1
|
Li S, Zhang F, Wang G, Liu Q, Wang X, Chen Q, Chu D. Tau Isoform-Regulated Schwann Cell Proliferation and Migration Improve Peripheral Nerve Regeneration After Injury. Int J Mol Sci 2024; 25:12352. [PMID: 39596423 PMCID: PMC11594695 DOI: 10.3390/ijms252212352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Revised: 11/13/2024] [Accepted: 11/14/2024] [Indexed: 11/28/2024] Open
Abstract
Tau is a microtubule-associated protein that plays a vital role in the mammalian nervous system. Alternative splicing of the MAPT gene leads to the formation of tau isoforms with varying N-terminal inserts and microtubule-binding repeats. Dysregulation of tau alternative splicing has been linked to diseases in the central nervous system, but the roles of tau isoforms in the peripheral nervous system remain unclear. Here, we investigated the alternative splicing of tau exons 4A and 10 in the sciatic nerve and Schwann cells during development and following injury. We discovered that low-molecular-weight (LMW) tau, resulting from the exclusion of exon 4A, and 3R tau, generated by the exclusion of exon 10, diminishes with aging in rat sciatic nerve and Schwann cells. High-molecular-weight (HMW) tau and 3R tau increase in the adult sciatic nerve post-injury. We constructed viruses that expressed HMW-4R, LMW-4R, HMW-3R, and LMW-3R and introduced them into cultured cells or the distal part of the injured sciatic nerve to assess their effects on Schwann cell migration and proliferation. We also examined the effects of the four isoforms on axon growth and debris clearance after sciatic nerve injury. Our results demonstrated that tau isoforms inhibit Schwann cell proliferation while promoting Schwann cell migration and sciatic nerve regeneration. Specifically, the 3R-tau isoforms were more effective than the 4R-tau isoforms in promoting nerve regeneration. In conclusion, our study reveals the roles of tau isoforms in the peripheral nervous system and provides insights into the development of new therapeutic strategies for peripheral nerve injuries.
Collapse
Affiliation(s)
- Shiying Li
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, Nantong University, Nantong 226001, China; (S.L.); (F.Z.); (G.W.); (Q.L.); (X.W.)
- NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, Nantong 226001, China
| | - Fuqian Zhang
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, Nantong University, Nantong 226001, China; (S.L.); (F.Z.); (G.W.); (Q.L.); (X.W.)
- NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, Nantong 226001, China
| | - Guifang Wang
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, Nantong University, Nantong 226001, China; (S.L.); (F.Z.); (G.W.); (Q.L.); (X.W.)
- NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, Nantong 226001, China
| | - Qianyan Liu
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, Nantong University, Nantong 226001, China; (S.L.); (F.Z.); (G.W.); (Q.L.); (X.W.)
- NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, Nantong 226001, China
| | - Xinghui Wang
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, Nantong University, Nantong 226001, China; (S.L.); (F.Z.); (G.W.); (Q.L.); (X.W.)
- NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, Nantong 226001, China
| | - Qianqian Chen
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and Institute of Neuroscience, Soochow University, Suzhou 215123, China
| | - Dandan Chu
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, Nantong University, Nantong 226001, China; (S.L.); (F.Z.); (G.W.); (Q.L.); (X.W.)
- NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, Nantong 226001, China
| |
Collapse
|
2
|
Fischer I, Connors T, Bouyer J, Jin Y. The unique properties of Big tau in the visual system. Cytoskeleton (Hoboken) 2024; 81:488-499. [PMID: 38761116 DOI: 10.1002/cm.21875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 03/29/2024] [Accepted: 04/26/2024] [Indexed: 05/20/2024]
Abstract
Tau is a microtubule associated protein that plays important roles in regulating the properties of microtubules and axonal transport, as well as tauopathies associated with toxic aggregates leading to neurodegenerative diseases. It is encoded by the MAPT gene forming multiple isoforms (45-60 kDa) by alternative splicing which are developmentally regulated. The high molecular weight (MW) tau isoform of 105 kDa, termed Big tau, was originally discovered in the peripheral nervous system (PNS) but later found in selective CNS areas. It contains an additional large exon 4a generating a long projecting domain of about 250 amino acids. Here we investigated the properties of Big tau in the visual system of rats, its distribution in retinal ganglion cells and the optic nerve as well as its developmental regulation using biochemical, molecular and histological analyses. We discovered that Big tau is expresses as a 95 kDa protein (termed middle MW) containing exons 4a, 6 as well as exon 10 which defines a 4 microtubule-binding repeats (4R). It lacks exons 2/3 but shares the extensive phosphorylation characteristic of other tau isoforms. Importantly, early in development the visual system expresses only the low MW isoform (3R) switching to both the low and middle MW isoforms (4R) in adult retinal ganglion neurons and their corresponding axons. This is a unique structure and expression pattern of Big tau, which we hypothesize is associated with the specific properties of the visual system different from what has been previously described in the PNS and other areas of the nervous system.
