1
|
Cox OH, Seifuddin F, Guo J, Pirooznia M, Boersma GJ, Wang J, Tamashiro KL, Lee RS. Implementation of the Methyl-Seq platform to identify tissue- and sex-specific DNA methylation differences in the rat epigenome. Epigenetics 2024; 19:2393945. [PMID: 39306700 PMCID: PMC11418217 DOI: 10.1080/15592294.2024.2393945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 07/23/2024] [Accepted: 08/13/2024] [Indexed: 09/25/2024] Open
Abstract
Epigenomic annotations for the rat lag far behind those of human and mouse, despite the rat's immense utility in pharmacological and behavioral studies and the need to understand their epigenetic mechanisms. We have designed a targeted-enrichment method followed by next-generation sequencing (Methyl-Seq) to identify DNA methylation (DNAm) signatures across the rat genome. The design reflected an attempt to create a more comprehensive investigation of the rat epigenome, as it included promoters, CpG islands, and island shores of all RefSeq genes. In this study, we implemented the rat Methyl-Seq platform and tested its ability to distinguish differentially methylated regions (DMRs) among three different tissue types, three distinct brain regions, and, in the hippocampus, between males and females. These comparisons yielded DNAm differences of differing magnitudes, many of which were independently validated by bisulfite pyrosequencing, including autosomal regions that were predicted to show the least degree of difference in DNAm between males and females. Quantitative reverse transcription PCR revealed that most genes associated with the DMRs showed tissue-, brain region-, and sex-specific differences in expression. In particular, we found evidence for sex-specific DNAm and expression differences at Tubb6, Lrrn2, Tex26, and Sox5l1, all of which play important roles in neurodevelopment and have been implicated in studies examining sex differences. Our results demonstrate the utility of the rat Methyl-Seq platform and suggest the presence of DNAm differences between the male and female hippocampus. The rat Methyl-Seq has the potential to provide epigenomic insights into pharmacological and behavioral studies performed in the rat.
Collapse
Affiliation(s)
- Olivia H. Cox
- Mood Disorders Center, Department of Psychiatry and Behavioral Sciences, The Johns Hopkins University School of Medicine, Baltimore, USA
| | - Fayaz Seifuddin
- Mood Disorders Center, Department of Psychiatry and Behavioral Sciences, The Johns Hopkins University School of Medicine, Baltimore, USA
| | - Jeffrey Guo
- Mood Disorders Center, Department of Psychiatry and Behavioral Sciences, The Johns Hopkins University School of Medicine, Baltimore, USA
| | - Mehdi Pirooznia
- Mood Disorders Center, Department of Psychiatry and Behavioral Sciences, The Johns Hopkins University School of Medicine, Baltimore, USA
| | - Gretha J. Boersma
- GGZ Drenthe Mental Health Institute, Department of Forensic Psychiatry, Assen, The Netherlands
| | - Josh Wang
- Agilent Technologies, Inc., Santa Clara, USA
| | - Kellie L.K. Tamashiro
- Mood Disorders Center, Department of Psychiatry and Behavioral Sciences, The Johns Hopkins University School of Medicine, Baltimore, USA
| | - Richard S. Lee
- Mood Disorders Center, Department of Psychiatry and Behavioral Sciences, The Johns Hopkins University School of Medicine, Baltimore, USA
| |
Collapse
|
2
|
Song S, Zhang Y, Qiao X, Duo Y, Xu J, Zhang J, Chen Y, Nie X, Sun Q, Yang X, Wang A, Lu Z, Sun W, Fu Y, Dong Y, Yuan T, Zhao W. Thyroid FT4-to-TSH ratio in the first trimester is associated with gestational diabetes mellitus in women carrying male fetus: a prospective bi-center cohort study. Front Endocrinol (Lausanne) 2024; 15:1427925. [PMID: 39678197 PMCID: PMC11637856 DOI: 10.3389/fendo.2024.1427925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Accepted: 11/04/2024] [Indexed: 12/17/2024] Open
Abstract
Background Gestational diabetes mellitus (GDM) is one of the most common medical complications of pregnancy, which increases the risk of other pregnant complications and adverse perinatal outcomes. Thyroid dysfunction is closely with the risk of diabetes mellitus. However, the relationship between euthyroid function in early pregnancy and GDM is still controversial. Aims This study was to find the relationship between thyroid function within normal range during early pregnancy as well as glucose and lipids metabolisms as well as the risk of subsequent GDM. Methods A total of 1486 pregnant women were included in this prospective double-center cohort study. Free thyroxine (FT4), thyroid stimulating hormone (TSH) and antithyroid peroxidase antibodies (TPOAb) were tested during 6-12 weeks of gestation and oral glucose tolerance test (OGTT) was conducted during 24-28 weeks to screen GDM. Relative risks (RR) with 95% confidence intervals (CI) for subsequent risk of GDM by thyroid function