1
|
Troise D, Mercuri S, Infante B, Losappio V, Cirolla L, Netti GS, Ranieri E, Stallone G. mTOR and SGLT-2 Inhibitors: Their Synergistic Effect on Age-Related Processes. Int J Mol Sci 2024; 25:8676. [PMID: 39201363 PMCID: PMC11354721 DOI: 10.3390/ijms25168676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 07/31/2024] [Accepted: 08/02/2024] [Indexed: 09/02/2024] Open
Abstract
The aging process contributes significantly to the onset of chronic diseases, which are the primary causes of global mortality, morbidity, and healthcare costs. Numerous studies have shown that the removal of senescent cells from tissues extends lifespan and reduces the occurrence of age-related diseases. Consequently, there is growing momentum in the development of drugs targeting these cells. Among them, mTOR and SGLT-2 inhibitors have garnered attention due to their diverse effects: mTOR inhibitors regulate cellular growth, metabolism, and immune responses, while SGLT-2 inhibitors regulate glucose reabsorption in the kidneys, resulting in various beneficial metabolic effects. Importantly, these drugs may act synergistically by influencing senescence processes and pathways. Although direct studies on the combined effects of mTOR inhibition and SGLT-2 inhibition on age-related processes are limited, this review aims to highlight the potential synergistic benefits of these drugs in targeting senescence.
Collapse
Affiliation(s)
- Dario Troise
- Nephrology, Dialysis and Transplantation Unit, Advanced Research Center on Kidney Aging (A.R.K.A.), Department of Medical and Surgical Sciences, University of Foggia, 71122 Foggia, Italy
- Renal Medicine and Baxter Novum, Department of Clinical Science, Intervention and Technology, Karolinska Institutet, 14152 Stockholm, Sweden
| | - Silvia Mercuri
- Nephrology, Dialysis and Transplantation Unit, Advanced Research Center on Kidney Aging (A.R.K.A.), Department of Medical and Surgical Sciences, University of Foggia, 71122 Foggia, Italy
| | - Barbara Infante
- Nephrology, Dialysis and Transplantation Unit, Advanced Research Center on Kidney Aging (A.R.K.A.), Department of Medical and Surgical Sciences, University of Foggia, 71122 Foggia, Italy
| | - Vincenzo Losappio
- Nephrology, Dialysis and Transplantation Unit, Advanced Research Center on Kidney Aging (A.R.K.A.), Department of Medical and Surgical Sciences, University of Foggia, 71122 Foggia, Italy
| | - Luciana Cirolla
- Nephrology, Dialysis and Transplantation Unit, Advanced Research Center on Kidney Aging (A.R.K.A.), Department of Medical and Surgical Sciences, University of Foggia, 71122 Foggia, Italy
| | - Giuseppe Stefano Netti
- Unit of Clinical Pathology, Advanced Research Center on Kidney Aging (A.R.K.A.), Department of Medical and Surgical Sciences, University of Foggia, 71122 Foggia, Italy
| | - Elena Ranieri
- Unit of Clinical Pathology, Advanced Research Center on Kidney Aging (A.R.K.A.), Department of Medical and Surgical Sciences, University of Foggia, 71122 Foggia, Italy
| | - Giovanni Stallone
- Nephrology, Dialysis and Transplantation Unit, Advanced Research Center on Kidney Aging (A.R.K.A.), Department of Medical and Surgical Sciences, University of Foggia, 71122 Foggia, Italy
| |
Collapse
|
2
|
Duan HY, Barajas-Martinez H, Antzelevitch C, Hu D. The potential anti-arrhythmic effect of SGLT2 inhibitors. Cardiovasc Diabetol 2024; 23:252. [PMID: 39010053 PMCID: PMC11251349 DOI: 10.1186/s12933-024-02312-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Accepted: 06/16/2024] [Indexed: 07/17/2024] Open
Abstract
Sodium-glucose cotransporter type 2 inhibitors (SGLT2i) were initially recommended as oral anti-diabetic drugs to treat type 2 diabetes (T2D), by inhibiting SGLT2 in proximal tubule and reduce renal reabsorption of sodium and glucose. While many clinical trials demonstrated the tremendous potential of SGLT2i for cardiovascular diseases. 2022 AHA/ACC/HFSA guideline first emphasized that SGLT2i were the only drug class that can cover the entire management of heart failure (HF) from prevention to treatment. Subsequently, the antiarrhythmic properties of SGLT2i have also attracted attention. Although there are currently no prospective studies specifically on the anti-arrhythmic effects of SGLT2i. We provide clues from clinical and fundamental researches to identify its antiarrhythmic effects, reviewing the evidences and mechanism for the SGLT2i antiarrhythmic effects and establishing a novel paradigm involving intracellular sodium, metabolism and autophagy to investigate the potential mechanisms of SGLT2i in mitigating arrhythmias.
Collapse
Affiliation(s)
- Hong-Yi Duan
- Department of Cardiology and Cardiovascular Research Institute, Renmin Hospital of Wuhan University, 238 Jiefang Road, Wuhan, 430060, Hubei, China
- Hubei Key Laboratory of Cardiology, Wuhan, 430060, Hubei, China
| | - Hector Barajas-Martinez
- Lankenau Institute for Medical Research, Lankenau Heart Institute, Wynnewood, PA, 19096, USA
- Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, 19107, USA
| | - Charles Antzelevitch
- Lankenau Institute for Medical Research, Lankenau Heart Institute, Wynnewood, PA, 19096, USA
- Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, 19107, USA
| | - Dan Hu
- Department of Cardiology and Cardiovascular Research Institute, Renmin Hospital of Wuhan University, 238 Jiefang Road, Wuhan, 430060, Hubei, China.
- Hubei Key Laboratory of Cardiology, Wuhan, 430060, Hubei, China.
| |
Collapse
|
3
|
Guan Y, Wei X, Li J, Zhu Y, Luo P, Luo M. Obesity-related glomerulopathy: recent advances in inflammatory mechanisms and related treatments. J Leukoc Biol 2024; 115:819-839. [PMID: 38427925 DOI: 10.1093/jleuko/qiae035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Revised: 01/25/2024] [Accepted: 02/05/2024] [Indexed: 03/03/2024] Open
Abstract
Obesity-related glomerulopathy, which is an obesity-triggered kidney damage, has become a significant threat to human health. Several studies have recently highlighted the critical role of inflammation in obesity-related glomerulopathy development. Additionally, excess adipose tissue and adipocytes in patients with obesity produce various inflammatory factors that cause systemic low-grade inflammation with consequent damage to vascular endothelial cells, exacerbating glomerular injury. Therefore, we conducted a comprehensive review of obesity-related glomerulopathy and addressed the critical role of obesity-induced chronic inflammation in obesity-related glomerulopathy pathogenesis and progression, which leads to tubular damage and proteinuria, ultimately impairing renal function. The relationship between obesity and obesity-related glomerulopathy is facilitated by a network of various inflammation-associated cells (including macrophages, lymphocytes, and mast cells) and a series of inflammatory mediators (such as tumor necrosis factor α, interleukin 6, leptin, adiponectin, resistin, chemokines, adhesion molecules, and plasminogen activator inhibitor 1) and their inflammatory pathways. Furthermore, we discuss a recently discovered relationship between micronutrients and obesity-related glomerulopathy inflammation and the important role of micronutrients in the body's anti-inflammatory response. Therefore, assessing these inflammatory molecules and pathways will provide a strong theoretical basis for developing therapeutic strategies based on anti-inflammatory effects to prevent or delay the onset of kidney injury.
