1
|
Sun X, Setrerrahmane S, Li C, Hu J, Xu H. Nucleic acid drugs: recent progress and future perspectives. Signal Transduct Target Ther 2024; 9:316. [PMID: 39609384 PMCID: PMC11604671 DOI: 10.1038/s41392-024-02035-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 09/20/2024] [Accepted: 10/25/2024] [Indexed: 11/30/2024] Open
Abstract
High efficacy, selectivity and cellular targeting of therapeutic agents has been an active area of investigation for decades. Currently, most clinically approved therapeutics are small molecules or protein/antibody biologics. Targeted action of small molecule drugs remains a challenge in medicine. In addition, many diseases are considered 'undruggable' using standard biomacromolecules. Many of these challenges however, can be addressed using nucleic therapeutics. Nucleic acid drugs (NADs) are a new generation of gene-editing modalities characterized by their high efficiency and rapid development, which have become an active research topic in new drug development field. However, many factors, including their low stability, short half-life, high immunogenicity, tissue targeting, cellular uptake, and endosomal escape, hamper the delivery and clinical application of NADs. Scientists have used chemical modification techniques to improve the physicochemical properties of NADs. In contrast, modified NADs typically require carriers to enter target cells and reach specific intracellular locations. Multiple delivery approaches have been developed to effectively improve intracellular delivery and the in vivo bioavailability of NADs. Several NADs have entered the clinical trial recently, and some have been approved for therapeutic use in different fields. This review summarizes NADs development and evolution and introduces NADs classifications and general delivery strategies, highlighting their success in clinical applications. Additionally, this review discusses the limitations and potential future applications of NADs as gene therapy candidates.
Collapse
Affiliation(s)
- Xiaoyi Sun
- Jiangsu Province Engineering Research Center of Synthetic Peptide Drug Discovery and Evaluation, China Pharmaceutical University, Nanjing, 210009, China
| | | | - Chencheng Li
- Jiangsu Province Engineering Research Center of Synthetic Peptide Drug Discovery and Evaluation, China Pharmaceutical University, Nanjing, 210009, China
| | - Jialiang Hu
- Jiangsu Province Engineering Research Center of Synthetic Peptide Drug Discovery and Evaluation, China Pharmaceutical University, Nanjing, 210009, China
| | - Hanmei Xu
- Jiangsu Province Engineering Research Center of Synthetic Peptide Drug Discovery and Evaluation, China Pharmaceutical University, Nanjing, 210009, China.
| |
Collapse
|
2
|
Smal N, Majdoub F, Janssens K, Reyniers E, Meuwissen MEC, Ceulemans B, Northrup H, Hill JB, Liu L, Errichiello E, Gana S, Strong A, Rohena L, Franciskovich R, Murali CN, Huybrechs A, Sulem T, Fridriksdottir R, Sulem P, Stefansson K, Bai Y, Rosenfeld JA, Lalani SR, Streff H, Kooy RF, Weckhuysen S. Burden re-analysis of neurodevelopmental disorder cohorts for prioritization of candidate genes. Eur J Hum Genet 2024; 32:1378-1386. [PMID: 38965372 DOI: 10.1038/s41431-024-01661-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 04/12/2024] [Accepted: 06/25/2024] [Indexed: 07/06/2024] Open
Abstract
This study aimed to uncover novel genes associated with neurodevelopmental disorders (NDD) by leveraging recent large-scale de novo burden analysis studies to enhance a virtual gene panel used in a diagnostic setting. We re-analyzed historical trio-exome sequencing data from 745 individuals with NDD according to the most recent diagnostic standards, resulting in a cohort of 567 unsolved individuals. Next, we designed a virtual gene panel containing candidate genes from three large de novo burden analysis studies in NDD and prioritized candidate genes by stringent filtering for ultra-rare de novo variants with high pathogenicity scores. Our analysis revealed an increased burden of de novo variants in our selected candidate genes within the unsolved NDD cohort and identified qualifying de novo variants in seven candidate genes: RIF1, CAMK2D, RAB11FIP4, AGO3, PCBP2, LEO1, and VCP. Clinical data were collected from six new individuals with de novo or inherited LEO1 variants and three new individuals with de novo PCBP2 variants. Our findings add additional evidence for LEO1 as a risk gene for autism and intellectual disability. Furthermore, we prioritize PCBP2 as a candidate gene for NDD associated with motor and language delay. In summary, by leveraging de novo burden analysis studies, employing a stringent variant filtering pipeline, and engaging in targeted patient recruitment, our study contributes to the identification of novel genes implicated in NDDs.