quartiles were assessed adjusting for major risk factors. Results The incidence of GDM was 23.0% (342/1486). TSH, FT4 and the percentage of positive TPOAb were no significant difference between women with and without GDM, but FT4/TSH ratio was significantly higher in GDM group compared with NGT group [6.97(0.84,10.61) vs. 4.88(0.66,12.44), P=0.025)]. The linear trends of TC, TG, HDL-C, LDL-C, fasting glucose in the first trimester, insulin, C-peptide, HOMA-IR, fasting glucose during OGTT and incidence of GDM according to FT4/TSH ratio were all statistically significant. Further analysis based on fetal sex presented only the third quartile of FT4/TSH ratio in women carrying male fetus was associated with higher incidence of GDM statistically significant [RR (95% CI), 1.917 (1.143,3.216)], rather than in women carrying female fetus. Conclusions Thyroid function even in normal range is closely related to glucose and lipids metabolisms during the first trimester. Unappropriated FT4/TSH ratio in the first trimester is an independent risk factor of GDM in women carrying male fetus.
Collapse
Affiliation(s)
- Shuoning Song
- Department of Endocrinology, Key Laboratory of Endocrinology of Ministry of Health, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Yuemei Zhang
- Department of Obstetrics, Haidian District Maternal and Child Health Care Hospital, Beijing, China
| | - Xiaolin Qiao
- Department of Obstetrics, Beijing Chaoyang District Maternal and Child Health Care Hospital, Beijing, China
| | - Yanbei Duo
- Department of Endocrinology, Key Laboratory of Endocrinology of Ministry of Health, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Jiyu Xu
- Core Facility of Instrument, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College, Beijing, China
| | - Jing Zhang
- Department of Laboratory, Haidian District Maternal and Child Health Care Hospital, Beijing, China
| | - Yan Chen
- Department of Obstetrics, Beijing Chaoyang District Maternal and Child Health Care Hospital, Beijing, China
| | - Xiaorui Nie
- Department of Obstetrics, Beijing Chaoyang District Maternal and Child Health Care Hospital, Beijing, China
| | - Qiujin Sun
- Department of Clinical Laboratory, Beijing Chaoyang District Maternal and Child Health Care Hospital, Beijing, China
| | - Xianchun Yang
- Department of Clinical Laboratory, Beijing Chaoyang District Maternal and Child Health Care Hospital, Beijing, China
| | - Ailing Wang
- National Center for Women and Children’s Health, China Centers for Disease Control and Prevention (CDC), Beijing, China
| | - Zechun Lu
- National Center for Women and Children’s Health, China Centers for Disease Control and Prevention (CDC), Beijing, China
| | - Wei Sun
- Core Facility of Instrument, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College, Beijing, China
| | - Yong Fu
- Department of Endocrinology, Key Laboratory of Endocrinology of Ministry of Health, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Yingyue Dong
- Department of Endocrinology, Key Laboratory of Endocrinology of Ministry of Health, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Tao Yuan
- Department of Endocrinology, Key Laboratory of Endocrinology of Ministry of Health, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Weigang Zhao
- Department of Endocrinology, Key Laboratory of Endocrinology of Ministry of Health, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| |
Collapse
|
3
|
Ren ZR, Luo SS, Qin XY, Huang HF, Ding GL. Sex-Specific Alterations in Placental Proteomics Induced by Intrauterine Hyperglycemia. J Proteome Res 2024; 23:1272-1284. [PMID: 38470452 DOI: 10.1021/acs.jproteome.3c00735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/13/2024]
Abstract
Gestational diabetes mellitus (GDM) with intrauterine hyperglycemia induces a series of changes in the placenta, which have adverse effects on both the mother and the fetus. The aim of this study was to investigate the changes in the placenta in GDM and its gender differences. In this study, we established an intrauterine hyperglycemia model using ICR mice. We collected placental specimens from mice before birth for histological observation, along with tandem mass tag (TMT)-labeled proteomic analysis, which was stratified by sex. When the analysis was not segregated by sex, the GDM group showed 208 upregulated and 225 downregulated proteins in the placenta, primarily within the extracellular matrix and mitochondria. Altered biological processes included cholesterol metabolism and oxidative stress responses. After stratification by sex, the male subgroup showed a heightened tendency for immune-related pathway alterations, whereas the female subgroup manifested changes in branched-chain amino acid metabolism. Our study suggests that the observed sex differences in placental protein expression may explain the differential impact of GDM on offspring.
