1
|
Fiorentino F, Fabbrizi E, Mai A, Rotili D. Activation and inhibition of sirtuins: From bench to bedside. Med Res Rev 2024. [PMID: 39215785 DOI: 10.1002/med.22076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 07/27/2024] [Accepted: 08/04/2024] [Indexed: 09/04/2024]
Abstract
The sirtuin family comprises seven NAD+-dependent enzymes which catalyze protein lysine deacylation and mono ADP-ribosylation. Sirtuins act as central regulators of genomic stability and gene expression and control key processes, including energetic metabolism, cell cycle, differentiation, apoptosis, and aging. As a result, all sirtuins play critical roles in cellular homeostasis and organism wellness, and their dysregulation has been linked to metabolic, cardiovascular, and neurological diseases. Furthermore, sirtuins have shown dichotomous roles in cancer, acting as context-dependent tumor suppressors or promoters. Given their central role in different cellular processes, sirtuins have attracted increasing research interest aimed at developing both activators and inhibitors. Indeed, sirtuin modulation may have therapeutic effects in many age-related diseases, including diabetes, cardiovascular and neurodegenerative disorders, and cancer. Moreover, isoform selective modulators may increase our knowledge of sirtuin biology and aid to develop better therapies. Through this review, we provide critical insights into sirtuin pharmacology and illustrate their enzymatic activities and biological functions. Furthermore, we outline the most relevant sirtuin modulators in terms of their modes of action, structure-activity relationships, pharmacological effects, and clinical applications.
Collapse
Affiliation(s)
- Francesco Fiorentino
- Department of Drug Chemistry and Technologies, Sapienza University of Rome, Rome, Italy
| | - Emanuele Fabbrizi
- Department of Drug Chemistry and Technologies, Sapienza University of Rome, Rome, Italy
| | - Antonello Mai
- Department of Drug Chemistry and Technologies, Sapienza University of Rome, Rome, Italy
- Pasteur Institute, Cenci-Bolognetti Foundation, Sapienza University of Rome, Rome, Italy
| | - Dante Rotili
- Department of Drug Chemistry and Technologies, Sapienza University of Rome, Rome, Italy
| |
Collapse
|
2
|
Wassano NS, da Silva GB, Reis AH, A Gerhardt J, Antoniel EP, Akiyama D, Rezende CP, Neves LX, Vasconcelos EJR, de Figueiredo FL, Almeida F, de Castro PA, Pinzan CF, Goldman GH, Paes Leme AF, Fill TP, Moretti NS, Damasio A. Sirtuin E deacetylase is required for full virulence of Aspergillus fumigatus. Commun Biol 2024; 7:704. [PMID: 38851817 PMCID: PMC11162503 DOI: 10.1038/s42003-024-06383-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Accepted: 05/24/2024] [Indexed: 06/10/2024] Open
Abstract
Aspergillus fumigatus represents a public health problem due to the high mortality rate in immunosuppressed patients and the emergence of antifungal-resistant isolates. Protein acetylation is a crucial post-translational modification that controls gene expression and biological processes. The strategic manipulation of enzymes involved in protein acetylation has emerged as a promising therapeutic approach for addressing fungal infections. Sirtuins, NAD+-dependent lysine deacetylases, regulate protein acetylation and gene expression in eukaryotes. However, their role in the human pathogenic fungus A. fumigatus remains unclear. This study constructs six single knockout strains of A. fumigatus and a strain lacking all predicted sirtuins (SIRTKO). The mutant strains are viable under laboratory conditions, indicating that sirtuins are not essential genes. Phenotypic assays suggest sirtuins' involvement in cell wall integrity, secondary metabolite production, thermotolerance, and virulence. Deletion of sirE attenuates virulence in murine and Galleria mellonella infection models. The absence of SirE alters the acetylation status of proteins, including histones and non-histones, and triggers significant changes in the expression of genes associated with secondary metabolism, cell wall biosynthesis, and virulence factors. These findings encourage testing sirtuin inhibitors as potential therapeutic strategies to combat A. fumigatus infections or in combination therapy with available antifungals.