Collapse
Affiliation(s)
- Noor Smal
- Applied and Translational Neurogenomics Group, VIB Center for Molecular Neurology, VIB, Antwerp, Belgium
- Applied and Translational Neurogenomics Group, Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium
| | - Fatma Majdoub
- Applied and Translational Neurogenomics Group, VIB Center for Molecular Neurology, VIB, Antwerp, Belgium
- Applied and Translational Neurogenomics Group, Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium
- Medical Genetics Department, University Hedi Chaker Hospital of Sfax, University of Sfax, Sfax, Tunisia
| | - Katrien Janssens
- Department of Medical Genetics, University of Antwerp, Antwerp, Belgium
- Center of Medical Genetics, University Hospital Antwerp, Drie Eikenstraat 655, Edegem, 2650, Belgium
| | - Edwin Reyniers
- Department of Medical Genetics, University of Antwerp, Antwerp, Belgium
- Center of Medical Genetics, University Hospital Antwerp, Drie Eikenstraat 655, Edegem, 2650, Belgium
| | - Marije E C Meuwissen
- Department of Medical Genetics, University of Antwerp, Antwerp, Belgium
- Center of Medical Genetics, University Hospital Antwerp, Drie Eikenstraat 655, Edegem, 2650, Belgium
| | - Berten Ceulemans
- Translational Neurosciences, Faculty of Medicine and Health Science, University of Antwerp, Antwerp, Belgium
- Department of Pediatric Neurology, Antwerp University Hospital, University of Antwerp, Antwerp, Belgium
| | - Hope Northrup
- Department of Pediatrics, McGovern Medical School at the University of Texas Health Science Center at Houston (UTHealth) and Children's Memorial Hermann Hospital, Houston, TX, USA
| | - Jeremy B Hill
- Department of Pediatrics, McGovern Medical School at the University of Texas Health Science Center at Houston (UTHealth) and Children's Memorial Hermann Hospital, Houston, TX, USA
| | - Lingying Liu
- Department of Pediatrics, McGovern Medical School at the University of Texas Health Science Center at Houston (UTHealth) and Children's Memorial Hermann Hospital, Houston, TX, USA
| | - Edoardo Errichiello
- Department of Molecular Medicine, University of Pavia, Pavia, Italy
- Neurogenetics Research Center, IRCCS Mondino Foundation, Pavia, Italy
| | - Simone Gana
- Neurogenetics Research Center, IRCCS Mondino Foundation, Pavia, Italy
| | - Alanna Strong
- Division of Human Genetics, Children's Hospital of Philadelphia, Philadelphia, PA, USA
- Department of Pediatrics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - Luis Rohena
- Division of Medical Genetics, Department of Pediatrics, San Antonio Military Medical Center, San Antonio, TX, USA
- Department of Pediatrics, Long School of Medicine-UT Health San Antonio, San Antonio, TX, USA
| | - Rachel Franciskovich
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
- Texas Children's Hospital, Houston, TX, USA
| | - Chaya N Murali
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
- Texas Children's Hospital, Houston, TX, USA
| | - An Huybrechs
- Department of Pediatrics, Heilig Hart Ziekenhuis, Lier, Belgium
| | - Telma Sulem
- deCODE genetics/Amgen Inc., Reykjavik, Iceland
| | | | | | | | - Yan Bai
- GeneDx, Gaithersburg, MD, USA
| | - Jill A Rosenfeld
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Seema R Lalani
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
- Texas Children's Hospital, Houston, TX, USA
| | - Haley Streff
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
- Texas Children's Hospital, Houston, TX, USA
| | - R Frank Kooy
- Department of Medical Genetics, University of Antwerp, Antwerp, Belgium
| | - Sarah Weckhuysen
- Applied and Translational Neurogenomics Group, VIB Center for Molecular Neurology, VIB, Antwerp, Belgium.