Collapse
Affiliation(s)
- Zhuo-Ran Ren
- Obstetrics and Gynecology Hospital, Institute of Reproduction and Development, Fudan University, Shanghai 200011, China
- Shanghai Key Laboratory of Reproduction and Development, Shanghai 200032, China
- Research Units of Embryo Original Diseases, Chinese Academy of Medical Sciences, Shanghai 200032, China
| | - Si-Si Luo
- Research Units of Embryo Original Diseases, Chinese Academy of Medical Sciences, Shanghai 200032, China
- Shanghai First Maternity and Infant Hospital, Shanghai 201204, China
| | - Xue-Yun Qin
- Obstetrics and Gynecology Hospital, Institute of Reproduction and Development, Fudan University, Shanghai 200011, China
- Shanghai Key Laboratory of Reproduction and Development, Shanghai 200032, China
- Research Units of Embryo Original Diseases, Chinese Academy of Medical Sciences, Shanghai 200032, China
| | - He-Feng Huang
- Obstetrics and Gynecology Hospital, Institute of Reproduction and Development, Fudan University, Shanghai 200011, China
- Shanghai Key Laboratory of Reproduction and Development, Shanghai 200032, China
- Research Units of Embryo Original Diseases, Chinese Academy of Medical Sciences, Shanghai 200032, China
- Key Laboratory of Reproductive Genetics (Ministry of Education), Department of Reproductive Endocrinology, Women's Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Guo-Lian Ding
- Obstetrics and Gynecology Hospital, Institute of Reproduction and Development, Fudan University, Shanghai 200011, China
- Shanghai Key Laboratory of Reproduction and Development, Shanghai 200032, China
- Research Units of Embryo Original Diseases, Chinese Academy of Medical Sciences, Shanghai 200032, China
| |
Collapse
|
4
|
Knabl J, Hüttenbrenner R, Mahner S, Kainer F, Desoye G, Jeschke U. Lower HLA-G levels in extravillous trophoblasts of human term placenta in gestational diabetes mellitus than in normal controls. Histochem Cell Biol 2022:10.1007/s00418-022-02163-4. [DOI: 10.1007/s00418-022-02163-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/29/2022] [Indexed: 12/24/2022]
Abstract
AbstractThe non-classical human leucocyte antigen (HLA) class I molecule HLA-G is widely known to play a major role in feto-maternal tolerance. We tested the hypothesis that HLA-G expression is altered in placentas of women with gestational diabetes mellitus (GDM) in a specific pattern that depends on fetal sex. HLA-G expression was analysed in a total of 80 placentas (40 placentas from women with GDM and 40 healthy controls) by immunohistochemistry using the semi-quantitative immunoreactive score (IRS). Double immunofluorescence staining identified the cells expressing HLA-G in the decidua and allowed evaluation of the expression pattern. We found a significant (p < 0.001) reduction of HLA-G expression in extravillous cytotrophoblasts (EVTs) in the placentas of women with GDM as compared to the healthy controls and were able to demonstrate that this downregulation was not due to a loss of cell number, but to a loss of expression intensity. A special change in the cell pattern of EVTs was observed, with these cells showing an obvious decrease in HLA-G expression on their cell surface. No significant differences according to fetal sex were found. These data show a possible association between decreased HLA-G expression and presence of GDM and provide new insights into altered placental function in women with GDM.
Collapse
|
5
|
Shcherbitskaia AD, Kovalenko AA, Milyutina YP, Vasilev DS. Thyroid Hormone Production and Transplacental Transfer in the “Mother–Fetus” System during Gestational Hyperhomocysteinemia. NEUROCHEM J+ 2022. [DOI: 10.1134/s1819712422030102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
6
|
Tang Q, Zeng M, Chen L, Fu N. Targeting Thyroid Hormone/Thyroid Hormone Receptor Axis: An Attractive Therapy Strategy in Liver Diseases. Front Pharmacol 2022; 13:871100. [PMID: 35721201 PMCID: PMC9201453 DOI: 10.3389/fphar.2022.871100] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Accepted: 04/19/2022] [Indexed: 12/24/2022] Open
Abstract
Thyroid hormone/thyroid hormone receptor (TH/TR) axis is characterized by TH with the assistance of plasma membrane transporters to combine with TR and mediate biological activities. Growing evidence suggests that TH/TR participates in plenty of hepatic metabolism. Thus, this review focuses on the role of the TH/TR axis in the liver diseases. To be specific, the TH/TR axis may improve metabolic-associated fatty liver disease, hepatitis, liver fibrosis, and liver injury while exacerbating the progression of acute liver failure and alcoholic liver disease. Also, the TH/TR axis has paradoxical roles in hepatocellular carcinoma. The TH/TR axis may be a prospecting target to cure hepatic diseases.