Collapse
Affiliation(s)
- Yucan Guan
- Department of Nephropathy, The Second Hospital of Jilin University, 218 Ziquiang Street, Nanguan District, Changchun, Jilin 130041, China
| | - Xianping Wei
- Department of Nephropathy, The Second Hospital of Jilin University, 218 Ziquiang Street, Nanguan District, Changchun, Jilin 130041, China
| | - Jicui Li
- Department of Nephropathy, The Second Hospital of Jilin University, 218 Ziquiang Street, Nanguan District, Changchun, Jilin 130041, China
| | - Yuexin Zhu
- Department of Nephropathy, The Second Hospital of Jilin University, 218 Ziquiang Street, Nanguan District, Changchun, Jilin 130041, China
| | - Ping Luo
- Department of Nephropathy, The Second Hospital of Jilin University, 218 Ziquiang Street, Nanguan District, Changchun, Jilin 130041, China
| | - Manyu Luo
- Department of Nephropathy, The Second Hospital of Jilin University, 218 Ziquiang Street, Nanguan District, Changchun, Jilin 130041, China
| |
Collapse
|
4
|
Liu J, Feng L, Jia Q, Meng J, Zhao Y, Ren L, Yan Z, Wang M, Qin J. A comprehensive bioinformatics analysis identifies mitophagy biomarkers and potential Molecular mechanisms in hypertensive nephropathy. J Biomol Struct Dyn 2024:1-20. [PMID: 38334110 DOI: 10.1080/07391102.2024.2311344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 12/05/2023] [Indexed: 02/10/2024]
Abstract
Mitophagy, the selective removal of damaged mitochondria, plays a critical role in kidney diseases, but its involvement in hypertensive nephropathy (HTN) is not well understood. To address this gap, we investigated mitophagy-related genes in HTN, identifying potential biomarkers for diagnosis and treatment. Transcriptome datasets from the Gene Expression Omnibus database were analyzed, resulting in the identification of seven mitophagy related differentially expressed genes (MR-DEGs), namely PINK1, ULK1, SQSTM1, ATG5, ATG12, MFN2, and UBA52. Further, we explored the correlation between MR-DEGs, immune cells, and inflammatory factors. The identified genes demonstrated a strong correlation with Mast cells, T-cells, TGFβ3, IL13, and CSF3. Machine learning techniques were employed to screen important genes, construct diagnostic models, and evaluate their accuracy. Consensus clustering divided the HTN patients into two mitophagy subgroups, with Subgroup 2 showing higher levels of immune cell infiltration and inflammatory factors. The functions of their proteins primarily involve complement, coagulation, lipids, and vascular smooth muscle contraction. Single-cell RNA sequencing revealed that mitophagy was most significant in proximal tubule cells (PTC) in HTN patients. Pseudotime analysis of PTC confirmed the expression changes observed in the transcriptome. Intercellular communication analysis suggested that mitophagy might regulate PTC's participation in intercellular crosstalk. Notably, specific transcription factors such as HNF4A, PPARA, and STAT3 showed strong correlations with mitophagy-related genes in PTC, indicating their potential role in modulating PTC function and influencing the onset and progression of HTN. This study offers a comprehensive analysis of mitophagy in HTN, enhancing our understanding of the pathogenesis, diagnosis, and treatment of HTN.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Jiayou Liu
- The Second Clinical Medical College, Beijing University of Chinese Medicine, Beijing, China
| | - Luda Feng
- Department of Nephropathy, Dongfang Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Qi Jia
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Jia Meng
- Department of Nephropathy, Dongfang Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Yun Zhao
- Department of Nephropathy, Dongfang Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Lei Ren
- Department of Nephropathy, Dongfang Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Ziming Yan
- Department of Nephropathy, Dongfang Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Manrui Wang
- The Second Clinical Medical College, Beijing University of Chinese Medicine, Beijing, China
| | - Jianguo Qin
- Department of Nephropathy, Dongfang Hospital, Beijing University of Chinese Medicine, Beijing, China
| |
Collapse
|
5
|
Scisciola L, Olivieri F, Ambrosino C, Barbieri M, Rizzo MR, Paolisso G. On the wake of metformin: Do anti-diabetic SGLT2 inhibitors exert anti-aging effects? Ageing Res Rev 2023; 92:102131. [PMID: 37984626 DOI: 10.1016/j.arr.2023.102131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 10/30/2023] [Accepted: 11/15/2023] [Indexed: 11/22/2023]
Abstract
Here we propose that SGLT2 inhibitors (SGLT2i), a class of drugs primarily used to treat type 2 diabetes, could also be repositioned as anti-aging senomorphic drugs (agents that prevent the extrinsic harmful effects of senescent cells). As observed for metformin, another anti-diabetic drug with established anti-aging potential, increasing evidence suggests that SGLT2i can modulate some relevant pathways associated with the aging process, such as free radical production, cellular energy regulation through AMP-activated protein kinase (AMPK), autophagy, and the activation of nuclear factor (NF)-kB/inflammasome. Some interesting pro-healthy effects were also observed on human microbiota. All these mechanisms converge on fueling a systemic proinflammatory condition called inflammaging, now recognized as the main risk factor for accelerated aging and increased risk of age-related disease development and progression. Inflammaging can be worsened by cellular senescence and immunosenescence, which contributes to the increased burden of senescent cells during aging, perpetuating the proinflammatory condition. Interestingly, increasing evidence suggested the direct effects of SGLT-2i against senescent cells, chronic activation of immune cells, and metabolic alterations induced by overnutrition (meta-inflammation). In this framework, we analyzed and discussed the multifaceted impact of SGLT2i, compared with metformin effects, as a potential anti-aging drug beyond diabetes management. Despite promising results in experimental studies, rigorous investigations with well-designed cellular and clinical investigations will need to validate SGLT2 inhibitors' anti-aging effects.
Collapse
Affiliation(s)
- Lucia Scisciola
- Department of Advanced Medical and Surgical Sciences, University of Campania "Luigi Vanvitelli", Naples, Italy.
| | - Fabiola Olivieri
- Department of Clinical and Molecular Sciences, DISCLIMO, Università Politecnica delle Marche, Ancona, Italy; Center of Clinical Pathology and Innovative Therapy, IRCCS INRCA, Ancona, Italy.
