1
|
Subudhi L, Thatoi H, Banerjee A. Anti-inflammatory activity of essential oil from medicinal plants: An insight into molecular mechanism, in-silico studies and signaling pathways. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2025; 138:156364. [PMID: 39862791 DOI: 10.1016/j.phymed.2025.156364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2024] [Revised: 12/14/2024] [Accepted: 01/01/2025] [Indexed: 01/27/2025]
Abstract
BACKGROUND Medicinal plants have historically been the cornerstone of treatment for a myriad of ailments. With modern pharmacology, many contemporary drugs have been derived from traditional medicine practices. Essential oils from these plants, known for their anti-inflammatory capabilities, have played a significant role in treating conditions such as cardiovascular and inflammatory skin diseases, as well as joint inflammation. This study revisits these ancient remedies to further explore their efficacy and mechanisms in the modern context. FOCUS AREA This review focuses on identifying and analysing the primary phytochemical in medicinal plants that exhibit anti-inflammatory properties. The chemical classes of interest include alkaloids, polyphenols, terpenoids, flavonoids, saponins, and tannins, which are prevalent in the essential oils derived from therapeutic plants. By understanding their role in modulating molecular pathways, this study aims to highlight their potential in the treatment of inflammatory diseases. METHODS The study employs in silico techniques such as molecular modelling and docking to examine the pharmacokinetics and toxicity profiles of selected phytochemical. This approach facilitates a deeper understanding of how these natural compounds interact at the molecular level, either as activators or inhibitors, which can influence various biochemical pathways related to inflammation. RESULTS Preliminary findings suggest that specific phytochemical significantly modulate inflammatory pathways, offering potential therapeutic targets. The analysis reveals that these natural substances can effectively reduce inflammation without the adverse side effects commonly associated with synthetic drugs. The study provides a detailed characterization of the active components within essential oils and their respective anti-inflammatory actions. CONCLUSION The review underscores the immense potential for medicinal plants as a source for developing new and safer pharmaceuticals aimed at treating inflammatory conditions. By harnessing the power of natural phytochemical, there is a promising avenue for creating innovative drug therapies. This study encourages further research into the utilization of natural plant products, promoting a broader application in medicinal treatments and a return to nature-centric solutions in healthcare.
Collapse
Affiliation(s)
- Lopamudra Subudhi
- Centre for Industrial Biotechnology Research, Siksha 'O' Anusandhan Deemed to be University, Campus 2, Kalinganagar, Bhubaneswar-751003, Odisha, India
| | - Hrudayanath Thatoi
- Centre for Industrial Biotechnology Research, Siksha 'O' Anusandhan Deemed to be University, Campus 2, Kalinganagar, Bhubaneswar-751003, Odisha, India
| | - Amrita Banerjee
- Centre for Industrial Biotechnology Research, Siksha 'O' Anusandhan Deemed to be University, Campus 2, Kalinganagar, Bhubaneswar-751003, Odisha, India.
| |
Collapse
|
2
|
Moka MK, S AS, M S. Computational investigation of four isoquinoline alkaloids against polycystic ovarian syndrome. J Biomol Struct Dyn 2024; 42:734-746. [PMID: 37315995 DOI: 10.1080/07391102.2023.2222828] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Accepted: 03/17/2023] [Indexed: 06/16/2023]
Abstract
Hyperandrogenism, insulin resistance, and estrogen dominance are the prime defining traits of women with polycystic ovarian syndrome which disrupts hormonal, adrenal, or ovarian functions resulting in impaired folliculogenesis and excess androgen production. The purpose of this study is to identify an appropriate bioactive antagonistic ligand from isoquinoline alkaloids [palmatine (PAL), jatrorrhizine (JAT), magnoflorine (MAG) and berberine (BBR)] from stems of Tinospora cordifolia. Phytocomponents inhibit/prevent androgenic, estrogenic, and steroidogenic receptors, insulin binding, and resultant hyperandrogenism. Intending to develop new inhibitors for human androgen receptor (1E3G), insulin receptor (3EKK), estrogen receptor beta (1U3S), and human steroidogenic cytochromeP450 17A1 (6WR0), here we report the docking studies by employing a flexible ligand docking approach using AutodockVina 4.2.6. ADMET screened swissADME and toxicological predictions to identify novel and potent inhibitors against PCOS. Binding affinity was obtained