Collapse
Affiliation(s)
- Qianyu Tang
- Department of Gastroenterology, The Affiliated Nanhua Hospital, Hunan Provincial Clinical Research Center of Metabolic Associated Fatty Liver Disease, Hengyang Medical School, University of South China, Hengyang, China
| | - Min Zeng
- Department of Gastroenterology, Liuyang Hospital of Chinese Medicine, Changsha, China
| | - Linxi Chen
- Department of Pharmacy and Pharmacology, Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, School of Basic Medical Science, Hengyang Medical School, University of South China, Hengyang, China
| | - Nian Fu
- Department of Gastroenterology, The Affiliated Nanhua Hospital, Hunan Provincial Clinical Research Center of Metabolic Associated Fatty Liver Disease, Hengyang Medical School, University of South China, Hengyang, China
- The Affiliated Nanhua Hospital, Laboratory of Liver Disease, Institute of Clinical Research, Hengyang Medical School, University of South China, Hengyang, China
| |
Collapse
|
7
|
Du R, Bai Y, Li L. Biological networks in gestational diabetes mellitus: insights into the mechanism of crosstalk between long non-coding RNA and N 6-methyladenine modification. BMC Pregnancy Childbirth 2022; 22:384. [PMID: 35505296 PMCID: PMC9066898 DOI: 10.1186/s12884-022-04716-w] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Accepted: 04/28/2022] [Indexed: 12/24/2022] Open
Abstract
Background Gestational diabetes mellitus (GDM) is one of the most common complications of pregnancy. The mechanism underlying the crosstalk between long non-coding RNAs (lncRNAs) and N6-methyladenine (m6A) modification in GDM remain unclear. Methods We generated a lncRNA-mediated competitive endogenous RNA (ceRNA) network using comprehensive data from the Gene Expression Omnibus database, published data, and our preliminary findings. m6A-related lncRNAs were identified based on Pearson correlation coefficient (PCC) analysis using our previous profiles. An integrated pipeline was established to constructed a m6A-related subnetwork thereby predicting the potential effects of the m6A-related lncRNAs. Results The ceRNA network was composed of 16 lncRNAs, 17 microRNAs, 184 mRNAs, and 338 edges. Analysis with the Kyoto Encyclopedia of Genes and Genomes database demonstrated that genes in the ceRNA network were primarily involved in the development and adverse outcomes of GDM, such as those in the fatty acid-metabolism pathway, the peroxisome proliferator-activated receptor signaling pathway, and thyroid hormone signaling pathway. Four m6A-related lncRNAs were involved in the ceRNA network, including LINC00667, LINC01087, AP000350.6, and CARMN. The m6A-related subnetwork was generated based on these four lncRNAs, their ceRNAs, and their related m6A regulators. Genes in the subnetwork were enriched in certain GDM-associated hormone (thyroid hormone and oxytocin) signaling pathways. LINC00667 was positively correlated with an m6A “reader” (YTHDF3; PCC = 0.95) and exhibited the highest node degree in the ceRNA network. RIP assays showed that YTHDF3 directly bind LINC00667. We further found that MYC possessed the highest node degree in a protein–protein interaction network and competed with LINC00667 for miR-33a-5p. qPCR analysis indicated that LINC00667, YTHDF3 and MYC levels were upregulated in the GDM placentas, while miR-33a-5p was downregulated. In a support-vector machine classifier, an m6A-related module composed of LINC00667, YTHDF3, MYC, and miR-33a-5p showed excellent classifying power for GDM in both the training and the testing dataset, with an accuracy of 76.19 and 71.43%, respectively. Conclusions Our results shed insights into the potential role of m6A-related lncRNAs in GDM and have implications in terms of novel therapeutic targets for GDM. Supplementary Information The online version contains supplementary material available at 10.1186/s12884-022-04716-w.