- Translational Neurosciences, Faculty of Medicine and Health Science, University of Antwerp, Antwerp, Belgium.
- Department of Neurology, University Hospital Antwerp, Antwerp, Belgium.
- µNEURO Research Centre of Excellence, University of Antwerp, Antwerp, Belgium.
| |
Collapse
|
3
|
Liu Q, Pepin RM, Novak MK, Maschhoff KR, Worner K, Hu W. AGO1 controls protein folding in mouse embryonic stem cell fate decisions. Dev Cell 2024; 59:979-990.e5. [PMID: 38458189 DOI: 10.1016/j.devcel.2024.02.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 11/27/2023] [Accepted: 02/12/2024] [Indexed: 03/10/2024]
Abstract
Argonaute (AGO) proteins are evolutionarily conserved RNA-binding proteins that control gene expression through the small RNAs they interact with. Whether AGOs have regulatory roles independent of RNAs, however, is unknown. Here, we show that AGO1 controls cell fate decisions through facilitating protein folding. We found that in mouse embryonic stem cells (mESCs), while AGO2 facilitates differentiation via the microRNA (miRNA) pathway, AGO1 controls stemness independently of its binding to small RNAs. We determined that AGO1 specifically interacts with HOP, a co-chaperone for the HSP70 and HSP90 chaperones, and enhances the folding of a set of HOP client proteins with intrinsically disordered regions. This AGO1-mediated facilitation of protein folding is important for maintaining stemness in mESCs. Our results demonstrate divergent functions between AGO1 and AGO2 in controlling cellular states and identify an RNA-independent function of AGO1 in controlling gene expression and cell fate decisions.
Collapse
Affiliation(s)
- Qiuying Liu
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN 55905, USA
| | - Rachel M Pepin
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN 55905, USA
| | - Mariah K Novak
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN 55905, USA
| | - Katharine R Maschhoff
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN 55905, USA
| | - Kailey Worner
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN 55905, USA
| | - Wenqian Hu
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN 55905, USA.
| |
Collapse
|
4
|
Kazimierczyk M, Wojnicka M, Biała E, Żydowicz-Machtel P, Imiołczyk B, Ostrowski T, Kurzyńska-Kokorniak A, Wrzesinski J. Characteristics of Transfer RNA-Derived Fragments Expressed during Human Renal Cell Development: The Role of Dicer in tRF Biogenesis. Int J Mol Sci 2022; 23:ijms23073644. [PMID: 35409004 PMCID: PMC8998818 DOI: 10.3390/ijms23073644] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 03/23/2022] [Accepted: 03/24/2022] [Indexed: 02/04/2023] Open
Abstract
tRNA-derived fragments participate in the regulation of many processes, such as gene silencing, splicing and translation in many organisms, ranging from bacteria to humans. We were interested to know how tRF abundance changes during the different stages of renal cell development. The research model used here consisted of the following human renal cells: hESCs, HEK-293T, HK-2 and A-489 kidney tumor cells, which, together, mimic the different stages of kidney development. The characteristics of the most abundant tRFs, tRFGly(CCC), tRFVal(AAC) and tRFArg(CCU), were presented. It was found that these parental tRNAs present in cells are the source of many tRFs, thus increasing the pool of potential regulatory RNAs. Indeed, a bioinformatic analysis showed the possibility that tRFGly(CCC) and tRRFVal(AAC) could regulate the activity of a range of kidney proteins. Moreover, the distribution of tRFs and the efficiency of their expression is similar in adult and embryonic stem cells. During the formation of tRFs, HK-2 cells resemble A-498 cancer cells more than other cells. Additionally, we postulate the involvement of Dicer nuclease in the formation of tRF-5b in all the analyzed tRNAs. To confirm this, 293T NoDice cells, which in the absence of Dicer activity do not generate tRF-5b, were used.