using Schrodinger. Two ligands, mainly BER (-8.23) and PAL (-6.71) showed the best docking score against androgen receptors. A molecular docking study reveals that compounds BBR and PAL were found to be tight binder at the active site of IE3G. Molecular dynamics results suggest that BBR and PAL showed good binding stability of active site residues. The present study corroborates the molecular dynamics of the compound BBR and PAL, potent Inhibitors of IE3G, having therapeutic potential for PCOS. We project that this study's findings will be helpful in drug development efforts targeting PCOS. Hence isoquinoline alkaloids (BER& PAL) have potential roles against androgen receptors, and in specific PCOS, scientific evaluation has been put forth based on virtual screening.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
| | - Ankul Singh S
- Department of Pharmacology, SRMIST, Kattankulathur, Tamil Nadu, India
| | - Sumithra M
- Department of Pharmacology, SRMIST, Kattankulathur, Tamil Nadu, India
| |
Collapse
|
3
|
Zhao J, Sun Y, Ren L, Huang S, Zhang J. Antagonism of androgen receptor signaling by aloe-emodin. Food Chem Toxicol 2023; 181:114092. [PMID: 37806336 DOI: 10.1016/j.fct.2023.114092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Revised: 10/02/2023] [Accepted: 10/05/2023] [Indexed: 10/10/2023]
Abstract
Over the past decades, androgen receptor (AR) signaling has been a key driver of both primary and recurrent prostate cancer. In this work, aloe-emodin was identified as a novel AR antagonist, effectively inhibiting AR signaling. Firstly, aloe-emodin can inhibit LNCaP cell growth by promoting apoptosis. Then, the results of Western blot and quantitative real-time PCR further confirmed that aloe-emodin modulated AR protein levels by promoting AR proteasomal degradation, and also inhibited the transcription of the AR downstream target genes, including PSA, KLK2, and TMPRSS2. Furthermore, the result of immunofluorescence showed that aloe-emodin prevented the nuclear translocation of AR. Molecular docking and molecular dynamics simulation suggested that aloe-emodin combined with AR to form stable complexes, which might explain that aloe-emodin prevented the translocation of AR from the cytoplasm to the nucleus by affecting the ligand binding of AR. Therefore, aloe-emodin as a novel AR antagonist may play a crucial role in promoting cancer prevention or complementing pharmacological therapies in the treatment of prostate cancer.
Collapse
Affiliation(s)
- Jingqi Zhao
- College of Food Science and Engineering, Jilin University, Changchun, 130062, China
| | - Yantong Sun
- School of Pharmaceutical Sciences, Jilin University, Changchun, 130021, China
| | - Li Ren
- College of Food Science and Engineering, Jilin University, Changchun, 130062, China
| | - Shuqing Huang
- College of Food Science and Engineering, Jilin University, Changchun, 130062, China
| | - Jie Zhang
- College of Food Science and Engineering, Jilin University, Changchun, 130062, China.
| |
Collapse
|
4
|
Li Y, Hu S, Chen Y, Zhang X, Gao H, Tian J, Chen J. Calycosin inhibits triple-negative breast cancer progression through down-regulation of the novel estrogen receptor-α splice variant ER-α30-mediated PI3K/AKT signaling pathway. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2023; 118:154924. [PMID: 37393829 DOI: 10.1016/j.phymed.2023.154924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 05/26/2023] [Accepted: 06/06/2023] [Indexed: 07/04/2023]
Abstract
BACKGROUND Triple-negative breast cancer (TNBC) is a heterogeneous carcinoma characterized by the most aggressive phenotype among all breast cancer subtypes. However, therapeutic options for TNBC patients have limited clinical efficacy due to lack of specific target and efficient targeted therapeutics. AIM To investigate the biological characteristics of a novel estrogen receptor (ER)-α splice variant ER-α30 in breast cancer cells, and its possible role in the anticancer effects of calycosin, a typical phytoestrogen derived from the herbal plant Astragalus membranaceus, against TNBC. This may also provide a better understanding of the inhibitory activity of calycosin on TNBC progression. METHODS Breast cancer tissues and para-cancer tissues were collected and analyzed for the expression levels of ER-α30 using immunohistochemistry (IHC), and its expression in two TNBC cell lines (MDA-MB-231 and BT-549) was detected by western blot and qRT-PCR assays. Then the alteration of cell viability, apoptosis, migration, invasion and epithelial-mesenchymal transition (EMT) in response to overexpression or knockdown of ER-α30 was separately determined by CCK-8, Hoechst 33258, wound healing, transwell and western blot assays in two TNBC