Collapse
Affiliation(s)
- Runyu Du
- Department of Endocrinology, Shengjing Hospital of China Medical University, No. 36, Sanhao Street, Heping District, Shenyang, 110004, Liaoning, China
| | - Yu Bai
- Department of Endocrinology, Shengjing Hospital of China Medical University, No. 36, Sanhao Street, Heping District, Shenyang, 110004, Liaoning, China
| | - Ling Li
- Department of Endocrinology, Shengjing Hospital of China Medical University, No. 36, Sanhao Street, Heping District, Shenyang, 110004, Liaoning, China.
| |
Collapse
|
8
|
Guo Y, Xu X, Xu W, Liao T, Liang J, Yan J. Subsequent perinatal outcomes of pregnancy with two consecutive pregnancies with gestational diabetes mellitus: A population-based cohort study. J Diabetes 2022; 14:282-290. [PMID: 35373529 PMCID: PMC9060054 DOI: 10.1111/1753-0407.13263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/23/2021] [Revised: 02/18/2022] [Accepted: 02/23/2022] [Indexed: 12/02/2022] Open
Abstract
BACKGROUND Gestational diabetes mellitus (GDM) is glucose intolerance diagnosed during pregnancy. We aimed to explore the different outcomes of women with two consecutive pregnancies with GDM. METHODS This study included 861 women with recurrent GDM who had two consecutive singleton deliveries at Fujian Maternity and Child Health Hospital between May 2012 and September 2020. Data on pregnancy complications and neonatal and delivery outcomes were collected and analyzed. RESULTS Among those women with recurrent GDM, there was no difference in pregnancy complications in index pregnancy vs subsequent pregnancy. Our data revealed there was a significantly higher incidence of thyroid disease in the subsequent pregnancies than in the index pregnancy. (6% vs 10%, p = .003)In subsequent pregnancies, the birth weight was greater than that of the index pregnancy (3296.63 ± 16.85 vs 3348.99 ± 16.05, p = .025); and the incidence of large for gestational age (LGA) was higher than that of the index pregnancy (16.3% vs 20.6%, p = .021). More cesarean sections occurred in the subsequent pregnancy. (32.9% vs 6.6%, p = .039). Postpartum hemorrhage, premature birth, and placental abruption were not significantly different between the two pregnancies. CONCLUSIONS The results suggest the effect of GDM on thyroid dysfunction may be persistent. Recurrent gestational diabetes results in a higher rate of cesarean delivery, incidence of LGA, and neonatal admission to the neonatal intensive care unit (NICU) in subsequent pregnancies. We need to pay attention to the postpartum thyroid function of pregnant women with GDM. Further studies are still needed on recurrent GDM to reduce this occurrence of admission to NICU.
Collapse
Affiliation(s)
- Yanni Guo
- College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Medical UniversityFuzhouChina
- Fujian Maternity and Child Health HospitalFuzhouChina
| | - Xia Xu
- College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Medical UniversityFuzhouChina
- Fujian Maternity and Child Health HospitalFuzhouChina
| | - Weijiao Xu
- College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Medical UniversityFuzhouChina
- Fujian Maternity and Child Health HospitalFuzhouChina
| | - Tingting Liao
- College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Medical UniversityFuzhouChina
- Fujian Maternity and Child Health HospitalFuzhouChina
| | - Jie Liang
- College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Medical UniversityFuzhouChina
- Fujian Maternity and Child Health HospitalFuzhouChina
| | - Jianying Yan
- College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Medical UniversityFuzhouChina
- Fujian Maternity and Child Health HospitalFuzhouChina
| |
Collapse
|
9
|
Kent NL, Atluri SC, Cuffe JSM. Maternal Hypothyroidism in Rats Reduces Placental Lactogen, Lowers Insulin Levels, and Causes Glucose Intolerance. Endocrinology 2022; 163:6429715. [PMID: 34791119 DOI: 10.1210/endocr/bqab231] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Indexed: 11/19/2022]
Abstract
Hypothyroidism increases the incidence of gestational diabetes mellitus (GDM) but the mechanisms responsible are unknown. This study aimed to assess the pathophysiological mechanisms by which hypothyroidism leads to glucose intolerance in pregnancy. Hypothyroidism was induced in female Sprague-Dawley rats by adding methimazole (MMI) to drinking water at moderate (MOD, MMI at 0.005% w/v) and severe (SEV, MMI at 0.02% w/v) doses from 1 week before pregnancy and throughout gestation. A nonpregnant cohort received the same dose for the same duration but were not mated. On gestational day 16 (GD16), or nonpregnant day 16 (NP16), animals were subjected to an intraperitoneal glucose tolerance test. Tissues and blood samples were collected 4 days later. Hypothyroidism induced a diabetic-like phenotype by GD16 in pregnant females only. Pregnant MOD and SEV females had reduced fasting plasma insulin, less insulin following a glucose load, and altered expression of genes involved in insulin signaling within skeletal muscle and adipose tissue. Hypothyroidism reduced rat placental lactogen concentrations, which was accompanied by reduced percentage β-cell cross-sectional area (CSA) relative to total pancreas CSA, and a reduced number of large β-cell clusters in the SEV hypothyroid group. Plasma triglycerides and free fatty acids were reduced by hypothyroidism in pregnant rats, as was the expression of genes that regulate lipid homeostasis. Hypothyroidism in pregnant rats results in a diabetic-like phenotype that is likely mediated by impaired β-cell expansion in pregnancy. This pregnancy-specific phenomenon is likely due to reduced placental lactogen secretion.