Collapse
|
5
|
AGO2 localizes to cytokinetic protrusions in a p38-dependent manner and is needed for accurate cell division. Commun Biol 2021; 4:726. [PMID: 34117353 PMCID: PMC8196063 DOI: 10.1038/s42003-021-02130-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Accepted: 02/22/2021] [Indexed: 02/06/2023] Open
Abstract
Argonaute 2 (AGO2) is an indispensable component of the RNA-induced silencing complex, operating at the translational or posttranscriptional level. It is compartmentalized into structures such as GW- and P-bodies, stress granules and adherens junctions as well as the midbody. Here we show using immunofluorescence, image and bioinformatic analysis and cytogenetics that AGO2 also resides in membrane protrusions such as open- and close-ended tubes. The latter are cytokinetic bridges where AGO2 colocalizes at the midbody arms with cytoskeletal components such as α-Τubulin and Aurora B, and various kinases. AGO2, phosphorylated on serine 387, is located together with Dicer at the midbody ring in a manner dependent on p38 MAPK activity. We further show that AGO2 is stress sensitive and important to ensure the proper chromosome segregation and cytokinetic fidelity. We suggest that AGO2 is part of a regulatory mechanism triggered by cytokinetic stress to generate the appropriate micro-environment for local transcript homeostasis. Pantazopoulou et al. find that AGO2 resides in open-ended tunneling nanotubes and close-ended cytokinetic bridges. At the latter location, AGO2 colocalizes with cell division components and the authors show that AGO2 depletion impairs cell division fidelity.
Collapse
|
6
|
Vázquez-Del Mercado M, Martínez-García EA, Daneri-Navarro A, Gómez-Bañuelos E, Martín-Márquez BT, Pizano-Martínez O, Wilson-Manríquez EA, Corona-Sánchez EG, Chavarria-Avila E, Sandoval-García F, Satoh M. Presence of anti-TIF-1γ, anti-Ro52, anti-SSA/Ro60 and anti-Su/Ago2 antibodies in breast cancer: a cross-sectional study. Immunopharmacol Immunotoxicol 2021; 43:328-333. [PMID: 33876712 DOI: 10.1080/08923973.2021.1910833] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
OBJECTIVES The presence of myositis-specific antibodies (MSA), was recently reported in healthy individuals, cancer patients without myopathy and paraneoplastic rheumatic syndromes. We sought to analyze the frequency of MSA, myositis-associated antibodies (MAA) and autoantibodies related to systemic autoimmune rheumatic diseases (SARD) in breast cancer patients. METHODS One hundred fifty-two breast cancer patients were enrolled in a cross-sectional study. Clinical information was collected, and autoantibodies tested by immunoprecipitation of an 35S-methionine-labeled K562 cell extract, enzyme-linked immunosorbent assay (ELISA) and Western blot when indicated. All statistical tests were performed using the software statistical package for the social science (SPSS) ver. 19.0 (IBM Inc., NYSE, USA). RESULTS Autoantibodies associated with SARD: anti-52 kD ribonucleoprotein/tripartite motif-containing 21 (anti-Ro52/TRIM21) was found in 5.9% (9/152), anti-Sjögren syndrome-related antigen A/60 kD ribonucleoprotein antibody (anti-SSA/Ro60) in 3.9% (6/152) and anti-Su antigen/Argonaute 2 antibody (anti-Su/Ago2) in 2.6% (4/152). Meanwhile, anti-transcription intermediary factor-1γ (anti-TIF-1γ, p155/140) antibody was positive in 2 cases and anti-polymyositis/scleroderma antibody was detected in one case. As a whole, 14.47% (22/152) of breast cancer patients showed autoantibodies associated with SARD. These specific autoantibodies were not associated with the presence of rheumatic diseases except one rheumatoid arthritis patient positive for anti-Ro52/TRIM21. CONCLUSIONS Autoantibodies to TIF-1γ were found in two patients with breast cancer without dermatomyositis (DM). More common specificities were autoantibodies anti-SSA/Ro60, anti-Ro52/TRIM21 and anti-Su/Ago2. More studies are needed in order to establish the biological meaning of the presence of SARD-associated autoantibodies in breast cancer.