cell lines. Next, the anticancer effects of calycosin on MDA-MB-231 cells were evaluated through CCK-8, colony formation, flow cytometry, Hoechst 33258 and western blot assays, along with the role of ER-α30 in these effects and the possible downstream targets of ER-α30. In addition, the in vivo experiments were carried out using MDA-MB-231 xenograft model intraperitoneally treated with calycosin. The volume and weight of xenograft tumor were measured to evaluate the in vivo anticancer activities of calycosin, while the corresponding changes of ER-α30 expression in tumor tissues were detected by IHC. RESULTS It was demonstrated that the novel ER-α splice variant ER-α30 was primarily distributed in the nucleus of TNBC cells. Compared with normal breast tissues, ER-α30 expression was found in significantly higher levels in breast cancer tissues of ER- and progesterone receptor (PR)-negative subtype, so did in TNBC cell lines (MDA-MB-231 and BT-549) when compared to normal breast cell line MCF10A. Moreover, ER-α30 overexpression strikingly enhanced cell viability, migration, invasion and EMT progression and reduced apoptosis in TNBC cells, whereas shRNA-mediated knockdown of ER-α30 revealed the opposite results. Notably, calycosin suppressed the expression of ER-α30 in a dose-dependent manner, accompanied with the inhibition of TNBC growth and metastasis. A similar finding was observed for the xenografts generated from MDA-MB-231 cells. The treatment with calycosin suppressed the tumor growth and decreased ER-α30 expression in tumor tissues. Furthermore, this inhibition by calycosin was more pronounced in ER-α30 knockdown cells. Meanwhile, we found a positive relationship between ER-α30 and the activity of PI3K and AKT, which could also be inactivated by calycosin treatment. CONCLUSION For the first time, it is demonstrated that the novel estrogen receptor-α splice variant ER-α30 could function as pro-tumorigenic factor in the context of TNBC by participating in cell proliferation, apoptosis, invasion and metastasis, thus it may serve as a potential therapeutic target for TNBC therapy. Calycosin could reduce the activation of ER-α30-mediated PI3K/AKT pathway, thereby inhibited TNBC development and progression, suggesting that calycosin may be a potential therapeutic option for TNBC.
Collapse
Affiliation(s)
- Yuhong Li
- Key Laboratory of Tumor Immunology and Microenvironmental Regulation of Guangxi, Guilin Medical University, Guilin, Guangxi, PR China; The Second Affiliated Hospital of Guilin Medical University, Guilin, Guangxi, PR China
| | - Shuying Hu
- Key Laboratory of Tumor Immunology and Microenvironmental Regulation of Guangxi, Guilin Medical University, Guilin, Guangxi, PR China
| | - Yueqi Chen
- Key Laboratory of Tumor Immunology and Microenvironmental Regulation of Guangxi, Guilin Medical University, Guilin, Guangxi, PR China
| | - Xing Zhang
- Key Laboratory of Tumor Immunology and Microenvironmental Regulation of Guangxi, Guilin Medical University, Guilin, Guangxi, PR China
| | - Hanchi Gao
- Key Laboratory of Tumor Immunology and Microenvironmental Regulation of Guangxi, Guilin Medical University, Guilin, Guangxi, PR China
| | - Jing Tian
- Department of Physiology, Guilin Medical University, Guilin, Guangxi, PR China.
| | - Jian Chen
- Key Laboratory of Tumor Immunology and Microenvironmental Regulation of Guangxi, Guilin Medical University, Guilin, Guangxi, PR China.
| |
Collapse
|
5
|
Ren L, Luo H, Zhao J, Huang S, Zhang J, Shao C. An integrated in vitro/in silico approach to assess the anti-androgenic potency of isobavachin. Food Chem Toxicol 2023; 176:113764. [PMID: 37019376 DOI: 10.1016/j.fct.2023.113764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 03/16/2023] [Accepted: 04/01/2023] [Indexed: 04/05/2023]
Abstract
Isobavachin is a dietary flavanone with multiple biological activities. Our previous research has confirmed the estrogenicity of isobavachin, and this work aims to assess the anti-androgenic potency of isobavachin by an integrated in vitro and in silico approach. Isobavachin can limit the proliferation of prostate cancer cells by inducing a distinct G1 cell-cycle arrest. In addition, isobavachin also significantly represses the transcription of androgen receptor (AR)-downstream targets such as prostate specific antigen. Mechanistically, we demonstrated that isobavachin can disrupt the nuclear translocation of AR and promote its proteasomal degradation. The results of computer simulations showed that isobavachin can stably bind to AR, and the amino acid residue Gln711 may play a critical role in AR binding of both AR agonists and antagonists. In conclusion, this work has identified isobavachin as a novel AR antagonist.