Collapse
Affiliation(s)
- Nykola Louise Kent
- School of Biomedical Sciences, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Sharat Chandra Atluri
- School of Biomedical Sciences, The University of Queensland, Brisbane, Queensland 4072, Australia
| | | |
Collapse
|
10
|
Carvalho DP, Dias AF, Sferruzzi-Perri AN, Ortiga-Carvalho TM. Gaps in the knowledge of thyroid hormones and placental biology. Biol Reprod 2022; 106:1033-1048. [DOI: 10.1093/biolre/ioac006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 01/10/2022] [Accepted: 01/11/2022] [Indexed: 11/14/2022] Open
Abstract
Abstract
Thyroid hormones (THs) are required for the growth and development of the foetus, stimulating anabolism and oxygen consumption from the early stages of pregnancy to the period of foetal differentiation close to delivery. Maternal changes in the hypothalamic–pituitary thyroid axis are also well known. In contrast, several open questions remain regarding the relationships between the placenta and the maternal and foetal TH systems. The exact mechanism by which the placenta participates in regulating the TH concentration in the foetus and mother and the role of TH in the placenta are still poorly studied. In this review, we aim to summarize the available data in the area and highlight significant gaps in our understanding of the ontogeny and cell-specific localization of TH transporters, TH receptors and TH metabolic enzymes in the placenta in both human and rodent models. Significant deficiencies also exist in knowledge of the contribution of genomic and nongenomic effects of TH on the placenta and finally how the placenta reacts during pregnancy when the mother has thyroid disease. By addressing these key knowledge gaps, improved pregnancy outcomes and management of women with thyroid alterations may be possible.
Collapse
Affiliation(s)
- Daniela Pereira Carvalho
- Instituto de Biofísica Carlos Chagas Filho, Laboratório de Endocrinologia Translacional, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Ariane Fontes Dias
- Instituto de Biofísica Carlos Chagas Filho, Laboratório de Endocrinologia Translacional, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Amanda Nancy Sferruzzi-Perri
- Centre for Trophoblast Research, Department of Physiology, Development and Neuroscience, University of Cambridge, UK
| | - Tania Maria Ortiga-Carvalho
- Instituto de Biofísica Carlos Chagas Filho, Laboratório de Endocrinologia Translacional, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
11
|
Du R, Li L, Wang Y. N6-Methyladenosine-Related Gene Signature Associated With Monocyte Infiltration Is Clinically Significant in Gestational Diabetes Mellitus. Front Endocrinol (Lausanne) 2022; 13:853857. [PMID: 35370940 PMCID: PMC8971567 DOI: 10.3389/fendo.2022.853857] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Accepted: 02/18/2022] [Indexed: 12/20/2022] Open
Abstract
OBJECTIVE The objective of this study was to reveal the potential crosstalk between immune infiltration and N6- methyladenosine (m6A) modification in the placentas of patients with gestational diabetes mellitus (GDM), and to construct a model for the diagnosis of GDM. METHODS We analyzed imbalanced immune infiltration and differentially expressed m6A-related genes (DMRGs) in the placentas of patients with GDM, based on the GSE70493 dataset. An immune-related DMRG signature, with significant classifying power and diagnostic value, was identified using a least absolute shrinkage and selection operator (LASSO) regression. Based on the selected DMRGs, we developed and validated a nomogram model using GSE70493 and GSE92772 as the training and validation sets, respectively. RESULTS Infiltration of monocytes was higher in GDM placentas than in control samples, while the infiltration of macrophages (M1 and M2) in GDM placentas was lower than in controls. A total of 14 DMRGs were strongly associated with monocyte infiltration, seven of which were significant in distinguishing patients with GDM from normal controls. These genes were CD81, CFH, FABP5, GBP1, GNG11, IL1RL1, and SLAMF6. The calibration curve, decision curve, clinical impact curve, and receiver operating characteristic curve showed that the nomogram recognized GDM with high accuracy in both the training and validation sets. CONCLUSIONS Our results provide clues that crosstalk between m6A modification and immune infiltration may have implications in terms of novel biomarkers and therapeutic targets for GDM.