| | - Concetta Ambrosino
- Biogem Institute of Molecular Biology and Genetics, Ariano Irpino, Italy; Department of Science and Technology, University of Sannio, Benevento, Italy
| | - Michelangela Barbieri
- Department of Advanced Medical and Surgical Sciences, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Maria Rosaria Rizzo
- Department of Advanced Medical and Surgical Sciences, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Giuseppe Paolisso
- Department of Advanced Medical and Surgical Sciences, University of Campania "Luigi Vanvitelli", Naples, Italy; UniCamillus, International Medical University, Rome, Italy
| |
Collapse
|
6
|
The role of lysosomes in metabolic and autoimmune diseases. Nat Rev Nephrol 2023; 19:366-383. [PMID: 36894628 DOI: 10.1038/s41581-023-00692-2] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/09/2023] [Indexed: 03/11/2023]
Abstract
Lysosomes are catabolic organelles that contribute to the degradation of intracellular constituents through autophagy and of extracellular components through endocytosis, phagocytosis and macropinocytosis. They also have roles in secretory mechanisms, the generation of extracellular vesicles and certain cell death pathways. These functions make lysosomes central organelles in cell homeostasis, metabolic regulation and responses to environment changes including nutrient stresses, endoplasmic reticulum stress and defects in proteostasis. Lysosomes also have important roles in inflammation, antigen presentation and the maintenance of long-lived immune cells. Their functions are tightly regulated by transcriptional modulation via TFEB and TFE3, as well as by major signalling pathways that lead to activation of mTORC1 and mTORC2, lysosome motility and fusion with other compartments. Lysosome dysfunction and alterations in autophagy processes have been identified in a wide variety of diseases, including autoimmune, metabolic and kidney diseases. Deregulation of autophagy can contribute to inflammation, and lysosomal defects in immune cells and/or kidney cells have been reported in inflammatory and autoimmune pathologies with kidney involvement. Defects in lysosomal activity have also been identified in several pathologies with disturbances in proteostasis, including autoimmune and metabolic diseases such as Parkinson disease, diabetes mellitus and lysosomal storage diseases. Targeting lysosomes is therefore a potential therapeutic strategy to regulate inflammation and metabolism in a variety of pathologies.
Collapse
|
7
|
Saitoh S, Takaki T, Nakajima K, Wo B, Terashima H, Shimo S, Nguyen HB, Thai TQ, Kumamoto K, Kunisawa K, Nagao S, Tojo A, Ohno N, Takahashi K. Treatment of tubular damage in high-fat-diet-fed obese mice using sodium-glucose co-transporter inhibitors. PLoS One 2023; 18:e0281770. [PMID: 36780539 PMCID: PMC9925073 DOI: 10.1371/journal.pone.0281770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Accepted: 01/31/2023] [Indexed: 02/15/2023] Open
Abstract
A long-term high-fat diet (HFD) causes obesity and changes in renal lipid metabolism and lysosomal dysfunction in mice, causing renal damage. Sodium-glucose co-transporter inhibitors, including phlorizin, exert nephroprotective effects in patients with chronic kidney disease, but the underlying mechanism remains unclear. A HFD or standard diet was fed to adult C57BL/6J male mice, and phlorizin was administered. Lamellar body components of the proximal tubular epithelial cells (PTECs) were investigated. After phlorizin administration in HFD-fed mice, sphingomyelin and ceramide in urine and tissues were assessed and label-free quantitative proteomics was performed using kidney tissue samples. Mitochondrial elongation by fusion was effective in the PTECs of HFD-fed obese mice under phlorizin administration, and many lamellar bodies were found in the apical portion of the S2 segment of the proximal tubule. Phlorizin functioned as a diuretic, releasing lamellar bodies from the apical membrane of PTECs and clearing the obstruction in nephrons. The main component of the lamellar bodies was sphingomyelin. On the first day of phlorizin administration in HFD-fed obese mice, the diuretic effect was increased, and more sphingomyelin was excreted through urine than in vehicle-treated mice. The expressions of three peroxisomal β-oxidation proteins involved in fatty acid metabolism were downregulated after phlorizin administration in the kidneys of HFD-fed mice. Fatty acid elongation protein levels increased with phlorizin administration, indicating an increase in long-chain fatty acids. Lamellar bodies accumulated in the proximal renal tubule of the S2 segment of the HFD-fed mice, indicating that the urinary excretion of lamellar bodies has nephroprotective effects.
Collapse
Affiliation(s)
- Sei Saitoh
- Department of Biomedical Molecular Sciences (Anatomy II), Fujita Health University School of Medicine, Toyoake, Japan
- * E-mail:
| | - Takashi Takaki
- Department of Anatomy, Showa University School of Medicine, Tokyo, Japan
- Center for Electron microscopy, Showa University School of Medicine, Tokyo, Japan
| | - Kazuki Nakajima
- Center for Joint Research Facilities Support, Research Promotion and Support Headquarters, Fujita Health University, Toyoake, Japan
- Institute for Glyco-core Research (iGCORE), Gifu University, Gifu, Japan
| | - Bao Wo
- Department of Anatomy and Molecular Histology, Interdisciplinary Graduate School of Medicine and Engineering, University of Yamanashi, Chuo, Japan
- Department of Histology and Embryology, Medical College of Chifeng University, Chifeng, China
| | | | - Satoshi Shimo
- Department of Occupational Therapy, Health Science University, Fujikawaguchiko, Japan
| | - Huy Bang Nguyen
- Division of Neurobiology and Bioinformatics, National Institute for Physiological Sciences, Okazaki, Japan
- Department of Anatomy and Structural Biology, Graduate School of Medical Science, University of Yamanashi, Chuo, Japan
- Department of Anatomy, Faculty of Medicine, University of Medicine and Pharmacy (UMP), Ho Chi Minh, Vietnam
| | - Truc Quynh Thai
- Division of Neurobiology and Bioinformatics, National Institute for Physiological Sciences, Okazaki, Japan
- Department of Anatomy and Structural Biology, Graduate School of Medical Science, University of Yamanashi, Chuo, Japan
- Department of Histology Embryology Genetics, Faculty of Basic Medical Sciences, Pham Ngoc Thach University of Medicine, Ho Chi Minh, Vietnam
| | - Kanako Kumamoto
- Education and Research Facility of Animal Models for Human Diseases, Fujita Health University, Toyoake, Japan
| | - Kazuo Kunisawa
- Department of Regulatory Science for Evaluation & Development of Pharmaceuticals & Devices, Fujita Health University Graduate School of Health Sciences, Toyoake, Japan
| | - Shizuko Nagao
- Education and Research Facility of Animal Models for Human Diseases, Fujita Health University, Toyoake, Japan
| | - Akihiro Tojo
- Division of Nephrology & Hypertension, Dokkyo Medical University, Mibu, Japan
| | - Nobuhiko Ohno
- Division of Ultrastructural Research, National Institute of Physiological Sciences, Okazaki, Japan
- Department of Anatomy, Division of Histology and Cell Biology, Jichi Medical University, Shimotsuke, Japan
| | - Kazuo Takahashi
- Department of Biomedical Molecular Sciences (Anatomy II), Fujita Health University School of Medicine, Toyoake, Japan
| |
Collapse
|
8
|
Abstract
The prevalence of obesity has increased dramatically during the past decades, which has been a major health problem. Since 1975, the number of people with obesity worldwide has nearly tripled. An increasing number of studies find obesity as a driver of chronic kidney disease (CKD) progression, and the mechanisms are complex and include hemodynamic changes, inflammation, oxidative stress, and activation of the renin-angiotensin-aldosterone system (RAAS). Obesity-related kidney disease is characterized by glomerulomegaly, which is often accompanied by localized and segmental glomerulosclerosis lesions. In these patients, the early symptoms are atypical, with microproteinuria being the main clinical manifestation and nephrotic syndrome being rare. Weight loss and RAAS blockers have a protective effect on obesity-related CKD, but even so, a significant proportion of patients eventually progress to end-stage renal disease despite treatment. Thus, it is critical to comprehend the mechanisms underlying obesity-related CKD to create new tactics for slowing or stopping disease progression. In this review, we summarize current knowledge on the mechanisms of obesity-related kidney disease, its pathological changes, and future perspectives on its treatment.