Collapse
Affiliation(s)
- Itzhak Fischer
- Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, Pennsylvania, USA
| | - Theresa Connors
- Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, Pennsylvania, USA
| | - Julien Bouyer
- Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, Pennsylvania, USA
| | - Ying Jin
- Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, Pennsylvania, USA
| |
Collapse
|
3
|
Dan L, Zhang Z. Alzheimer's disease: an axonal injury disease? Front Aging Neurosci 2023; 15:1264448. [PMID: 37927337 PMCID: PMC10620718 DOI: 10.3389/fnagi.2023.1264448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Accepted: 09/14/2023] [Indexed: 11/07/2023] Open
Abstract
Alzheimer's disease (AD) is the primary cause of dementia and is anticipated to impose a substantial economic burden in the future. Over a significant period, the widely accepted amyloid cascade hypothesis has guided research efforts, and the recent FDA approval of an anti- amyloid-beta (Aβ) protofibrils antibody, believed to decelerate AD progression, has further solidified its significance. However, the excessive emphasis placed on the amyloid cascade hypothesis has overshadowed the physiological nature of Aβ and tau proteins within axons. Axons, specialized neuronal structures, sustain damage during the early stages of AD, exerting a pivotal influence on disease progression. In this review, we present a comprehensive summary of the relationship between axonal damage and AD pathology, amalgamating the physiological roles of Aβ and tau proteins, along with the impact of AD risk genes such as APOE and TREM2. Furthermore, we underscore the exceptional significance of axonal damage in the context of AD.
Collapse
Affiliation(s)
| | - Zhaohui Zhang
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| |
Collapse
|
4
|
Zhu J, Jiang X, Chang Y, Wu Y, Sun S, Wang C, Zheng S, Wang M, Yao Y, Li G, Ma R. Clemastine fumarate attenuates tauopathy and meliorates cognition in hTau mice via autophagy enhancement. Int Immunopharmacol 2023; 123:110649. [PMID: 37494840 DOI: 10.1016/j.intimp.2023.110649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 06/12/2023] [Accepted: 07/11/2023] [Indexed: 07/28/2023]
Abstract
Clemastine fumarate, which has been identified as a promising agent for remyelination and autophagy enhancement, has been shown to mitigate Aβ deposition and improve cognitive function in the APP/PS1 mouse model of Alzheimer's disease. Based on these findings, we investigated the effect of clemastine fumarate in hTau mice, a different Alzheimer's disease model characterized by overexpression of human Tau protein. Surprisingly, clemastine fumarate was effective in reducing pathological deposition of Tau protein, protecting neurons and synapses from damage, inhibiting neuroinflammation, and improving cognitive impairment in hTau mice. Interestingly, chloroquine, an autophagy inhibitor, had a significant impact on total and Sarkosyl fractions of autophagy, demonstrating that it can interrupt autophagy. Notably, after administration of chloroquine, levels of Tau protein were significantly increased. When clemastine fumarate was co-administered with chloroquine, the protective effects were reversed, indicating that clemastine fumarate indeed triggered autophagy and promoted the degradation of Tau protein, while also inhibiting further Tauopathy-related neuroinflammation and synapse loss to improve cognitive function in hTau mice.
Collapse
Affiliation(s)
- Jiahui Zhu
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Department of Neurology, Wuhan Fourth Hospital, Wuhan 430033 Hubei, China
| | - Xingjun Jiang
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Yanmin Chang
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Yanqing Wu
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Shangqi Sun
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Cailin Wang
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Siyi Zheng
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Min Wang
- Department of Neurology, Wuhan Fourth Hospital, Wuhan 430033 Hubei, China
| | - Yi Yao
- Department of Neurology, Wuhan Fourth Hospital, Wuhan 430033 Hubei, China
| | - Gang Li
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China.
| | - Rong Ma
- Department of Pharmacology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China.
| |
Collapse
|
5
|
Fischer I. Big Tau: What We Know, and We Need to Know. eNeuro 2023; 10:10/5/ENEURO.0052-23.2023. [PMID: 37164636 PMCID: PMC10179842 DOI: 10.1523/eneuro.0052-23.2023] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 03/16/2023] [Accepted: 03/21/2023] [Indexed: 05/12/2023] Open
Abstract
Tau is a microtubule-associated protein (MAP) that has multiple isoforms generated by alternative splicing of the MAPT gene at a range of 45-60 kDa [low-molecular-weight (LMW) tau] as well as a unique isoform termed Big tau containing an additional exon 4a encoding a large projecting domain of ∼250 aa to form a protein of 110 kDa. Big tau is expressed in adult PNS neurons such as DRG neurons and specific regions of CNS such as the cerebellum in a developmental transition from LMW tau to Big tau during the postnatal period. Despite a conserved size of the 4a exons across the vertebrate phylogeny, there is no sequence homology among different species outside the Mammalia class, which underscores the focus on structural preservation of Big tau. Despite the original discovery of Big tau in the early 1990s, there has been little progress elucidating its physiological properties and pathologic implications. We propose that Big tau may be able to improve axonal transport in projecting axons and speculate on the potential protective properties in preventing tau aggregation in pathologic conditions. This perspective highlights the importance and benefits of understanding of the role of Big tau in neuronal health and disease.
Collapse
Affiliation(s)
- Itzhak Fischer
- Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, Pennsylvania 19129
| |
Collapse
|
6
|
Molecular Mechanisms of Neural Circuit Development and Regeneration. Int J Mol Sci 2021; 22:ijms22094593. [PMID: 33925608 PMCID: PMC8123774 DOI: 10.3390/ijms22094593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 04/26/2021] [Accepted: 04/27/2021] [Indexed: 11/17/2022] Open
Abstract
The human brain contains 86 billion neurons [...].
Collapse
|