Collapse
Affiliation(s)
- Natália S Wassano
- Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas (UNICAMP), Campinas, Brazil
- National Institute of Science and Technology in Human Pathogenic Fungi, Ribeirão Preto, Brazil
| | - Gabriela B da Silva
- Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas (UNICAMP), Campinas, Brazil
- National Institute of Science and Technology in Human Pathogenic Fungi, Ribeirão Preto, Brazil
- Department of Microbiology, Immunology and Parasitology, Paulist School of Medicine, Federal University of São Paulo, São Paulo, Brazil
| | - Artur H Reis
- Department of Microbiology, Immunology and Parasitology, Paulist School of Medicine, Federal University of São Paulo, São Paulo, Brazil
| | - Jaqueline A Gerhardt
- Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas (UNICAMP), Campinas, Brazil
| | - Everton P Antoniel
- Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas (UNICAMP), Campinas, Brazil
| | - Daniel Akiyama
- Department of Organic Chemistry, Institute of Chemistry, University of Campinas (UNICAMP), Campinas, Brazil
| | - Caroline P Rezende
- Department of Biochemistry and Immunology, Faculty of Medicine from Ribeirão Preto, University of São Paulo, São Paulo, Brazil
| | - Leandro X Neves
- Brazilian Bioscience National Laboratory (LNBio), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, Brazil
| | | | - Fernanda L de Figueiredo
- Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas (UNICAMP), Campinas, Brazil
| | - Fausto Almeida
- Department of Biochemistry and Immunology, Faculty of Medicine from Ribeirão Preto, University of São Paulo, São Paulo, Brazil
| | - Patrícia A de Castro
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brazil
| | - Camila F Pinzan
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brazil
| | - Gustavo H Goldman
- National Institute of Science and Technology in Human Pathogenic Fungi, Ribeirão Preto, Brazil
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brazil
| | - Adriana F Paes Leme
- Brazilian Bioscience National Laboratory (LNBio), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, Brazil
| | - Taicia P Fill
- National Institute of Science and Technology in Human Pathogenic Fungi, Ribeirão Preto, Brazil
- Department of Organic Chemistry, Institute of Chemistry, University of Campinas (UNICAMP), Campinas, Brazil
| | - Nilmar S Moretti
- Department of Microbiology, Immunology and Parasitology, Paulist School of Medicine, Federal University of São Paulo, São Paulo, Brazil.
- Department of Pathology and Microbiology, Faculty of Veterinary Medicine, University of Montreal, Saint-Hyacinthe, Canada.
- The Research Group on Infectious Diseases in Production Animals (GREMIP), Faculty of Veterinary Medicine, University of Montreal, Saint-Hyacinthe, Canada.
| | - André Damasio
- Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas (UNICAMP), Campinas, Brazil.
- National Institute of Science and Technology in Human Pathogenic Fungi, Ribeirão Preto, Brazil.
| |
Collapse
|
3
|
Rodriguez ME, Tekiel V, Campo VA. In vitro evaluation of Resveratrol as a potential pre-exposure prophylactic drug against Trypanosoma cruzi infection. Int J Parasitol Drugs Drug Resist 2022; 20:54-64. [PMID: 36099853 PMCID: PMC9474288 DOI: 10.1016/j.ijpddr.2022.08.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 07/19/2022] [Accepted: 08/15/2022] [Indexed: 12/14/2022]
Abstract
Chagas' disease or American trypanosomiasis, caused by Trypanosoma cruzi infection, is an endemic disease in Latin America, which has spread worldwide in the past years. The drugs presently used for treatment have shown limited efficacy due to the appearance of resistant parasites and severe side effects. Some of the most recent studies on anti-parasitic drugs have been focused on protein acetylation, a reversible reaction modulated by Acetyl Transferases (KATs) and Deacetylases (KDACs). We have previously reported the anti-parasite activity of resveratrol (RSV), an activator of KDACs type III (or sirtuins), and showed that this drug can reduce the growth of T. cruzi epimastigotes and the infectivity of trypomastigotes. Since RSV is now widely used in humans due to its beneficial effects as an antioxidant, it has become an attractive candidate as a repurposing drug. In this context, the aim of the present study was to evaluate the ability of this drug to protect three different types of host cells from parasite infection. RSV treatment before parasite infection reduced the percentage of infected cells by 50-70% depending on the cell type. Although the mammalian cell lines tested showed different sensitivity to RSV, apoptosis was not significantly affected, showing that RSV was able to protect cells from infection without the activation of this process. Since autophagy has been described as a key process in parasite invasion, we also monitored this process on host cells pretreated with RSV. The results showed that, at the concentrations and incubation times tested, autophagy was not induced in any of the cell types evaluated. Our results show a partial protective effect of RSV in vitro, which justifies extending studies to an in vivo model to elucidate the mechanism by which this effect occurs.