Collapse
Affiliation(s)
- Li Ren
- College of Food Science and Engineering, Jilin University, Changchun, 130062, China
| | - Haoge Luo
- College of Basic Medical Sciences, Jilin University, Changchun, 130021, China
| | - Jingqi Zhao
- College of Food Science and Engineering, Jilin University, Changchun, 130062, China
| | - Shuqing Huang
- College of Food Science and Engineering, Jilin University, Changchun, 130062, China
| | - Jie Zhang
- College of Food Science and Engineering, Jilin University, Changchun, 130062, China.
| | - Chen Shao
- College of Basic Medical Sciences, Jilin University, Changchun, 130021, China.
| |
Collapse
|
6
|
Immunohistochemical Expression (IE) of Oestrogen Receptors in the Intestines of Prepubertal Gilts Exposed to Zearalenone. Toxins (Basel) 2023; 15:toxins15020122. [PMID: 36828436 PMCID: PMC9967477 DOI: 10.3390/toxins15020122] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 01/29/2023] [Accepted: 01/30/2023] [Indexed: 02/05/2023] Open
Abstract
This study was conducted to determine if a low monotonic dose of zearalenone (ZEN) affects the immunohistochemical expression (IE) of oestrogen receptor alpha (ERα) and oestrogen receptor beta (ERβ) in the intestines of sexually immature gilts. Group C (control group; n = 18) gilts were given a placebo. Group E (experimental group; n = 18) gilts were dosed orally with 40 μg ZEN /kg body weight (BW), each day before morning feeding. Samples of intestinal tissue were collected post-mortem six times. The samples were stained to analyse the IE of ERα and Erβ in the scanned slides. The strongest response was observed in ERα in the duodenum (90.387-average % of cells with ERα expression) and in ERβ in the descending colon (84.329-average % of cells with ERβ expression); the opposite response was recorded in the caecum (2.484-average % of cells with ERα expression) and the ascending colon (2.448-average % of cells with ERα expression); on the first two dates of exposure, the digestive tract had to adapt to ZEN in feed. The results of this study, supported by a mechanistic interpretation of previous research findings, suggest that ZEN performs numerous functions in the digestive tract.
Collapse
|
7
|
Li Y, Miao H, Wei W, Tian J, Chen J. Inhibitory effect of calycosin on breast cancer cell progression through downregulating lncRNA HOTAIR and downstream targets: HuR and IGF2BP1. Acta Biochim Biophys Sin (Shanghai) 2022; 55:225-236. [PMID: 36647722 PMCID: PMC10157633 DOI: 10.3724/abbs.2022197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
<p indent="0mm">Breast cancer is the most commonly diagnosed cancer worldwide. Previously, we reported that calycosin, a typical isoflavone phytoestrogen, triggers apoptosis and is associated with lncRNA HOTAIR in the estrogen receptor (ER)-positive breast cancer MCF-7-cell line. In the present study, we aim to uncover the mechanism of lncRNA HOTAIR in the inhibitory effect induced by calycosin in both ER-positive and ER-negative breast cancer cell lines. Results show that calycosin significantly inhibits proliferation and triggers apoptosis in both ER-positive (MCF-7 and T47D) and ER-negative (MDA-MB-231 and SK-BR-3) breast cancer cell lines, accompanied by downregulation of lncRNA HOTAIR expression. Accordingly, knockdown of lncRNA HOTAIR promotes the anti-tumor effect of calycosin, while overexpression of lncRNA HOTAIR attenuates this effect. Meanwhile, the expression levels of HuR and IGF2BP1 are also reduced by calycosin. More importantly, calycosin facilitates the downregulation of HuR and IGF2BP1 caused by decreasing lncRNA HOTAIR expression, and the upregulation of HuR and IGF2BP1 caused by overexpression of lncRNA HOTAIR is weakened by calycosin. These results demonstrate that downregulating HuR and IGF2BP1 by suppressing lncRNA HOTAIR results in inhibited growth of breast cancer cells by calycosin. In addition, the binding of HuR and IGF2BP1 to lncRNA HOTAIR is detected by RIP assay, implying an interaction between these two proteins and lncRNA HOTAIR. Together, lncRNA HOTAIR may play a carcinogenic role in breast cancer development and has the potential to be a novel therapeutic target for breast cancer in the future, especially in isoflavone phytoestrogen therapy.</p>.