Collapse
Affiliation(s)
- Zongmiao Jiang
- Department of Endocrinology and Metabolism, The First Hospital of Jilin University, Changchun, China
| | - Yao Wang
- Department of Orthopedics, The Second Hospital Jilin University, Changchun, China
| | - Xue Zhao
- Department of Endocrinology and Metabolism, The First Hospital of Jilin University, Changchun, China
| | - Haiying Cui
- Department of Endocrinology and Metabolism, The First Hospital of Jilin University, Changchun, China
| | - Mingyue Han
- Department of Endocrinology and Metabolism, The First Hospital of Jilin University, Changchun, China
| | - Xinhua Ren
- Department of Endocrinology and Metabolism, The First Hospital of Jilin University, Changchun, China
| | - Xiaokun Gang
- Department of Endocrinology and Metabolism, The First Hospital of Jilin University, Changchun, China
| | - Guixia Wang
- Department of Endocrinology and Metabolism, The First Hospital of Jilin University, Changchun, China
| |
Collapse
|
9
|
Aguiar-Neves I, Santos-Ferreira D, Fontes-Carvalho R. SGLT2 Inhibition in Heart Failure with Preserved Ejection Fraction - The New Frontier. Rev Cardiovasc Med 2023; 24:1. [PMID: 39076855 PMCID: PMC11270412 DOI: 10.31083/j.rcm2401001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 11/27/2022] [Accepted: 12/02/2022] [Indexed: 07/31/2024] Open
Abstract
Heart failure with preserved ejection fraction (HFpEF) is a complex clinical syndrome with high morbidity and increasing socio-economic burden, compounded by the lack of effective treatment options available to treat this disease. Sodium-glucose cotransporter-2 (SGLT2) inhibitors have previously been shown to improve cardiovascular and renal outcomes in patients with type 2 diabetes and patients with heart failure with reduced ejection fraction (HFrEF). Recent major clinical trials with SGLT2 inhibitors, both empagliflozin and dapagliflozin, have now demonstrated improved cardiovascular outcomes in patients with HFpEF and a significant reduction in heart failure hospitalization. Current evidence shows a potential for cardiovascular benefits with SGLT2 inhibition that is consistent across the spectrum of ejection fraction, age, New York Heart Association (NYHA) functional class, natriuretic peptide levels and diabetes status. Although the cardioprotective mechanisms behind SGLT2 inhibition remain unclear, ongoing clinical studies aim to clarify the role of SGLT2 inhibitors on biomarkers of cardiac metabolism, diastolic function and exercise capacity in HFpEF. This article analyzes current clinical evidence from randomized controlled trials and meta-analyses and explores the potential cardioprotective mechanisms of SGLT2 inhibitors, while also looking towards the future of SGLT2 inhibition in HFpEF.
Collapse
Affiliation(s)
- Inês Aguiar-Neves
- Cardiology Department, Centro Hospitalar de Vila Nova de Gaia/Espinho, 4434-502 Vila Nova de Gaia, Portugal
| | - Diogo Santos-Ferreira
- Cardiology Department, Centro Hospitalar de Vila Nova de Gaia/Espinho, 4434-502 Vila Nova de Gaia, Portugal
- Cardiovascular R&D Centre – UnIC@RISE, Department of Surgery and Physiology, Faculty of Medicine of the University of Porto, 4200-450 Porto, Portugal
| | - Ricardo Fontes-Carvalho
- Cardiology Department, Centro Hospitalar de Vila Nova de Gaia/Espinho, 4434-502 Vila Nova de Gaia, Portugal
- Cardiovascular R&D Centre – UnIC@RISE, Department of Surgery and Physiology, Faculty of Medicine of the University of Porto, 4200-450 Porto, Portugal
| |
Collapse
|
10
|
Packer M. Critical Reanalysis of the Mechanisms Underlying the Cardiorenal Benefits of SGLT2 Inhibitors and Reaffirmation of the Nutrient Deprivation Signaling/Autophagy Hypothesis. Circulation 2022; 146:1383-1405. [PMID: 36315602 PMCID: PMC9624240 DOI: 10.1161/circulationaha.122.061732] [Citation(s) in RCA: 182] [Impact Index Per Article: 60.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Accepted: 08/10/2022] [Indexed: 02/06/2023]
Abstract
SGLT2 (sodium-glucose cotransporter 2) inhibitors produce a distinctive pattern of benefits on the evolution and progression of cardiomyopathy and nephropathy, which is characterized by a reduction in oxidative and endoplasmic reticulum stress, restoration of mitochondrial health and enhanced mitochondrial biogenesis, a decrease in proinflammatory and profibrotic pathways, and preservation of cellular and organ integrity and viability. A substantial body of evidence indicates that this characteristic pattern of responses can be explained by the action of SGLT2 inhibitors to promote cellular housekeeping by enhancing autophagic flux, an effect that may be related to the action of these drugs to produce simultaneous upregulation of nutrient deprivation signaling and downregulation of nutrient surplus signaling, as manifested by an increase in the expression and activity of AMPK (adenosine monophosphate-activated protein kinase), SIRT1 (sirtuin 1), SIRT3 (sirtuin 3), SIRT6 (sirtuin 6), and PGC1-α (peroxisome proliferator-activated receptor γ coactivator 1-α) and decreased activation of mTOR (mammalian target of rapamycin). The distinctive pattern of cardioprotective and renoprotective effects of SGLT2 inhibitors is abolished by specific inhibition or knockdown of autophagy, AMPK, and sirtuins. In the clinical setting, the pattern of differentially increased proteins identified in proteomics analyses of blood collected in randomized trials is consistent with these findings. Clinical studies have also shown that SGLT2 inhibitors promote gluconeogenesis, ketogenesis, and erythrocytosis and reduce uricemia, the hallmarks of nutrient deprivation signaling and the principal statistical mediators of the ability of SGLT2 inhibitors to reduce the risk of heart failure and serious renal events. The action of SGLT2 inhibitors to augment autophagic flux is seen in isolated cells and tissues that do not express SGLT2 and are not exposed to changes in environmental glucose or ketones and may be related to an ability of these drugs to bind directly to sirtuins or mTOR. Changes in renal or cardiovascular physiology or metabolism cannot explain the benefits of SGLT2 inhibitors either experimentally or clinically. The direct molecular effects of SGLT2 inhibitors in isolated cells are consistent with the concept that SGLT2 acts as a nutrient surplus sensor, and thus, its inhibition causes enhanced nutrient deprivation signaling and its attendant cytoprotective effects, which can be abolished by specific inhibition or knockdown of AMPK, sirtuins, and autophagic flux.