Collapse
Affiliation(s)
| | | | - Vanina A. Campo
- Corresponding author. IIB: Instituto de Investigaciones Biotecnologicas, Av. 25 de Mayo y Francia, 1650 San Martin, Buenos Aires, Argentina.
| |
Collapse
|
4
|
Paglia G, Antonini L, Cervoni L, Ragno R, Sabatino M, Minacori M, Rubini E, Altieri F. A Comparative Analysis of Punicalagin Interaction with PDIA1 and PDIA3 by Biochemical and Computational Approaches. Biomedicines 2021; 9:biomedicines9111533. [PMID: 34829762 PMCID: PMC8614999 DOI: 10.3390/biomedicines9111533] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 10/19/2021] [Accepted: 10/21/2021] [Indexed: 11/29/2022] Open
Abstract
In a previous work, it was shown that punicalagin, an active ingredient of pomegranate, is able to bind to PDIA3 and inhibit its disulfide reductase activity. Here we provide evidence that punicalagin can also bind to PDIA1, the main expressed form of protein disulfide isomerase (PDI). In this comparative study, the affinity and the effect of punicalagin binding on each protein were evaluated, and a computational approach was used to identify putative binding sites. Punicalagin binds to either PDIA1 or PDIA3 with a similar affinity, but the inhibition efficacy on protein reductase activity is higher for PDIA3. Additionally, punicalagin differently affects the thermal denaturation profile of both proteins. Molecular docking and molecular dynamics simulations led to propose a punicalagin binding mode on PDIA1 and PDIA3, identifying the binding sites at the redox domains a’ in two different pockets, suggesting different effects of punicalagin on proteins’ structure. This study provides insights to develop punicalagin-based ligands, to set up a rational design for PDIA3 selective inhibitors, and to dissect the molecular determinant to modulate the protein activity.
Collapse
Affiliation(s)
- Giuliano Paglia
- Department of Biochemical Sciences “Alessandro Rossi Fanelli”, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy; (G.P.); (L.C.); (M.M.); (E.R.)
| | - Lorenzo Antonini
- Rome Center for Molecular Design, Department of Drug Chemistry and Technology, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy; (L.A.); (R.R.); (M.S.)
| | - Laura Cervoni
- Department of Biochemical Sciences “Alessandro Rossi Fanelli”, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy; (G.P.); (L.C.); (M.M.); (E.R.)
| | - Rino Ragno
- Rome Center for Molecular Design, Department of Drug Chemistry and Technology, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy; (L.A.); (R.R.); (M.S.)
| | - Manuela Sabatino
- Rome Center for Molecular Design, Department of Drug Chemistry and Technology, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy; (L.A.); (R.R.); (M.S.)
| | - Marco Minacori
- Department of Biochemical Sciences “Alessandro Rossi Fanelli”, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy; (G.P.); (L.C.); (M.M.); (E.R.)
| | - Elisabetta Rubini
- Department of Biochemical Sciences “Alessandro Rossi Fanelli”, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy; (G.P.); (L.C.); (M.M.); (E.R.)