Collapse
Affiliation(s)
- Mónica Vázquez-Del Mercado
- Instituto de Investigación en Reumatología y del Sistema Músculo Esquelético, CUCS, Universidad de Guadalajara, Guadalajara, Jalisco, México.,Hospital Civil de Guadalajara "Juan I. Menchaca", Servicio de Reumatología, PNPC, CONACyT, Guadalajara, Jalisco, México.,UDG-CA-703, Inmunología y Reumatología, CUCS, Universidad de Guadalajara, Guadalajara, Jalisco, México
| | - Erika Aurora Martínez-García
- Instituto de Investigación en Reumatología y del Sistema Músculo Esquelético, CUCS, Universidad de Guadalajara, Guadalajara, Jalisco, México.,UDG-CA-703, Inmunología y Reumatología, CUCS, Universidad de Guadalajara, Guadalajara, Jalisco, México.,Departamento de Fisiología, CUCS, Universidad de Guadalajara, Guadalajara, Jalisco, México
| | - Adrián Daneri-Navarro
- Departamento de Fisiología, CUCS, Universidad de Guadalajara, Guadalajara, Jalisco, México.,Laboratorio de Inmunología, Departamento de Fisiología, CUCS, Universidad de Guadalajara, Guadalajara, Jalisco, México
| | - Eduardo Gómez-Bañuelos
- Instituto de Investigación en Reumatología y del Sistema Músculo Esquelético, CUCS, Universidad de Guadalajara, Guadalajara, Jalisco, México.,UDG-CA-703, Inmunología y Reumatología, CUCS, Universidad de Guadalajara, Guadalajara, Jalisco, México.,Departamento de Fisiología, CUCS, Universidad de Guadalajara, Guadalajara, Jalisco, México
| | - Beatriz Teresita Martín-Márquez
- Instituto de Investigación en Reumatología y del Sistema Músculo Esquelético, CUCS, Universidad de Guadalajara, Guadalajara, Jalisco, México.,UDG-CA-703, Inmunología y Reumatología, CUCS, Universidad de Guadalajara, Guadalajara, Jalisco, México
| | - Oscar Pizano-Martínez
- Instituto de Investigación en Reumatología y del Sistema Músculo Esquelético, CUCS, Universidad de Guadalajara, Guadalajara, Jalisco, México.,UDG-CA-703, Inmunología y Reumatología, CUCS, Universidad de Guadalajara, Guadalajara, Jalisco, México.,Departamento de Clínicas Médicas. CUCS, Universidad de Guadalajara, Guadalajara, Jalisco, México
| | - Eduardo A Wilson-Manríquez
- Instituto de Investigación en Reumatología y del Sistema Músculo Esquelético, CUCS, Universidad de Guadalajara, Guadalajara, Jalisco, México
| | - Esther Guadalupe Corona-Sánchez
- Instituto de Investigación en Reumatología y del Sistema Músculo Esquelético, CUCS, Universidad de Guadalajara, Guadalajara, Jalisco, México.,UDG-CA-703, Inmunología y Reumatología, CUCS, Universidad de Guadalajara, Guadalajara, Jalisco, México.,Departamento de Fisiología, CUCS, Universidad de Guadalajara, Guadalajara, Jalisco, México
| | - Efrain Chavarria-Avila
- Instituto de Investigación en Reumatología y del Sistema Músculo Esquelético, CUCS, Universidad de Guadalajara, Guadalajara, Jalisco, México.,Departamento de Disciplinas Filosóficas, Metodológicas e Instrumentales. CUCS, Universidad de Guadalajara, Guadalajara, Jalisco, México
| | - Flavio Sandoval-García
- Instituto de Investigación en Reumatología y del Sistema Músculo Esquelético, CUCS, Universidad de Guadalajara, Guadalajara, Jalisco, México.,Departamento de Clínicas Médicas. CUCS, Universidad de Guadalajara, Guadalajara, Jalisco, México
| | - Minoru Satoh
- Department of Clinical Nursing, School of Health Sciences, University of Occupational and Environmental Health, Kitakyushu, Fukuoka, Japan
| |
Collapse
|
7
|
Frascotti G, Galbiati E, Mazzucchelli M, Pozzi M, Salvioni L, Vertemara J, Tortora P. The Vault Nanoparticle: A Gigantic Ribonucleoprotein Assembly Involved in Diverse Physiological and Pathological Phenomena and an Ideal Nanovector for Drug Delivery and Therapy. Cancers (Basel) 2021; 13:cancers13040707. [PMID: 33572350 PMCID: PMC7916137 DOI: 10.3390/cancers13040707] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 02/03/2021] [Accepted: 02/03/2021] [Indexed: 12/12/2022] Open