Collapse
Affiliation(s)
- Milton Packer
- Baylor Heart and Vascular Institute, Dallas, TX. Imperial College, London, United Kingdom
| |
Collapse
|
11
|
Repurposing SGLT-2 Inhibitors to Target Aging: Available Evidence and Molecular Mechanisms. Int J Mol Sci 2022; 23:ijms232012325. [PMID: 36293181 PMCID: PMC9604287 DOI: 10.3390/ijms232012325] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 10/04/2022] [Accepted: 10/13/2022] [Indexed: 11/13/2022] Open
Abstract
Caloric restriction promotes longevity in multiple animal models. Compounds modulating nutrient-sensing pathways have been suggested to reproduce part of the beneficial effect of caloric restriction on aging. However, none of the commonly studied caloric restriction mimetics actually produce a decrease in calories. Sodium-glucose cotransporter 2 inhibitors (SGLT2-i) are a class of drugs which lower glucose by promoting its elimination through urine, thus inducing a net loss of calories. This effect promotes a metabolic shift at the systemic level, fostering ketones and fatty acids utilization as glucose-alternative substrates, and is accompanied by a modulation of major nutrient-sensing pathways held to drive aging, e.g., mTOR and the inflammasome, overall resembling major features of caloric restriction. In addition, preliminary experimental data suggest that SGLT-2i might also have intrinsic activities independent of their systemic effects, such as the inhibition of cellular senescence. Consistently, evidence from both preclinical and clinical studies have also suggested a marked ability of SGLT-2i to ameliorate low-grade inflammation in humans, a relevant driver of aging commonly referred to as inflammaging. Considering also the amount of data from clinical trials, observational studies, and meta-analyses suggesting a tangible effect on age-related outcomes, such as cardiovascular diseases, heart failure, kidney disease, and all-cause mortality also in patients without diabetes, here we propose a framework where at least part of the benefit provided by SGLT-2i is mediated by their ability to blunt the drivers of aging. To support this postulate, we synthesize available data relative to the effect of this class on: 1- animal models of healthspan and lifespan; 2- selected molecular pillars of aging in preclinical models; 3- biomarkers of aging and especially inflammaging in humans; and 4- COVID-19-related outcomes. The burden of evidence might prompt the design of studies testing the potential employment of this class as anti-aging drugs.
Collapse
|
12
|
Abstract
SGLT2 inhibitors can protect the kidneys of patients with and without type 2 diabetes from failing. This includes blood glucose dependent and independent mechanisms. SGLT2 inhibitors lower glomerular pressure and filtration, thereby reducing the physical stress on the filtration barrier and the oxygen demand for tubular reabsorption. This improves cortical oxygenation, which, together with lesser tubular glucotoxicity and improved mitochondrial function and autophagy, can reduce proinflammatory and profibrotic signaling and preserve tubular function and GFR in long term. By shifting transport downstream, SGLT2 inhibitors may mimic systemic hypoxia and stimulate erythropoiesis, which improves oxygen delivery to the kidney and other organs.
Collapse
Affiliation(s)
- Volker Vallon
- Division of Nephrology and Hypertension, Department of Medicine, University of California San Diego, La Jolla, CA, USA; Department of Pharmacology, University of California San Diego, La Jolla, CA, USA; VA San Diego Healthcare System, 3350 La Jolla Village Drive (9151), San Diego, CA 92161, USA.
| |
Collapse
|
13
|
Hotait ZS, Lo Cascio JN, Choos END, Shepard BD. The sugar daddy: the role of the renal proximal tubule in glucose homeostasis. Am J Physiol Cell Physiol 2022; 323:C791-C803. [PMID: 35912988 PMCID: PMC9448277 DOI: 10.1152/ajpcell.00225.2022] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 07/26/2022] [Accepted: 07/26/2022] [Indexed: 11/22/2022]
Abstract
Renal blood flow represents >20% of total cardiac output and with this comes the great responsibility of maintaining homeostasis through the intricate regulation of solute handling. Through the processes of filtration, reabsorption, and secretion, the kidneys ensure that solutes and other small molecules are either returned to circulation, catabolized within renal epithelial cells, or excreted through the process of urination. Although this occurs throughout the renal nephron, one segment is tasked with the bulk of solute reabsorption-the proximal tubule. Among others, the renal proximal tubule is entirely responsible for the reabsorption of glucose, a critical source of energy that fuels the body. In addition, it is the only other site of gluconeogenesis outside of the liver. When these processes go awry, pathophysiological conditions such as diabetes and acidosis result. In this review, we highlight the recent advances made in understanding these processes that occur within the renal proximal tubule. We focus on the physiological mechanisms at play regarding glucose reabsorption and glucose metabolism, emphasize the conditions that occur under diseased states, and explore the emerging class of therapeutics that are responsible for restoring homeostasis.
Collapse
Affiliation(s)
- Zahraa S Hotait
- Department of Human Science, Georgetown University, Washington, District of Columbia
| | - Julia N Lo Cascio
- Department of Human Science, Georgetown University, Washington, District of Columbia
| | - Elijah N D Choos
- Department of Human Science, Georgetown University, Washington, District of Columbia
| | - Blythe D Shepard
- Department of Human Science, Georgetown University, Washington, District of Columbia
| |
Collapse
|
14
|
Zaini LM, Kartasasmita AS, Gondhowiardjo TD, Syukri M, Lesmana R. Potential molecular mechanism of action of sodium-glucose co-transporter 2 inhibitors in the prevention and management of diabetic retinopathy. EXPERT REVIEW OF OPHTHALMOLOGY 2022. [DOI: 10.1080/17469899.2022.2111302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
Affiliation(s)
- Lia Meuthia Zaini
- Faculty of Medicine, Padjadjaran University, Bandung, Indonesia
- Faculty of Medicine, Syiah Kuala University, Banda Aceh, Indonesia
- Department of Medicine, Zainoel Abidin Hospital, Banda Aceh
| | - Arief S Kartasasmita
- Faculty of Medicine, Padjadjaran University, Bandung, Indonesia
- Department of Ophthalmology, Cicendo Eye Hospital, Bandung, Indonesia
| | - Tjahjono D Gondhowiardjo
- Faculty of Medicine, Indonesia University, Jakarta, Indonesia
- Department of Ophthalmology, Cipto Mangunkusumo Hospital, Jakarta, Indonesia
| | - Maimun Syukri
- Faculty of Medicine, Syiah Kuala University, Banda Aceh, Indonesia
| | - Ronny Lesmana
- Faculty of Medicine, Padjadjaran University, Bandung, Indonesia
| |
Collapse
|
15
|
Amer RM, Eltokhy AK, Elesawy RO, Barakat AN, Basha E, Eldeeb OS, Aboalsoud A, Elgharabawy NM, Ismail R. The Ameliorative Effect of Empagliflozin in Vigabatrin-Induced Cerebellar/Neurobehavioral Deficits: Targeting mTOR/AMPK/SIRT-1 Signaling Pathways. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27123659. [PMID: 35744783 PMCID: PMC9229258 DOI: 10.3390/molecules27123659] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 05/23/2022] [Accepted: 05/27/2022] [Indexed: 11/16/2022]
Abstract
Introduction. Vigabatrin (VGB) is an antiepileptic drug that acts to irreversibly inhibit the γ-aminobutyric acid (GABA) transaminase enzyme, elevating GABA levels. Broad studies have established that long-term treatment and/or high doses of VGB lead to variable visual defects. However, little attention has been paid to its other side effects, especially those demonstrating cerebellar involvement. Sodium glucose-linked co-transporter 2 (SGLT2) inhibitors are antidiabetic agents with protective effects far greater than expected based on their anti-hyperglycemic effect. Method. Our study herein was designed to investigate the possible ameliorative effect of empagliflozin, the SGLT2 inhibitors, in VGB-induced cerebellar toxicity. A total of 40 male Wistar rats were allocated equally into 4 groups: Group I: control group; Group II: VGB group; Group III empagliflozin treated VGB group; and Group IV: empagliflozin treated group. All groups were subjected to the detection of cerebellar messenger RNA gene expression of silent mating type information regulation 2 homolog 1 (SIRT1) and Nucleoporin p62 (P62). Mammalian target of rapamycin (mTOR), adenosine monophosphate-activated protein kinase (AMPK), and beclin1 levels were assessed by the ELISA technique while malondialdehyde (MDA) level and superoxide dismutase (SOD) activity were detected spectrophotometrically. Immuno-histochemical studies, focusing on glial fibrillary acidic protein (GFAP) and S100 were performed, and the optical color density and the mean area percentage of GFAP positive astrocytes and the number of S 100 positive cells were also counted. Results. Following empagliflozin treatment, we documented significant upregulation of both SIRT1 and P62 mRNA gene expression. Additionally, AMPK, Beclin1 levels, and SOD activity were significantly improved, while both mTOR and MDA levels were significantly reduced. Conclusions. We concluded for the first time that empagliflozin efficiently ameliorated the VGB-induced disrupted mTOR/AMPK/SIRT-1 signaling axis with subsequent improvement of the autophagy machinery and mitigation of the oxidative and inflammatory cellular environment, paving the way for an innovative therapeutic potential in managing VGB-induced neurotoxicity.