- Enrico ed Enrica Sovena Foundation, 00199 Rome, Italy
| | - Fabio Altieri
- Department of Biochemical Sciences “Alessandro Rossi Fanelli”, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy; (G.P.); (L.C.); (M.M.); (E.R.)
- Correspondence:
| |
Collapse
|
5
|
Kourbeli V, Chontzopoulou E, Moschovou K, Pavlos D, Mavromoustakos T, Papanastasiou IP. An Overview on Target-Based Drug Design against Kinetoplastid Protozoan Infections: Human African Trypanosomiasis, Chagas Disease and Leishmaniases. Molecules 2021; 26:molecules26154629. [PMID: 34361781 PMCID: PMC8348971 DOI: 10.3390/molecules26154629] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 07/23/2021] [Accepted: 07/27/2021] [Indexed: 02/06/2023] Open
Abstract
The protozoan diseases Human African Trypanosomiasis (HAT), Chagas disease (CD), and leishmaniases span worldwide and therefore their impact is a universal concern. The present regimen against kinetoplastid protozoan infections is poor and insufficient. Target-based design expands the horizon of drug design and development and offers novel chemical entities and potential drug candidates to the therapeutic arsenal against the aforementioned neglected diseases. In this review, we report the most promising targets of the main kinetoplastid parasites, as well as their corresponding inhibitors. This overview is part of the Special Issue, entitled "Advances of Medicinal Chemistry against Kinetoplastid Protozoa (Trypanosoma brucei, Trypanosoma cruzi and Leishmania spp.) Infections: Drug Design, Synthesis and Pharmacology".
Collapse
Affiliation(s)
- Violeta Kourbeli
- Department of Pharmacy, Division of Pharmaceutical Chemistry, School of Health Sciences, National and Kapodistrian University of Athens, Panepistimioupoli-Zografou, 157 84 Athens, Greece;
| | - Eleni Chontzopoulou
- Department of Organic Chemistry, Faculty of Chemistry, National and Kapodistrian University of Athens, Panepistimioupoli-Zografou, 157 71 Athens, Greece; (E.C.); (K.M.); (D.P.); (T.M.)
| | - Kalliopi Moschovou
- Department of Organic Chemistry, Faculty of Chemistry, National and Kapodistrian University of Athens, Panepistimioupoli-Zografou, 157 71 Athens, Greece; (E.C.); (K.M.); (D.P.); (T.M.)
| | - Dimitrios Pavlos
- Department of Organic Chemistry, Faculty of Chemistry, National and Kapodistrian University of Athens, Panepistimioupoli-Zografou, 157 71 Athens, Greece; (E.C.); (K.M.); (D.P.); (T.M.)
| | - Thomas Mavromoustakos
- Department of Organic Chemistry, Faculty of Chemistry, National and Kapodistrian University of Athens, Panepistimioupoli-Zografou, 157 71 Athens, Greece; (E.C.); (K.M.); (D.P.); (T.M.)
| | - Ioannis P. Papanastasiou
- Department of Pharmacy, Division of Pharmaceutical Chemistry, School of Health Sciences, National and Kapodistrian University of Athens, Panepistimioupoli-Zografou, 157 84 Athens, Greece;
- Correspondence:
| |
Collapse
|
6
|
Abstract
Infections caused by protozoans remain a public health issue, especially in tropical countries. Serious adverse events, lack of efficacy at the different stages of the infection and routes of administration that have a negative impact on treatment adherence are some of the problems with currently available therapy against these diseases. Here we describe an epigenetic target, sirtuin 2 and its related proteins, that is promising given the results in phenotypic assays and in vivo models against Sir2 of Plasmodium falciparum, Leishmania donovani, Leishmania infantum, Schistosoma mansoni, Trypanosoma brucei and Trypanosoma cruzi parasites. The results we present highlight how this target can be extensively explored and how its inhibitors might be employed in the clinic.