Abstract
Simple Summary In recent decades, a molecular complex referred to as vault nanoparticle has attracted much attention by the scientific community, due to its unique properties. At the molecular scale, it is a huge assembly consisting of 78 97-kDa polypeptide chains enclosing an internal cavity, wherein enzymes involved in DNA integrity maintenance and some small noncoding RNAs are accommodated. Basically, two reasons justify this interest. On the one hand, this complex represents an ideal tool for the targeted delivery of drugs, provided it is suitably engineered, either chemically or genetically; on the other hand, it has been shown to be involved in several cellular pathways and mechanisms that most often result in multidrug resistance. It is therefore expected that a better understanding of the physiological roles of this ribonucleoproteic complex may help develop new therapeutic strategies capable of coping with cancer progression. Here, we provide a comprehensive review of the current knowledge. Abstract The vault nanoparticle is a eukaryotic ribonucleoprotein complex consisting of 78 individual 97 kDa-“major vault protein” (MVP) molecules that form two symmetrical, cup-shaped, hollow halves. It has a huge size (72.5 × 41 × 41 nm) and an internal cavity, wherein the vault poly(ADP-ribose) polymerase (vPARP), telomerase-associated protein-1 (TEP1), and some small untranslated RNAs are accommodated. Plenty of literature reports on the biological role(s) of this nanocomplex, as well as its involvement in diseases, mostly oncological ones. Nevertheless, much has still to be understood as to how vault participates in normal and pathological mechanisms. In this comprehensive review, current understanding of its biological roles is discussed. By different mechanisms, vault’s individual components are involved in major cellular phenomena, which result in protection against cellular stresses, such as DNA-damaging agents, irradiation, hypoxia, hyperosmotic, and oxidative conditions. These diverse cellular functions are accomplished by different mechanisms, mainly gene expression reprogramming, activation of proliferative/prosurvival signaling pathways, export from the nucleus of DNA-damaging drugs, and import of specific proteins. The cellular functions of this nanocomplex may also result in the onset of pathological conditions, mainly (but not exclusively) tumor proliferation and multidrug resistance. The current understanding of its biological roles in physiological and pathological processes should also provide new hints to extend the scope of its exploitation as a nanocarrier for drug delivery.
Collapse
|
8
|
Argonaute 3 (AGO3) promotes malignancy potential of cervical cancer via regulation of Wnt/β-catenin signaling pathway. Reprod Biol 2021; 21:100479. [PMID: 33444963 DOI: 10.1016/j.repbio.2020.100479] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Revised: 11/19/2020] [Accepted: 12/30/2020] [Indexed: 12/24/2022]
Abstract
We aimed to investigate the biological roles of Argonaute 3 (AGO3) in cervical cancer. RNA profiles containing 306 cervical cancer tissues and 13 normal samples revealed that AGO3 was significantly up-regulated in cervical cancer, and the expression of AGO3 was negatively associated with the outcome of cervical cancer patients. Cell proliferation and transwell assays showed that the depletion of AGO3 markedly inhibited cervical cancer cell growth and mobility. Importantly, we detected that knockdown of AGO3 exerted suppressive effect on cellular behaviors via inactivating Wnt/β-catenin signaling pathway. Collectively, we conclude that AGO3 is a novel tumor promoter in cervical cancer and has a potential to be a drug target and prognostic predictor of cervical cancer patients.
Collapse
|