Collapse
Affiliation(s)
- Rabab M. Amer
- Anatomy and Embryology Department, Faculty of Medicine, Tanta University, Tanta 31527, Egypt; (R.M.A.); (R.I.)
| | - Amira Kamel Eltokhy
- Medical Biochemistry Department, Faculty of Medicine, Tanta University, Tanta 31527, Egypt;
- Correspondence: or
| | - Rasha Osama Elesawy
- Pharmacology Department, Faculty of Medicine, Tanta University, Tanta 31527, Egypt; (R.O.E.); (A.A.)
| | - Amany Nagy Barakat
- Pediatric Department, Faculty of Medicine, Tanta University, Tanta 31527, Egypt; (A.N.B.); (N.M.E.)
| | - Eman Basha
- Physiology Department, Faculty of Medicine, Tanta University, Tanta 31527, Egypt;
| | - Omnia Safwat Eldeeb
- Medical Biochemistry Department, Faculty of Medicine, Tanta University, Tanta 31527, Egypt;
| | - Alshimaa Aboalsoud
- Pharmacology Department, Faculty of Medicine, Tanta University, Tanta 31527, Egypt; (R.O.E.); (A.A.)
| | | | - Radwa Ismail
- Anatomy and Embryology Department, Faculty of Medicine, Tanta University, Tanta 31527, Egypt; (R.M.A.); (R.I.)
| |
Collapse
|
16
|
Nayak S, Rathore V, Bharati J, Sahu KK. Extending the ambit of SGLT2 inhibitors beyond diabetes: a review of clinical and preclinical studies on non-diabetic kidney disease. Expert Rev Clin Pharmacol 2022; 14:1513-1526. [PMID: 35020563 DOI: 10.1080/17512433.2021.2028620] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
BACKGROUND Sodium-glucose cotransporter-2 inhibitors (SGLT2i) are novel antidiabetic agents with overwhelming cardiorenal protection. Recent trials focusing on the nephroprotective role of SGLT2i have underscored its success as a phenomenal agent in halting the progression of kidney disease in patients with and without Type 2 diabetes mellitus. Multitudes of pleiotropic effects on tubules have raised hopes for reasonable nephroprotection beyond the purview of the hyperglycemic milieu. AREA COVERED This review summarizes various animal and human data as evidence for the utility of SGLT2i in non-diabetic chronic kidney disease (CKD). Web-based medical database entries were searched. On the premise of existing evidence, we have discussed mechanisms likely contributing to nephroprotection by SGLT2i in patients with non-diabetic CKD. EXPERT OPINION Further elucidation of mechanisms of nephroprotection offered by SGLT2i is required to extend its use as a nephroprotective agent. The use of non-traditional markers of kidney damage in future studies would improve the evaluation of their role in attenuating CKD progression. Emerging animal data support the early use of SGLT2i in states of modest proteinuria for superior outcomes. Future long-term trials in patients should aim to address the time of intervention with SGLT2i during the natural disease course of CKD for best outcomes.
Collapse
Affiliation(s)
- Saurabh Nayak
- Department of Nephrology, All India Institute of Medical Science, Raipur, India
| | - Vinay Rathore
- Department of Nephrology, All India Institute of Medical Science, Raipur, India
| | - Joyita Bharati
- Department of Nephrology, Postgraduate Institute of Medical Education & Research, Chandigarh, India
| | - Kamal Kant Sahu
- Division of Hematology and Medical Oncology, Department of Internal Medicine, Huntsman Cancer Institute, University of Utah Salt Lake City, Zip 84112, Utah, USA
| |
Collapse
|
17
|
Park CH, Lee B, Han M, Rhee WJ, Kwak MS, Yoo TH, Shin JS. Canagliflozin protects against cisplatin-induced acute kidney injury by AMPK-mediated autophagy in renal proximal tubular cells. Cell Death Dis 2022; 8:12. [PMID: 35013111 PMCID: PMC8748642 DOI: 10.1038/s41420-021-00801-9] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 11/30/2021] [Accepted: 12/08/2021] [Indexed: 12/30/2022]
Abstract
Sodium-glucose cotransporter 2 inhibitors, which are recently introduced as glucose-lowering agents, improve cardiovascular and renal outcomes in patients with diabetes mellitus. These drugs also have beneficial effects in various kidney disease models. However, the effect of SGLT2 inhibitors on cisplatin-induced acute kidney injury (AKI) and their mechanism of action need to be elucidated. In this study, we investigated whether canagliflozin protects against cisplatin-induced AKI, depending on adenosine monophosphate-activated protein kinase (AMPK) activation and following induction of autophagy. In the experiments using the HK-2 cell line, cell viability assay and molecular analysis revealed that canagliflozin protected renal proximal tubular cells from cisplatin, whereas addition of chloroquine or compound C abolished the protective effect of canagliflozin. In the mouse model of cisplatin-induced AKI, canagliflozin protected mice from cisplatin-induced AKI. However, treatment with chloroquine or compound C in addition to administration of cisplatin and canagliflozin eliminated the protective effect of canagliflozin. Collectively, these findings indicate that canagliflozin protects against cisplatin-induced AKI by activating AMPK and autophagy in renal proximal tubular cells.