Collapse
|
12
|
Christians JK. The Placenta's Role in Sexually Dimorphic Fetal Growth Strategies. Reprod Sci 2021; 29:1895-1907. [PMID: 34699045 DOI: 10.1007/s43032-021-00780-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Accepted: 10/19/2021] [Indexed: 12/27/2022]
Abstract
Fetal sex affects the risk of pregnancy complications and the long-term effects of prenatal environment on health. Some have hypothesized that growth strategies differ between the sexes, whereby males prioritize growth whereas females are more responsive to their environment. This review evaluates the role of the placenta in such strategies, focusing on (1) mechanisms underlying sexual dimorphism in gene expression, (2) the nature and extent of sexual dimorphism in placental gene expression, (3) sexually dimorphic responses to nutrient supply, and (4) sexual dimorphism in morphology and histopathology. The sex chromosomes contribute to sex differences in placental gene expression, and fetal hormones may play a role later in development. Sexually dimorphic placental gene expression may contribute to differences in the prevalence of complications such as preeclampsia, although this link is not clear. Placental responses to nutrient supply frequently show sexual dimorphism, but there is no consistent pattern where one sex is more responsive. There are sex differences in the prevalence of placental histopathologies, and placental changes in pregnancy complications, but also many similarities. Overall, no clear patterns support the hypothesis that females are more responsive to the maternal environment, or that males prioritize growth. While male fetuses are at greater risk of a variety of complications, total prenatal mortality is higher in females, such that males exposed to early insults may be more likely to survive and be observed in studies of adverse outcomes. Going forward, robust statistical approaches to test for sex-dependent effects must be more widely adopted to reduce the incidence of spurious results.
Collapse
Affiliation(s)
- Julian K Christians
- Department of Biological Sciences, Simon Fraser University, 8888 University Drive, Burnaby, BC, V5A 1S6, Canada. .,Centre for Cell Biology, Development and Disease, Simon Fraser University, Burnaby, BC, Canada. .,British Columbia Children's Hospital Research Institute, Vancouver, BC, Canada. .,Women's Health Research Institute, BC Women's Hospital and Health Centre, Vancouver, BC, Canada.
| |
Collapse
|
13
|
Steinhauser CB, Askelson K, Hobbs KC, Bazer FW, Satterfield MC. Maternal nutrient restriction alters thyroid hormone dynamics in placentae of sheep having small for gestational age fetuses. Domest Anim Endocrinol 2021; 77:106632. [PMID: 34062290 PMCID: PMC8380679 DOI: 10.1016/j.domaniend.2021.106632] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 04/06/2021] [Accepted: 04/17/2021] [Indexed: 12/31/2022]
Abstract
Thyroid hormones regulate a multitude of metabolic and cellular processes involved in placental and fetal growth, while maternal nutrient restriction (NR) has the potential to influence these processes. Those fetuses most impacted by NR, as categorized by weight, are termed small for gestational age (SGA), but the role of thyroid hormones in these pregnancies is not fully understood. Therefore, the aims of the present study were to determine effects of NR during pregnancy on maternal and fetal thyroid hormone concentrations, as well as temporal and cell-specific expression of mRNAs and proteins for placental thyroid hormone transporters, thyroid hormone receptors, and deiodinases in ewes having either SGA or normal weight fetuses. Ewes with singleton pregnancies were fed either a 100% NRC (n = 8) or 50% NRC (NR; n = 28) diet from Days 35 to 135 of pregnancy with a single placentome surgically collected on Day 70. Fetal weight at necropsy on Day 135 was used to designate the fetuses as NR NonSGA (n = 7; heaviest NR fetuses) or NR SGA (n = 7; lightest NR fetuses). Thyroid hormone levels were lower in NR SGA compared to NR NonSGA ewes, while all NR fetuses had lower concentrations of thyroxine at Day 135. Expression of mRNAs for thyroid hormone transporters SLC16A2, SLC16A10, SLCO1C1, and SLCO4A1 were altered by day, but not nutrient restriction. Expression of THRA mRNA and protein was dysregulated in NR SGA fetuses with protein localized to syncytial and stromal cells in placentomes in all groups. The ratio of deiodinases DIO2 and DIO3 was greater for NR SGA placentae at Day 70, while DIO3 protein was less abundant in placentae from NR SGA than 100% NRC ewes. These results identify mid-gestational modifications in thyroid hormone-associated proteins in placentomes of ewes having SGA fetuses, as well as a potential for placentomes from NonSGA pregnancies to adapt to, and overcome, nutritional restrictions during pregnancy.
