or differentiate. To enhance neuronal adhesion and neurite outgrowth, we then functionalized the 1% STMP scaffolds with laminin. We found that treatment of the scaffold with a 100 μg/mL solution of laminin, combined with a subsequent freeze-drying step, created a laminin mesh network that significantly enhanced embryonic neuron adhesion, neurite outgrowth and survival. Such scaffold therefore constitutes a promising neuron-compatible and biodegradable biomaterial.
Collapse
Affiliation(s)
- Gaspard Gerschenfeld
- Ecole Normale Supérieure, PSL Research University, CNRS, Inserm, Institut de Biologie de l’Ecole Normale Supérieure (IBENS), F-75005 Paris, France; (G.G.); (P.C.)
- Collège Doctoral, Sorbonne Université, F-75005 Paris, France
| | - Rachida Aid
- INSERM U1148, LVTS, Université de Paris, X Bichat Hospital, 46 Rue H Huchard, F-75018 Paris, France; (R.A.); (T.S.-Y.); (S.L.); (D.L.)
- INSERM UMS-34, FRIM, Université de Paris, X Bichat School of Medicine, F-75018 Paris, France
| | - Teresa Simon-Yarza
- INSERM U1148, LVTS, Université de Paris, X Bichat Hospital, 46 Rue H Huchard, F-75018 Paris, France; (R.A.); (T.S.-Y.); (S.L.); (D.L.)
- INSERM U1148, LVTS, Université Sorbonne Paris Nord, 99 Av JB Clément, F-93430 Villetaneuse, France
| | - Soraya Lanouar
- INSERM U1148, LVTS, Université de Paris, X Bichat Hospital, 46 Rue H Huchard, F-75018 Paris, France; (R.A.); (T.S.-Y.); (S.L.); (D.L.)
- INSERM U1148, LVTS, Université Sorbonne Paris Nord, 99 Av JB Clément, F-93430 Villetaneuse, France
| | - Patrick Charnay
- Ecole Normale Supérieure, PSL Research University, CNRS, Inserm, Institut de Biologie de l’Ecole Normale Supérieure (IBENS), F-75005 Paris, France; (G.G.); (P.C.)
| | - Didier Letourneur
- INSERM U1148, LVTS, Université de Paris, X Bichat Hospital, 46 Rue H Huchard, F-75018 Paris, France; (R.A.); (T.S.-Y.); (S.L.); (D.L.)
- INSERM U1148, LVTS, Université Sorbonne Paris Nord, 99 Av JB Clément, F-93430 Villetaneuse, France
| | - Piotr Topilko
- Ecole Normale Supérieure, PSL Research University, CNRS, Inserm, Institut de Biologie de l’Ecole Normale Supérieure (IBENS), F-75005 Paris, France; (G.G.); (P.C.)
- Institut Mondor de Recherche Biomédicale (IMRB), Université Paris Est Créteil (UPEC), INSERM U955, F-94010 Créteil, France
| |
Collapse
|
13
|
Dellaquila A, Le Bao C, Letourneur D, Simon‐Yarza T. In Vitro Strategies to Vascularize 3D Physiologically Relevant Models. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2021; 8:e2100798. [PMID: 34351702 PMCID: PMC8498873 DOI: 10.1002/advs.202100798] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 04/23/2021] [Indexed: 05/04/2023]
Abstract
Vascularization of 3D models represents a major challenge of tissue engineering and a key prerequisite for their clinical and industrial application. The use of prevascularized models built from dedicated materials could solve some of the actual limitations, such as suboptimal integration of the bioconstructs within the host tissue, and would provide more in vivo-like perfusable tissue and organ-specific platforms. In the last decade, the fabrication of vascularized physiologically relevant 3D constructs has been attempted by numerous tissue engineering strategies, which are classified here in microfluidic technology, 3D coculture models, namely, spheroids and organoids, and biofabrication. In this review, the recent advancements in prevascularization techniques and the increasing use of natural and synthetic materials to build physiological organ-specific models are discussed. Current drawbacks of each technology, future perspectives, and translation of vascularized tissue constructs toward clinics, pharmaceutical field, and industry are also presented. By combining complementary strategies, these models are envisioned to be successfully used for regenerative medicine and drug development in a near future.
Collapse
Affiliation(s)
- Alessandra Dellaquila
- Université de ParisINSERM U1148X Bichat HospitalParisF‐75018France
- Elvesys Microfluidics Innovation CenterParis75011France
- Biomolecular PhotonicsDepartment of PhysicsUniversity of BielefeldBielefeld33615Germany
| | - Chau Le Bao
- Université de ParisINSERM U1148X Bichat HospitalParisF‐75018France
- Université Sorbonne Paris NordGalilée InstituteVilletaneuseF‐93430France
| | | | | |
Collapse
|
14
|
Polymeric Scaffolds: Design, Processing, and Biomedical Application. Int J Mol Sci 2021; 22:ijms22094552. [PMID: 33925314 PMCID: PMC8123599 DOI: 10.3390/ijms22094552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Accepted: 04/25/2021] [Indexed: 11/30/2022] Open
|
15
|
Muhammad A, Lee D, Shin Y, Park J. Recent Progress in Polysaccharide Aerogels: Their Synthesis, Application, and Future Outlook. Polymers (Basel) 2021; 13:1347. [PMID: 33924110 PMCID: PMC8074296 DOI: 10.3390/polym13081347] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 04/13/2021] [Accepted: 04/13/2021] [Indexed: 01/07/2023] Open
Abstract
Porous polysaccharides have recently attracted attention due to their porosity, abundance, and excellent properties such as sustainability and biocompatibility, thereby resulting in their numerous applications. Recent years have seen a rise in the number of studies on the utilization of polysaccharides such as cellulose, chitosan, chitin, and starch as aerogels due to their unique performance for the fabrication of porous structures. The present review explores recent progress in porous polysaccharides, particularly cellulose and chitosan, including their synthesis, application, and future outlook. Since the synthetic process is an important aspect of aerogel formation, particularly during the drying step, the process is reviewed in some detail, and a comparison is drawn between the supercritical CO2 and freeze drying processes in order to understand the aerogel formation of porous polysaccharides. Finally, the current applications of polysaccharide aerogels in drug delivery, wastewater, wound dressing, and air filtration are explored, and the limitations and outlook of the porous aerogels are discussed with respect to their future commercialization.
Collapse
Affiliation(s)
| | | | | | - Juhyun Park
- Department of Intelligent Energy and Industry, School of Chemical Engineering and Materials Science, Chung-Ang University, Seoul 06974, Korea; (A.M.); (D.L.); (Y.S.)
| |
Collapse
|
16
|
Simon-Yarza T, Labour MN, Aid R, Letourneur D. Channeled polysaccharide-based hydrogel reveals influence of curvature to guide endothelial cell arrangement in vessel-like structures. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2021; 118:111369. [DOI: 10.1016/j.msec.2020.111369] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Revised: 07/27/2020] [Accepted: 08/05/2020] [Indexed: 02/07/2023]
|