Collapse
Affiliation(s)
- Cheol Ho Park
- grid.15444.300000 0004 0470 5454Department of Microbiology, Yonsei University College of Medicine, Seoul, Republic of Korea ,grid.15444.300000 0004 0470 5454Department of Internal Medicine, Institute of Kidney Disease Research, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Bin Lee
- grid.15444.300000 0004 0470 5454Department of Microbiology, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Myeonggil Han
- grid.15444.300000 0004 0470 5454Department of Microbiology, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Woo Joong Rhee
- grid.15444.300000 0004 0470 5454Department of Microbiology, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Man Sup Kwak
- grid.15444.300000 0004 0470 5454Department of Microbiology, Yonsei University College of Medicine, Seoul, Republic of Korea ,grid.15444.300000 0004 0470 5454Institute for Immunology and Immunological Diseases, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Tae-Hyun Yoo
- grid.15444.300000 0004 0470 5454Department of Internal Medicine, Institute of Kidney Disease Research, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Jeon-Soo Shin
- Department of Microbiology, Yonsei University College of Medicine, Seoul, Republic of Korea. .,Institute for Immunology and Immunological Diseases, Yonsei University College of Medicine, Seoul, Republic of Korea. .,Brain Korea 21 FOUR Project for Medical Science, Yonsei University College of Medicine, Seoul, Republic of Korea. .,Severance Biomedical Science Institute, Yonsei University College of Medicine, Seoul, Republic of Korea.
| |
Collapse
|
18
|
Saad R, Tadmor H, Ertracht O, Nakhoul N, Nakhoul F, Evgeny F, Atar S. The Molecular Effects of SGLT2i Empagliflozin on the Autophagy Pathway in Diabetes Mellitus Type 2 and Its Complications. J Diabetes Res 2022; 2022:8337823. [PMID: 36313818 PMCID: PMC9605841 DOI: 10.1155/2022/8337823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 08/11/2022] [Accepted: 09/23/2022] [Indexed: 11/20/2022] Open
Abstract
BACKGROUND Type 2 diabetes mellitus (T2DM), especially hyperglycemia, is associated with increased glucose cell toxicity and oxidative stress that can lead to irreversible damage in the kidney such as diabetic nephropathy (DN). Autophagy plays a key role in the degradation of damaged intracellular proteins in order to maintain intracellular homeostasis and cell integrity. The disturbance of autophagy is involved in the pathogenesis of diabetic nephropathy. We aim to investigate the molecular effect of sodium-glucose transporter 2 inhibitor (SGLT2i) on the expression of ATG5 and its downstream collaborator LC3-II in diabetic nice model. Material and Methods. We used eight weeks old male mice: twenty C57BL/6 wild type (C57BL/6), twenty BTBR ob/ob (DM), and twenty BTBR ob/ob that were treated with empagliflozin (DM+EMPA), FDA approved SGLT2i. Lysate from murine renal cortex was analyzed by Western blot and immunohistochemistry. ATG5, LC3B, and fibronectin expression were analyzed in murine kidney tissues. All mice were sacrificed 13 weeks after the beginning of the experiment. RESULTS Histological and Western blot analyses reveal decrease ATG5, LC3-II, and fibronectin levels at renal specimens taken from DM mice. EMPA treatment reduced T2DM mice body weight and blood glucose and increased urine glucose. Further, it upregulated all of the abovementioned proteins. CONCLUSIONS Hyperglycemia reduces LC3-II and ATG5 protein levels which contribute to deficiencies in the autophagy process, with development and progression of DN. SGLT2i significantly reduces progression of DN and onset of end-stage renal disease in T2DM patients, probably through its effect on autophagy.
Collapse
Affiliation(s)
- Ranin Saad
- Diabetes & Metabolism Lab, Baruch Padeh Poriya Medical Center, Israel
| | - Hagar Tadmor
- Diabetes & Metabolism Lab, Baruch Padeh Poriya Medical Center, Israel
| | - Offir Ertracht
- Cardiovascular Laboratory, Medical Research Institute, Galilee Medical Center, Nahariya, Israel
| | | | - Farid Nakhoul
- Cardiovascular Laboratory, Medical Research Institute, Galilee Medical Center, Nahariya, Israel
- Azrieli Faculty of Medicine, Bar Ilan University, Safed, Israel
| | - Farber Evgeny
- Diabetes & Metabolism Lab, Baruch Padeh Poriya Medical Center, Israel
| | - Shaul Atar
- Cardiovascular Laboratory, Medical Research Institute, Galilee Medical Center, Nahariya, Israel
- Azrieli Faculty of Medicine, Bar Ilan University, Safed, Israel
- The Cardiology Department, Galilee Medical Center, Nahariya, Israel
| |
Collapse
|
19
|
Fukushima K, Kitamura S, Tsuji K, Wada J. Sodium-Glucose Cotransporter 2 Inhibitors Work as a "Regulator" of Autophagic Activity in Overnutrition Diseases. Front Pharmacol 2021; 12:761842. [PMID: 34744742 PMCID: PMC8566701 DOI: 10.3389/fphar.2021.761842] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Accepted: 09/15/2021] [Indexed: 12/19/2022] Open
Abstract
Several large clinical trials have shown renal and cardioprotective effects of sodium–glucose cotransporter 2 (SGLT2) inhibitors in diabetes patients, and the protective mechanisms need to be elucidated. There have been accumulating studies which report that SGLT2 inhibitors ameliorate autophagy deficiency of multiple organs. In overnutrition diseases, SGLT2 inhibitors affect the autophagy via various signaling pathways, including mammalian target of rapamycin (mTOR), sirtuin 1 (SIRT1), and hypoxia-inducible factor (HIF) pathways. Recently, it turned out that not only stagnation but also overactivation of autophagy causes cellular damages, indicating that therapeutic interventions which simply enhance or stagnate autophagy activity might be a “double-edged sword” in some situations. A small number of studies suggest that SGLT2 inhibitors not only activate but also suppress the autophagy flux depending on the situation, indicating that SGLT2 inhibitors can “regulate” autophagic activity and help achieve the appropriate autophagy flux in each organ. Considering the complicated control and bilateral characteristics of autophagy, the potential of SGLT2 inhibitors as the regulator of autophagic activity would be beneficial in the treatment of autophagy deficiency.
Collapse
Affiliation(s)
- Kazuhiko Fukushima
- Department of Nephrology, Rheumatology, Endocrinology and Metabolism, Okayama University Academic Field of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Shinji Kitamura
- Department of Nephrology, Rheumatology, Endocrinology and Metabolism, Okayama University Academic Field of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Kenji Tsuji
- Department of Nephrology, Rheumatology, Endocrinology and Metabolism, Okayama University Academic Field of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Jun Wada
- Department of Nephrology, Rheumatology, Endocrinology and Metabolism, Okayama University Academic Field of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| |
Collapse
|
20
|
Abstract
Autophagy is an evolutionarily conserved, lysosome-dependent catabolic process whereby cytoplasmic components, including damaged organelles, protein aggregates and lipid droplets, are degraded and their components recycled. Autophagy has an essential role in maintaining cellular homeostasis in response to intracellular stress; however, the efficiency of autophagy declines with age and overnutrition can interfere with the autophagic process. Therefore, conditions such as sarcopenic obesity, insulin resistance and type 2 diabetes mellitus (T2DM) that are characterized by metabolic derangement and intracellular stresses (including oxidative stress, inflammation and endoplasmic reticulum stress) also involve the accumulation of damaged cellular components. These conditions are prevalent in ageing populations. For example, sarcopenia is an age-related loss of skeletal muscle mass and strength that is involved in the pathogenesis of both insulin resistance and T2DM, particularly in elderly people. Impairment of autophagy results in further aggravation of diabetes-related metabolic derangements in insulin target tissues, including the liver, skeletal muscle and adipose tissue, as well as in pancreatic β-cells. This Review summarizes the role of autophagy in the pathogenesis of metabolic diseases associated with or occurring in the context of ageing, including insulin resistance, T2DM and sarcopenic obesity, and describes its potential as a therapeutic target.