Collapse
|
7
|
Wan X, Garg NJ. Sirtuin Control of Mitochondrial Dysfunction, Oxidative Stress, and Inflammation in Chagas Disease Models. Front Cell Infect Microbiol 2021; 11:693051. [PMID: 34178728 PMCID: PMC8221535 DOI: 10.3389/fcimb.2021.693051] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Accepted: 05/21/2021] [Indexed: 11/13/2022] Open
Abstract
Trypanosoma cruzi is a digenetic parasite that requires triatomines and mammalian host to complete its life cycle. T. cruzi replication in mammalian host induces immune-mediated cytotoxic proinflammatory reactions and cellular injuries, which are the common source of reactive oxygen species (ROS) and reactive nitrogen species (RNS) during the acute parasitemic phase. Mitochondrial dysfunction of electron transport chain has been proposed as a major source of superoxide release in the chronic phase of infection, which renders myocardium exposed to sustained oxidative stress and contributes to Chagas disease pathology. Sirtuin 1 (SIRT1) is a class III histone deacetylase that acts as a sensor of redox changes and shapes the mitochondrial metabolism and inflammatory response in the host. In this review, we discuss the molecular mechanisms by which SIRT1 can potentially improve mitochondrial function and control oxidative and inflammatory stress in Chagas disease.
Collapse
Affiliation(s)
- Xianxiu Wan
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, United States
| | - Nisha Jain Garg
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, United States.,Institute for Human Infections and Immunity, University of Texas Medical Branch, Galveston, TX, United States
| |
Collapse
|
8
|
Maran SR, Fleck K, Monteiro-Teles NM, Isebe T, Walrad P, Jeffers V, Cestari I, Vasconcelos EJR, Moretti N. Protein acetylation in the critical biological processes in protozoan parasites. Trends Parasitol 2021; 37:815-830. [PMID: 33994102 DOI: 10.1016/j.pt.2021.04.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 04/13/2021] [Accepted: 04/14/2021] [Indexed: 12/28/2022]
Abstract
Protein lysine acetylation has emerged as a major regulatory post-translational modification in different organisms, present not only on histone proteins affecting chromatin structure and gene expression but also on nonhistone proteins involved in several cellular processes. The same scenario was observed in protozoan parasites after the description of their acetylomes, indicating that acetylation might regulate crucial biological processes in these parasites. The demonstration that glycolytic enzymes are regulated by acetylation in protozoans shows that this modification might regulate several other processes implicated in parasite survival and adaptation during the life cycle, opening the chance to explore the regulatory acetylation machinery of these parasites as drug targets for new treatment development.
Collapse
Affiliation(s)
- Suellen Rodrigues Maran
- Laboratório de Biologia Molecular de Patógenos (LBMP) - Departamento Microbiologia, Imunologia e Parasitologia - Escola Paulista de Medicina - Universidade Federal de São Paulo (UNIFESP), São Paulo, Brazil
| | - Krista Fleck
- Department of Molecular, Cellular, and Biomedical Sciences, University of New Hampshire, Durham, NH, USA
| | | | - Tony Isebe
- Institute of Parasitology, McGill University, Sainte-Anne-de-Bellevue, Quebec, Canada
| | - Pegine Walrad
- York Biomedical Research Institute, Department of Biology, University of York, York, UK
| | - Victoria Jeffers
- Department of Molecular, Cellular, and Biomedical Sciences, University of New Hampshire, Durham, NH, USA
| | - Igor Cestari
- Institute of Parasitology, McGill University, Sainte-Anne-de-Bellevue, Quebec, Canada; Division of Experimental Medicine, McGill University, Montreal, Quebec, Canada
| | | | - Nilmar Moretti
- Laboratório de Biologia Molecular de Patógenos (LBMP) - Departamento Microbiologia, Imunologia e Parasitologia - Escola Paulista de Medicina - Universidade Federal de São Paulo (UNIFESP), São Paulo, Brazil.
| |
Collapse
|
9
|
Targeting histone acetylation/deacetylation in parasites: an update (2017–2020). Curr Opin Chem Biol 2020; 57:65-74. [DOI: 10.1016/j.cbpa.2020.05.008] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2020] [Revised: 05/21/2020] [Accepted: 05/27/2020] [Indexed: 12/22/2022]
|