Collapse
Affiliation(s)
- Yuhong Li
- Key Laboratory of Tumor Immunology and Microenvironmental Regulation of Guangxi, Guilin Medical University, Guilin 541004, China
| | - Hui Miao
- Chengde Medical University, Chengde 067000, China
| | - Wei Wei
- Key Laboratory of Tumor Immunology and Microenvironmental Regulation of Guangxi, Guilin Medical University, Guilin 541004, China
| | - Jing Tian
- Department of Physiology, Guilin Medical University, Guilin 541004, China
| | - Jian Chen
- Key Laboratory of Tumor Immunology and Microenvironmental Regulation of Guangxi, Guilin Medical University, Guilin 541004, China
| |
Collapse
|
8
|
Gupta S, Kumar A, Tejavath KK. A pharmacognostic approach for mitigating pancreatic cancer: emphasis on herbal extracts and phytoconstituents. FUTURE JOURNAL OF PHARMACEUTICAL SCIENCES 2021. [DOI: 10.1186/s43094-021-00246-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Abstract
Background
Pancreatic cancer is studied as one of the most lethal cancers with currently no control of its lethality, mainly due to its late diagnosis and lack of foolproof treatment processes. Despite continuous efforts being made in looking for therapies to deal with cancer, it keeps on being a labyrinth for the researchers. Efforts like discovering new treatment options, repurposing existing drugs, are continuously made to deal with this cancer.
Main body
With the urge to get answers and the fact that nature has all roots of therapeutics, efforts are made in the direction of finding those answers for providing ministrations for pancreatic cancer from plant products. Plant products are used as treatment options either directly in the form of extracts or an alternative to them is individual phytochemicals that are either isolated from the plants or are commercially synthesized for various purposes. In this review, we put forward such pharmacognostic initiatives made in combating pancreatic cancer, focusing mainly on plant extracts and various phytochemicals; along with the mechanisms which they triggered to fulfill the need for cytotoxicity to pancreatic cancer cells (in vitro and in vivo).
Conclusion
This study will thus provide insights into new combination therapy that can be used and also give a clue on which plant product and phytoconstituent can be used in dealing with pancreatic cancer.
Graphical abstract
Collapse
|
9
|
Gajęcka M, Brzuzan P, Otrocka-Domagała I, Zielonka Ł, Lisieska-Żołnierczyk S, Gajęcki MT. The Effect of 42-Day Exposure to a Low Deoxynivalenol Dose on the Immunohistochemical Expression of Intestinal ERs and the Activation of CYP1A1 and GSTP1 Genes in the Large Intestine of Pre-pubertal Gilts. Front Vet Sci 2021; 8:644549. [PMID: 34350223 PMCID: PMC8326516 DOI: 10.3389/fvets.2021.644549] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Accepted: 05/28/2021] [Indexed: 01/17/2023] Open
Abstract
Deoxynivalenol (DON) is a mycotoxin that contaminates various plant materials. Exposure to DON can disrupt hormonal homeostasis, decrease body weight gains and modulate the immune system in pigs. It can also cause diarrhea, vomiting, leukocytosis, hemorrhaging or even death. Prolonged exposure to low doses of DON can have serious health implications in mammals. This is the first in vivo study to show that per os administration of low DON doses probably contributes to specific dysfunctions in steroidogenesis processes by inducing the immunohistochemical expression of estrogen receptors alpha (ERα) in the entire gastrointestinal tract in strongly stained cells (3 points) and estrogen receptors beta (ERβ), but only in both investigated segments of the duodenum in pre-pubertal gilts. Therefore, the aim of this study was to determine whether a NOAEL dose of DON (12 μg DON/kg BW) administered per os over a period of 42 days induces changes in the immunohistochemical expression of ER in different intestinal segments and the transcriptional activation of CYP1A1 and GSTP1 genes in the large intestine of pre-pubertal gilts. This is the first report to demonstrate the expression of ER, in particular ERβ, with the associated consequences. The expression of ER was accompanied by considerable variations in the activation of CYP1A1 and GSTP1 genes, but it supported the maintenance of a stable consensus between the degree of mycotoxin exposure and the detoxifying effect in pre-pubertal gilts.