Collapse
Affiliation(s)
- Munehiro Kitada
- Department of Diabetology and Endocrinology, Kanazawa Medical University, Uchinada, Ishikawa, Japan
- Division of Anticipatory Molecular Food Science and Technology, Medical Research Institute, Kanazawa Medical University, Uchinada, Ishikawa, Japan
| | - Daisuke Koya
- Department of Diabetology and Endocrinology, Kanazawa Medical University, Uchinada, Ishikawa, Japan.
- Division of Anticipatory Molecular Food Science and Technology, Medical Research Institute, Kanazawa Medical University, Uchinada, Ishikawa, Japan.
- Department of General Internal Medicine, Kusatsu General Hospital, Kusatsu, Shiga, Japan.
| |
Collapse
|
21
|
Abstract
Obesity-related glomerulopathy (ORG) and other obesity-associated kidney diseases pose a major challenge to the treating nephrologist. We review the benefits of weight loss and optimal management of ORG and kidney disease in the setting of obesity. Therapeutic strategies in ORG were limited mainly in the past to weight loss through lifestyle interventions and bariatric surgery, antihypertensive treatment, and renin-angiotensin-aldosterone system blockade. Current approaches to obtain the desired weight loss include novel pharmacologic therapies that have been approved for the treatment of diabetes while offering kidney protection, such as sodium-glucose cotransporter-2 inhibitors and glucagon-like peptide-1-receptor agonists. This review focuses on the nephroprotective role of the renin-angiotensin-aldosterone system blockade and of these new pharmacologic agents, and on the renal effects of bariatric surgery in chronic kidney disease.
Collapse
Affiliation(s)
- Michal Herman-Edelstein
- Nephrology Department, Rabin Medical Center, Petach Tikva, Israel; Nephrology Research Laboratory, Felsenstein Medical Research Center, Sackler School of Medicine, Tel-Aviv University, Tel Aviv, Israel.
| | - Talia Weinstein
- Department of Nephrology and Hypertension, Tel Aviv Medical Center, Sackler School of Medicine, Tel-Aviv University, Tel Aviv, Israel
| | | |
Collapse
|
22
|
Shepard BD, Ecelbarger CM. Sodium Glucose Transporter, Type 2 (SGLT2) Inhibitors (SGLT2i) and Glucagon-Like Peptide 1-Receptor Agonists: Newer Therapies in Whole-Body Glucose Stabilization. Semin Nephrol 2021; 41:331-348. [PMID: 34715963 DOI: 10.1016/j.semnephrol.2021.06.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Diabetes is a worldwide epidemic that is increasing rapidly to become the seventh leading cause of death in the world. The increased incidence of this disease mirrors a similar uptick in obesity and metabolic syndrome, and, collectively, these conditions can cause deleterious effects on a number of organ systems including the renal and cardiovascular systems. Historically, treatment of type 2 diabetes has focused on decreasing hyperglycemia and glycated hemoglobin levels. However, it now is appreciated that there is more to the puzzle. Emerging evidence has indicated that newer classes of diabetes drugs, sodium-glucose co-transporter 2 inhibitors and glucagon-like peptide 1-receptor agonists, improve cardiovascular and renal function, while appropriately managing hyperglycemia. In this review, we highlight the recent clinical and preclinical studies that have shed light on sodium-glucose co-transporter 2 inhibitors and glucagon-like peptide 1-receptor agonists and their ability to stabilize blood glucose levels while offering whole-body protection in diabetic and nondiabetic patient populations.
Collapse
Affiliation(s)
- Blythe D Shepard
- Department of Human Science, Georgetown University Medical Center, Washington, DC
| | | |
Collapse
|
23
|
Hoong CWS, Chua MWJ. SGLT2 Inhibitors as Calorie Restriction Mimetics: Insights on Longevity Pathways and Age-Related Diseases. Endocrinology 2021; 162:6226811. [PMID: 33857309 DOI: 10.1210/endocr/bqab079] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/20/2021] [Indexed: 02/08/2023]
Abstract
Sodium-glucose cotransporter-2 (SGLT2) inhibitors induce glycosuria, reduce insulin levels, and promote fatty acid oxidation and ketogenesis. By promoting a nutrient deprivation state, SGLT2 inhibitors upregulate the energy deprivation sensors AMPK and SIRT1, inhibit the nutrient sensors mTOR and insulin/IGF1, and modulate the closely linked hypoxia-inducible factor (HIF)-2α/HIF-1α pathways. Phosphorylation of AMPK and upregulation of adiponectin and PPAR-α favor a reversal of the metabolic syndrome which have been linked to suppression of chronic inflammation. Downregulation of insulin/IGF1 pathways and mTOR signaling from a reduction in glucose and circulating amino acids promote cellular repair mechanisms, including autophagy and proteostasis which confer cellular stress resistance and attenuate cellular senescence. SIRT1, another energy sensor activated by NAD+ in nutrient-deficient states, is reciprocally activated by AMPK, and can deacetylate and activate transcription factors, such as PCG-1α, mitochondrial transcription factor A (TFAM), and nuclear factor E2-related factor (NRF)-2, that regulate mitochondrial biogenesis. FOXO3 transcription factor which target genes in stress resistance, is also activated by AMPK and SIRT1. Modulation of these pathways by SGLT2 inhibitors have been shown to alleviate metabolic diseases, attenuate vascular inflammation and arterial stiffness, improve mitochondrial function and reduce oxidative stress-induced tissue damage. Compared with other calorie restriction mimetics such as metformin, rapamycin, resveratrol, and NAD+ precursors, SGLT2 inhibitors appear to be the most promising in the treatment of aging-related diseases, due to their regulation of multiple longevity pathways that closely resembles that achieved by calorie restriction and their established efficacy in reducing cardiovascular events and all-cause mortality. Evidence is compelling for the role of SGLT2 inhibitors as a calorie restriction mimetic in anti-aging therapeutics.
Collapse
Affiliation(s)
- Caroline W S Hoong
- Division of Endocrinology, Department of General Medicine, Woodlands Health Campus, National Healthcare Group Singapore, Woodlands Health Campus Singapore, 768024, Singapore
| | - Marvin W J Chua
- Endocrinology Service, Department of General Medicine, Sengkang General Hospital, SingHealth Group Singapore, Sengkang General Hospital Singapore, 544886, Singapore
| |
Collapse
|
24
|
Empagliflozin therapy and insulin resistance-associated disorders: effects and promises beyond a diabetic state. ACTA ACUST UNITED AC 2021; 6:e57-e78. [PMID: 34027215 PMCID: PMC8117073 DOI: 10.5114/amsad.2021.105314] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2020] [Accepted: 03/21/2021] [Indexed: 12/21/2022]
Abstract
Empagliflozin is a SGLT2 inhibitor that has shown remarkable cardiovascular and renal activities in patients with type 2 diabetes (T2D). Preclinical and clinical studies of empagliflozin in T2D population have demonstrated significant improvements in body weight, waist circumference, insulin sensitivity, and blood pressure – effects beyond its antihyperglycaemic control. Moreover, several studies suggested that this drug possesses significant anti-inflammatory and antioxidative stress properties. This paper explores extensively the main preclinical and clinical evidence of empagliflozin administration in insulin resistance-related disorders beyond a diabetic state. It also discusses its future perspectives, as a therapeutic approach, in this high cardiovascular-risk population.
Collapse
|