Collapse
Affiliation(s)
- C B Steinhauser
- Department of Animal Science, Texas A&M University, 2471 TAMU, College Station, Texas 77843
| | - K Askelson
- Department of Animal Science, Texas A&M University, 2471 TAMU, College Station, Texas 77843
| | - K C Hobbs
- Department of Animal Science, Texas A&M University, 2471 TAMU, College Station, Texas 77843
| | - F W Bazer
- Department of Animal Science, Texas A&M University, 2471 TAMU, College Station, Texas 77843
| | - M C Satterfield
- Department of Animal Science, Texas A&M University, 2471 TAMU, College Station, Texas 77843.
| |
Collapse
|
14
|
Starks RR, Abu Alhasan R, Kaur H, Pennington KA, Schulz LC, Tuteja G. Transcription Factor PLAGL1 Is Associated with Angiogenic Gene Expression in the Placenta. Int J Mol Sci 2020; 21:ijms21218317. [PMID: 33171905 PMCID: PMC7664191 DOI: 10.3390/ijms21218317] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 10/29/2020] [Accepted: 11/02/2020] [Indexed: 02/07/2023] Open
Abstract
During pregnancy, the placenta is important for transporting nutrients and waste between the maternal and fetal blood supply, secreting hormones, and serving as a protective barrier. To better understand placental development, we must understand how placental gene expression is regulated. We used RNA-seq data and ChIP-seq data for the enhancer associated mark, H3k27ac, to study gene regulation in the mouse placenta at embryonic day (e) 9.5, when the placenta is developing a complex network of blood vessels. We identified several upregulated transcription factors with enriched binding sites in e9.5-specific enhancers. The most enriched transcription factor, PLAGL1 had a predicted motif in 233 regions that were significantly associated with vasculature development and response to insulin stimulus genes. We then performed several experiments using mouse placenta and a human trophoblast cell line to understand the role of PLAGL1 in placental development. In the mouse placenta, Plagl1 is expressed in endothelial cells of the labyrinth layer and is differentially expressed in placentas from mice with gestational diabetes compared to placentas from control mice in a sex-specific manner. In human trophoblast cells, siRNA knockdown significantly decreased expression of genes associated with placental vasculature development terms. In a tube assay, decreased PLAGL1 expression led to reduced cord formation. These results suggest that Plagl1 regulates overlapping gene networks in placental trophoblast and endothelial cells, and may play a critical role in placental development in normal and complicated pregnancies.
Collapse
Affiliation(s)
- Rebekah R. Starks
- Genetics, Development, and Cell Biology, Iowa State University, Ames, IA 50011, USA; (R.R.S.); (R.A.A.); (H.K.)
- Bioinformatics and Computational Biology, Iowa State University, Ames, IA 50011, USA
| | - Rabab Abu Alhasan
- Genetics, Development, and Cell Biology, Iowa State University, Ames, IA 50011, USA; (R.R.S.); (R.A.A.); (H.K.)
| | - Haninder Kaur
- Genetics, Development, and Cell Biology, Iowa State University, Ames, IA 50011, USA; (R.R.S.); (R.A.A.); (H.K.)
| | | | - Laura C. Schulz
- Obstetrics, Gynecology and Women’s Health, University of Missouri, Columba, MO 65212, USA;
| | - Geetu Tuteja
- Genetics, Development, and Cell Biology, Iowa State University, Ames, IA 50011, USA; (R.R.S.); (R.A.A.); (H.K.)
- Bioinformatics and Computational Biology, Iowa State University, Ames, IA 50011, USA
- Correspondence:
| |
Collapse
|