Collapse
Affiliation(s)
- Magdalena Gajęcka
- Department of Veterinary Prevention and Feed Hygiene, Faculty of Veterinary Medicine, University of Warmia and Mazury in Olsztyn, Olsztyn, Poland
| | - Paweł Brzuzan
- Department of Environmental Biotechnology, Faculty of Environmental Sciences and Fisheries, University of Warmia and Mazury in Olsztyn, Olsztyn, Poland
| | - Iwona Otrocka-Domagała
- Department of Pathological Anatomy, Faculty of Veterinary Medicine, University of Warmia and Mazury in Olsztyn, Olsztyn, Poland
| | - Łukasz Zielonka
- Department of Veterinary Prevention and Feed Hygiene, Faculty of Veterinary Medicine, University of Warmia and Mazury in Olsztyn, Olsztyn, Poland
| | - Sylwia Lisieska-Żołnierczyk
- Independent Public Health Care Center of the Ministry of the Interior and Administration and the Warmia and Mazury Oncology Center in Olsztyn, Olsztyn, Poland
| | - Maciej T Gajęcki
- Department of Veterinary Prevention and Feed Hygiene, Faculty of Veterinary Medicine, University of Warmia and Mazury in Olsztyn, Olsztyn, Poland
| |
Collapse
|
10
|
Barański W, Gajęcka M, Zielonka Ł, Mróz M, Onyszek E, Przybyłowicz KE, Nowicki A, Babuchowski A, Gajęcki MT. Occurrence of Zearalenone and Its Metabolites in the Blood of High-Yielding Dairy Cows at Selected Collection Sites in Various Disease States. Toxins (Basel) 2021; 13:446. [PMID: 34203296 PMCID: PMC8309810 DOI: 10.3390/toxins13070446] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 06/24/2021] [Accepted: 06/25/2021] [Indexed: 11/16/2022] Open
Abstract
Zearalenone (ZEN) and its metabolites, alpha-zearalenol (α-ZEL) and beta-zearalenol (β-ZEL), are ubiquitous in plant materials used as feed components in dairy cattle diets. The aim of this study was to confirm the occurrence of ZEN and its selected metabolites in blood samples collected from different sites in the hepatic portal system (posthepatic-external jugular vein EJV; prehepatic-abdominal subcutaneous vein ASV and median caudal vein MCV) of dairy cows diagnosed with mastitis, ovarian cysts and pyometra. The presence of mycotoxins in the blood plasma was determined with the use of combined separation methods involving immunoaffinity columns, a liquid chromatography system and a mass spectrometry system. The parent compound was detected in all samples collected from diseased cows, whereas α-ZEL and β-ZEL were not identified in any samples, or their concentrations were below the limit of detection (LOD). Zearalenone levels were highest in cows with pyometra, where the percentage share of average ZEN concentrations reached 44%. Blood sampling sites were arranged in the following ascending order based on ZEN concentrations: EJV (10.53 pg/mL, 44.07% of the samples collected from this site), ASV (14.20 pg/mL, 49.59% of the samples) and MCV (26.67 pg/mL, 67.35% of the samples). The results of the study indicate that blood samples for toxicological analyses should be collected from the MCV (prehepatic vessel) of clinically healthy cows and/or cows with subclinical ZEN mycotoxicosis. This sampling site increases the probability of correct diagnosis of subclinical ZEN mycotoxicosis.
Collapse
Affiliation(s)
- Wojciech Barański
- Department of Animal Reproduction with Clinic, Faculty of Veterinary Medicine, University of Warmia and Mazury in Olsztyn, Oczapowskiego 13, 10-718 Olsztyn, Poland; (W.B.); (A.N.)
| | - Magdalena Gajęcka
- Department of Veterinary Prevention and Feed Hygiene, Faculty of Veterinary Medicine, University of Warmia and Mazury in Olsztyn, Oczapowskiego 13, 10-718 Olsztyn, Poland; (Ł.Z.); (M.M.); (M.T.G.)
| | - Łukasz Zielonka
- Department of Veterinary Prevention and Feed Hygiene, Faculty of Veterinary Medicine, University of Warmia and Mazury in Olsztyn, Oczapowskiego 13, 10-718 Olsztyn, Poland; (Ł.Z.); (M.M.); (M.T.G.)
| | - Magdalena Mróz
- Department of Veterinary Prevention and Feed Hygiene, Faculty of Veterinary Medicine, University of Warmia and Mazury in Olsztyn, Oczapowskiego 13, 10-718 Olsztyn, Poland; (Ł.Z.); (M.M.); (M.T.G.)
| | - Ewa Onyszek
- Institute of Dairy Industry Innovation Ltd., Kormoranów 1, 11-700 Mrągowo, Poland; (E.O.); (A.B.)
| | - Katarzyna E. Przybyłowicz
- Department of Human Nutrition, Faculty of Food Sciences, University of Warmia and Mazury in Olsztyn, Słoneczna 45F, 10-719 Olsztyn, Poland;
| | - Arkadiusz Nowicki
- Department of Animal Reproduction with Clinic, Faculty of Veterinary Medicine, University of Warmia and Mazury in Olsztyn, Oczapowskiego 13, 10-718 Olsztyn, Poland; (W.B.); (A.N.)
| | - Andrzej Babuchowski
- Institute of Dairy Industry Innovation Ltd., Kormoranów 1, 11-700 Mrągowo, Poland; (E.O.); (A.B.)
| | - Maciej T. Gajęcki
- Department of Veterinary Prevention and Feed Hygiene, Faculty of Veterinary Medicine, University of Warmia and Mazury in Olsztyn, Oczapowskiego 13, 10-718 Olsztyn, Poland; (Ł.Z.); (M.M.); (M.T.G.)
| |
Collapse
|
11
|
Javed Z, Khan K, Rasheed A, Sadia H, Raza S, Salehi B, Cho WC, Sharifi-Rad J, Koch W, Kukula-Koch W, Głowniak-Lipa A, Helon P. MicroRNAs and Natural Compounds Mediated Regulation of TGF Signaling in Prostate Cancer. Front Pharmacol 2021; 11:613464. [PMID: 33584291 PMCID: PMC7873640 DOI: 10.3389/fphar.2020.613464] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Accepted: 11/24/2020] [Indexed: 12/25/2022] Open
Abstract
Prostate cancer (PCa) is with rising incidence in male population globally. It is a complex anomaly orchestrated by a plethora of cellular processes. Transforming growth factor-beta (TGF-β) signaling is one of the key signaling pathways involved in the tumorigenesis of PCa. TGF-β signaling has a dual role in the PCa, making it difficult to find a suitable therapeutic option. MicroRNAs (miRNAs) mediated regulation of TGF-β signaling is responsible for the TGF-ß paradox. These are small molecules that modulate the expression of target genes and regulate cancer progression. Thus, miRNAs interaction with different signaling cascades is of great attention for devising new diagnostic and therapeutic options for PCa. Natural compounds have been extensively studied due to their high efficacy and low cytotoxicity. Here, we discuss the involvement of TGF-ß signaling in PCa with the interplay between miRNAs and TGF-β signaling and also review the role of natural compounds for the development of new therapeutics for PCa.
Collapse
Affiliation(s)
- Zeeshan Javed
- Office for Research Innovation and Commercialization, Lahore Garrison University, Lahore, Pakistan
| | - Khushbukhat Khan
- Atta-ur-Rahman School of Applied Biosciences (ASAB), National University of Sciences and Technology (NUST), Islamabad, Pakistan
| | - Amna Rasheed
- School of Basic Medical Sciences, Lanzhou University, Lanzhou, China
| | - Haleema Sadia
- Department of Biotechnology, Balochistan University of Information Technology, Engineering and Management Sciences, Quetta, Pakistan
| | - Shahid Raza
- Office for Research Innovation and Commercialization, Lahore Garrison University, Lahore, Pakistan
| | - Bahare Salehi
- Medical Ethics and Law Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - William C Cho
- Department of Clinical Oncology, Queen Elizabeth Hospital, Hong Kong, China
| | - Javad Sharifi-Rad
- Phytochemistry Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.,Facultad de Medicina, Universidad del Azuay, Cuenca, Ecuador
| | - Wojciech Koch
- Chair and Department of Food and Nutrition, Medical University of Lublin, Lublin, Poland
| | | | - Anna Głowniak-Lipa
- Department of Cosmetology, University of Information Technology and Management in Rzeszów, Rzeszów, Poland
| | - Paweł Helon
- Branch in Sandomierz, Jan Kochanowski University in Kielce, Sandomierz, Poland
| |
Collapse
|